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CD-independent subsets in distributive lattices

By GÁBOR CZÉDLI (Szeged), MIKLÓS HARTMANN (Szeged)

and E. TAMÁS SCHMIDT (Budapest)

Abstract. A subset X of a lattice L with 0 is called CD-independent if for any

x, y ∈ X, either x ≤ y or y ≤ x or x ∧ y = 0. In other words, if any two elements

of X are either comparable or “disjoint”. Maximal CD-independent subsets are called

CD-bases.

The main result says that any two CD-bases of a finite distributive lattice L have

the same number of elements. It is also shown that distributivity cannot be replaced by

a weaker lattice identity. However, weaker assumptions on L are still relevant: semimod-

ularity implies that no CD-basis can have fewer elements than a maximal chain, while

lower semimodularity yields that each maximal chain together with all atoms forms a

CD-basis.

Let L be a lattice with 0. A subset X of L will be called CD-independent
if for any x, y ∈ X, either x ≤ y or y ≤ x or x ∧ y = 0. In other words, if any
two elements of X either form a chain (i.e., they are comparable) or they are
“disjoint”; the initials explain our terminology. As one might expect, maximal
CD-independent subsets are called CD-bases of L.

The classical notion of independent subsets of (semimodular or modular) lat-
tices has many applications ranging from von Neumann’s coordinatization theory
to combinatorial applications via matroid theory. Some other notions of inde-
pendence were introduced in [1] and [2], and there was a decade witnessing an
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intensive study of weak independence, cf. Lengvárszky’s [10] and his other pa-
pers. Recently, the result of [1] has been successfully applied to combinatorial
problems, cf. [3], Pluhár [13] and Horváth, Németh and Pluhár [8].

The present research started with the (easy) observation that many subsets
occurring in [3], [8] and [13] are, in fact, CD-independent. At the time of the final
revision of this paper, we add that so are the subsets in Lengvárszky [11] and
[12], and E. K. Horváth, G. Horváth, Németh and Szabó [9].

As a general reference to (the rudiments of) lattice theory the reader is
referred to Grätzer [6]. For b ∈ L, ↓b will stand for the principal ideal {u ∈
L : u ≤ b}. The length, that is the supremum of {|C| − 1 : C is a chain in L}, of
L is denoted by `(L). For u ∈ L, let h(u) = `(↓u) denote the height of u. If for
all a, b, c ∈ L, a ¹ b implies a ∨ c ¹ b ∨ c then L is called semimodular. Lattices
satisfying the dual property are called lower semimodular. It is well-known that
any two maximal chains of a semimodular lattice L of finite length have the same
number of elements, and for any u ≤ v ∈ L the length `([u, v]) of the interval
[u, v] = {x ∈ L : u ≤ x ≤ v} equals h(v)− h(u).

Facts and notation. For a lattice L of finite length and a CD-basis X of L,

• 0, 1 ∈ X;

• max(X) denotes the set of maximal elements of X \ {1},
• the set of all CD-bases of L will be denoted by B(L);

• for b ∈ X, we define X(b) = (X ∩ ↓b) \ {0}, and we have

X(b) ∪ {0} ∈ B(↓b); (1)

• if max(X) consists of k elements, say max(X) = {a1, . . . , ak}, then

X = {0, 1} ∪̇ X(a1) ∪̇ · · · ∪̇ X(ak) and ai ∧ aj = 0 for all i 6= j, (2)

where ∪̇ stands for (pairwise) disjoint union, and

either k = 1 and a1 is a coatom or a1 ∨ · · · ∨ ak = 1. (3)

Facts (1) and (2) are trivial, while (3) is straightforward from the assumption
that X is a maximal CD-independent subset.

Proposition 1. Let X be a CD-basis of a finite semimodular lattice L. Then

X has at least `(L) + 1 elements.
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Proof. We prove the statement by induction on the length of L. The case
`(L) ≤ 1 is evident, so we assume that `(L) > 1. If |max(X)| = 1, then (1), (2),
(3) and the induction hypothesis give

|X| = |({0} ∪̇ X(a1)) ∪̇ {1}| ≥ `(↓a1) + 1 + 1 = `(L) + 1.

Hence we may assume that max(X) = {a1, . . . , ak} consists of at least two ele-
ments. For i ∈ {1, . . . , k}, denote X(a1)∪· · ·∪X(ai) by Xi and a1∨· · ·∨ai by bi.
Then Xk = X \ {0, 1} by (2) and h(bk) = h(1) = `(L), whence it suffices to show
that

|Xi| ≥ h(bi) (4)

for i = 1, . . . , k. For i = 1 this is clear from the induction hypothesis on the
length of the lattice. Now, let us assume the validity of (4) for i < k. Since finite
semimodular lattices satisfy the well-known “dimension inequality”

h(x) + h(y) ≥ h(x ∧ y) + h(x ∨ y) (5)

for any x, y ∈ L (cf. Grätzer [6], Theorem IV.2.2), we have

`(↓ai+1) ≥ h(ai+1)− h(bi ∧ ai+1) ≥ h(bi ∨ ai+1)− h(bi) = `([bi, bi+1]). (6)

Since `(↓ai+1) = h(ai+1) < h(1) = `(L), the induction hypothesis (on the length)
gives |X(ai+1)| ≥ `(↓ai+1). Hence it follows from (6) and the induction hypothesis
(on i) that |Xi+1| = |Xi|+ |X(ai+1)| ≥ h(bi)+`([bi, bi+1]) = h(bi+1), showing (4).

¤

The black-filled elements of the lattice A, cf. Figure 1, form a CD-basis with
less than `(A)+1 elements. This indicates that semimodularity cannot be dropped
from Proposition 1.

Proposition 2. Let C be a maximal chain in a finite lower semimodular

lattice L, and let A(L) denote the set of atoms in L. Then A(L)∪C is a CD-basis

of L.

Proof. Let C = {0 = c0 ≺ c1 ≺ c2 ≺ · · · ≺ cn = 1}. It is clear, even
without assuming lower semimodularity, that C ∪A(L) is a CD-independent set.
Let y ∈ L \ C such that C ∪ {y} is CD-independent; we need to show that
y ∈ A(L). Let ci be the smallest member of C such that y ≤ ci. Then i > 0,
ci = ci−1 ∨ y and ci−1 is incomparable with y. The CD-independence of C ∪ {y}
gives y ∧ ci−1 = 0. Hence lower semimodularity yields 0 ≺ y, i.e., y ∈ A(L). ¤
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Figure 1. Lattices A and B

Note that B, cf. Figure 1, is a CD-basis of itself. Hence no maximal chain
plus the atoms of B form a CD-basis. This indicates that lower semimodularity
cannot be dropped from Proposition 2.

Main Theorem. Any two CD-bases of a finite distributive lattice have the

same number of elements.

Proof. The notations from the previous two proofs will be in effect. Let L

be a finite distributive lattice. Clearly, we can assume that |L| ≥ 3. In virtue of
Proposition 2, it suffices to show that, for every CD-basis X of L, we have

|X| = `(L) + |A(L)|. (7)

Since X ∪A(L) is CD-independent, the maximality of X implies that

A(L) ⊆ X. (8)

We prove (7) by induction on |L|. Notice that, in formulas (2) and (3),
k = |max(X)| must be 1 or 2. Indeed, if k ≥ 3 then, for i ≥ 3, ai ∧ (a1 ∨ a2) =
(ai ∧ a1)∨ (ai ∧ a2) = 0. Since ai 6= 0, we conclude a1 ∨ a2 6= 1, which means that
X ∪̇ {a1 ∨ a2} is CD-independent, a contradiction.

First we consider the case k=1. Then a1, the unique element of max(X), is
a coatom by (3). Hence we conclude by (8) that A(↓a1) = A(L). Now X = {1} ∪̇
({0} ∪̇ X(a1)) and, by (1), we know that {0} ∪̇ X(a1) ∈ B(↓a1). Hence we can
apply the induction hypothesis to the distributive lattice ↓a1:

|X| = 1 + |{0} ∪̇ X(a1)| = 1 + `(↓a1) + |A(↓a1)| = `(L) + |A(L)|,

as desired.
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Secondly, let k = 2. Then, by (2) and (3), a2 is a complement of a1. Hence
`(L) = h(1) = h(a1) + h(a2) by distributivity. Now it is well-known that L

is (isomorphic to) the direct product of L1 = ↓a1 and L2 = ↓a2. Let Xi =
X ∩ Li = X(ai) ∪ {0} ∈ B(↓ai), and let Ai = A(L) ∩ Li. Clearly, X = X1 ∪̇(
(X2 ∪{1}) \ {0}

)
, A(Li) = Ai, and `(L) = h(a1)+h(a2) = `(L1)+ `(L2). Hence

the induction gives |X| = |A(L)|+ `(L) easily. ¤

Now, by giving an unusual characterization of the variety of all distributive
lattices, we point out that “distributivity” in the Main Theorem cannot be re-
placed by a weaker lattice identity. A lattice variety is called nontrivial if it is
distinct from the class of all one-element lattices.

Corollary 3. For every nontrivial variety V of lattices, the following two

conditions are equivalent.

(1) any two CD-bases of each finite member of V have the same number of

elements;

(2) V is the variety of all distributive lattices.

Proof. Let Cn = {0 = d0 ≺ d1 ≺ · · · ≺ dn = 1} denote the chain of
length n. (Although it would suffice to consider n = 2 in the present proof, the
needs of a forthcoming proof makes it reasonable that we allow n ≥ 2 here.) Given
a lattice K, let K[Cn] = {(x1, x2, . . . , xn) ∈ Kn : x1 ≤ x2 ≤ · · · ≤ xn}. Then
K[Cn] is a sublattice of the n-th direct power of K. (In fact, the constant n-tuples
show that K[Cn] is a subdirect power of K.) For k ≥ 3, let Mk = {0, a1, . . . , ak, 1}
denote the modular lattice of length 2 with exactly k atoms, and let N5 be the
five element nonmodular lattice with elements 0, 1, a, b, c such that a < c.

It suffices to show that Condition (1) implies that neither M3 nor N5 belongs
to V, for the reverse implication is just the Main Theorem. Suppose that V
satisfies Condition (1).

By way of contradiction, suppose first that M3 ∈ V. Then M3[Cn] ∈ V as
well. (For n = 3, it is depicted in Figure 2.) Consider the following principal
ideals of M3[Cn]:

↓(ai, . . . , ai) =
{
(0, . . . , 0, 0), (0, . . . , 0, ai), (0, . . . , ai, ai), . . . , (ai, . . . , ai, ai)

}
,

for i = 1, 2, 3. They are chains of length n. Using modularity and the fact that the
constant n-tuples in M3[Cn] form a sublattice isomorphic to M3, we obtain that
`(M3[Cn]) = 2n. Notice that M3[Cn] has exactly three atoms: the (0, . . . , 0, ai)
for i = 1, 2, 3. Therefore, in virtue of Proposition 2, M3[Cn] has a CD-basis G of
size 2n + 3, cf. the cross-filled elements in the figure. By similar argument,

Mk[Cn] has a CD-basis of size 2n + k; (9)
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Figure 2. M3[C3] and N5[C2]

we have noticed this for later reference. On the other hand, let

H =
{
(1, . . . , 1)

} ∪ ↓(a1, . . . , a1) ∪ ↓(a2, . . . , a2) ∪ ↓(a3, . . . , a3).

Then H is a CD-independent subset and |H| = 3n+2, cf. the grey-filled elements
in the figure. (It is not hard to see that H is a CD-basis, but we do not need this
fact.) Similarly,

Mk[Cn] has a CD-independent subset of size at least kn + 2. (10)

Now 3n + 2 > 2n + 3 for n ≥ 2, contradicting Condition (1).
Secondly, suppose that N5 ∈ V. Then N5[C2] ∈ V as well; cf. Figure 2,

which is quoted from [16]. The cross-filled elements form a CD-basis G while
the gray-filled elements form a CD-basis H. So |G| = 7 6= 8 = |H| contradicts
Condition (1). ¤

Remark 4. Let V be a lattice variety containing a non-distributive member.
Then, for each t ∈ N, there are a finite lattice L ∈ V and CD-bases X and Y of
L such that |X| − |Y | > t.

Proof. If Z is a CD-basis of L then it is straightforward to see that Z ′ =(
Z × {0}) ∪ ({0} × Z

) ∪ {
(1, 1)

}
is a CD-basis of L2 with |Z ′| = 2 · |Z|. This

together with Corollary 3 implies the above remark. ¤

Remark 5. For each t ∈ N, there are a finite modular lattice L and CD-bases
X and Y of L such that |X| > t · |Y |.
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Proof. Evident by (9) and (10). ¤

Historical remarks. The lattice M3[Cn] is just a particular case of the M3[D]
construction for bounded distributive lattices D. While M3[D] was introduced in
[15] in a very different way, by means of balanced triples, here we used the more
general definition of K[D] from [16]. For some other applications and generaliza-
tions of the M3[D] construction cf., e.g., [17], Farley [4] and [5], Grätzer and
Wehrung [7], and Quackenbush [14].

Corollary 6. Let L be a finite distributive lattice. Then L is Boolean if and

only if |X| = 2 · `(L) holds for every (equivalently, some) CD-basis X of L.

Proof. Let J(L) denote the set of nonzero join-irreducible elements of L.
Then |J(L)| = `(L), and L is Boolean iff J(L) = A(L), cf., e.g., Theorem II.1.9
and Corollary II.1.14 in Grätzer [6]. Hence the Main Theorem and Proposition 2
complete the proof. ¤
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[11] Zs. Lengvárszky, The minimum cardinality of maximal systems of rectangular islands,
European Journal of Combinatorics 30 (2009), 216–219.
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