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Abstract. A Riemannian g.o. manifold is a homogeneous Riemannian manifold

on which every geodesic is an orbit of a one-parameter group of isometries. The first

counter-example of a Riemannian g.o. manifold which is not naturally reductive is Ka-

plan’s six-dimensional example.

In this paper, we study the constant osculating rank of the curvature operator and

of the Jacobi operator over g.o. spaces settling the concept of constant Jacobi osculating

rank of a Riemannian g.o. space. Moreover, we show that an expression of the Jacobi

operator valid for all geodesic of a given g.o. space exists on every Riemannian g.o. space

with constant Jacobi osculating rank. In addition, we develop a method to obtain such

expression when we work on a g.o. space which is also an H-type group. In particular,

we apply this method on Kaplan’s example.
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1. Introduction

It is well-known (cf. [15, chapter X, Sections 2, 3]) that a Riemannian homo-
geneous space (M, g) = G/H with its origin p = {H} and with an ad(H)-invariant
decomposition g = m + h is naturally reductive (with respect to this decomposi-
tion) if and only if the following holds:

For any vector X ∈ m\{0}, the curve γ(t) = τ(exp tX)(p)

is a geodesic with respect to the Riemannian connection
(1)

where exp and τ(h) denote the Lie exponential map of G and the left transfor-
mation of G/H induced by h ∈ G respectively. Moreover, the naturally reductive
spaces have been studied by a number of authors as a natural generalization of
Riemannian symmetric spaces.

Now, natural reductivity is still a special case of a more general property,
which follows easily from (1):

Each geodesic of (M, g) = G/H, is an orbit of a

one-parameter group of isometries {exp tZ}, Z ∈ g.
(2)

Riemannian homogeneous spaces (M, g) = G/H with the property (2) will
be called (Riemannian) g.o. spaces.

The extensive study of g.o. spaces only started with A. Kaplan’s paper
[14] in 1983, because he gave the first counter-example of a Riemannian g.o.
manifold which is not naturally reductive. This is a six-dimensional Riemann-
ian nilmanifold with a two-dimensional center, one of the so-called “generalized
Heisenberg groups” or “H-type groups”. Subsequently, the class of generalized
Heisenberg groups has provided a large number of further counter-examples. (See
[20], [6]). A classification of all g.o. spaces in dimension not greater than six is
given by O. Kowalski and L. Vanhecke in [17]. All Riemannian g.o. man-
ifolds of dimension ≤ 5 are proved to be naturally reductive. In dimension 6,
new examples of g.o. spaces are given which are in no way naturally reductive.
Moreover, in 2004, the first known 7-dimensional compact examples of Riemann-
ian g.o. manifolds which are not naturally reductive were found by Z. Dušek,

O. Kowalski, and S. Ž. Nikčević in [11]. For more information on the relation
between naturally reductive spaces and g.o. spaces, and also for the references to
related topics, see [1], [2], [11], [12], [16] and [17].

Let c : I → Rn be a curve defined on an open interval I of R into Rn. From
the classical point of view, we say that c(t) has constant osculating rank r if, for
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all t ∈ I, its higher order derivatives c1)(t), . . . , cr)(t) are linearly independent
and c1)(t), . . . , cr+1)(t) are linearly dependent in Rn.

On the other hand, K. Tsukada in [23] gave a criterion for the existence
of totally geodesic submanifolds of naturally reductive spaces. That criterion is
based on the curvature tensor and on a finite number of its derivatives with respect
to the Levi–Civita connection. In particular, to prove that result he used two basic
formulae proved exclusively for naturally reductive spaces by K. Tojo in [21].
From those formulae he obtained that the curvature tensor can be considered as
a curve in the space of curvature tensors on m. Later, using the general theory, he
pointed out that the curvature tensor has constant osculating rank, r ∈ N, over
naturally reductive spaces.

Some years later, K. Tsukada’s result was applied by the second author and
A. Tarŕıo in [19] to give a method for solving the Jacobi equation Y ′′+J Y = 0
on the naturally reductive manifold V1 = Sp(2)/SU(2). Here, J denotes the
Jacobi operator. Given the generality of the method, the authors conjectured
that it could also be applied to solve the Jacobi equation in several other ex-
amples of naturally reductive homogeneous spaces. Indeed, they were not wrong
because this method has been successfully applied by the first author and S. Bar-

toll on the manifold M6 = U(3)/(U(1) × U(1) × U(1)) in [4], [5] and by
E. Maćıas-Virgós, the second author and A. Tarŕıo on the Wilking mani-
fold V3 = (SO(3)× SU(3))/U̇(2), endowed with a particular bi-invariant metric,
in [18].

In this paper, we study the constant osculating rank of the curvature operator
and of the Jacobi operator over g.o. spaces. In Section 2, we settle the concepts
of Jacobi osculating rank and constant Jacobi osculating rank of a Riemannian
g.o. space. Moreover, we show that every g.o. space has Jacobi osculating rank
and on every Riemannian g.o. space with constant Jacobi osculating rank exists
an expression of the Jacobi operator valid for all geodesic of the given g.o. space.
The aim of the last section is to develop a method to obtain such expression
when we work on a g.o. space which is also an H-type group. In particular, we
divide the last section in two subsections. In the first one, we recall some basic
definitions and results regarding “H-type groups”. In addition, we give a recursive
expression for the nth covariant derivative of the Jacobi operator at the origin of
an H-type group. In the last subsection, we obtain that the Jacobi osculating
rank of Kaplan’s example is 4 and it is also constant because we proof that

1
4
J 1)

0 +
5
4
J 3)

0 + J 5)
0 = 0.



138 Teresa Arias-Marco and Antonio M. Naveira

Here, J n)
0 denotes the nth covariant derivative of the Jacobi operator along an

arbitrary geodesic at the origin.
Finally, we use this information to calculate the explicit expression of Jt, the

Jacobi operator along anyone geodesic, on Kaplan’s example. That is

Jt = c0 + c1 cos(t) + c2 sin(t) + c3 cos(t/2) + c4 sin(t/2),

where the coefficients c0, c1, c2, c3, c4 are linear combinations of J0, J 1)
0 , J 2)

0 ,
J 3)

0 , J 4)
0 .

2. Jacobi osculating rank of a g.o. space

Let G ⊂ I(M) be a connected Lie group which acts transitively on a Rie-
mannian manifold M and let p ∈ M be a fixed point. If we denote by H the
isotropy group at p, then M can be identified with the homogeneous manifold
G/H. In general, there may be more than one such group G ⊂ I(M). If, for
example, we take a connected Lie group G′ such that G 6= G′ ⊂ I(M) and G′ also
acts transitively on M , then there is another expression of M as G′/H ′ (where
H ′ is the new isotropy group).

For any fixed choice M = G/H, G acts effectively on G/H from the left.
The Riemannian metric g on M can be considered as a G-invariant metric on
G/H. The pair (G/H, g) is then called a Riemannian homogeneous space. Such
space is always a reductive homogeneous space in the following sense (cf. [15,
vol.II, p. 190]): we denote by g and h the Lie algebras of G and H respectively
and consider the adjoint representation Ad : H × g → g of H on g. There is a
direct sum decomposition (reductive decomposition) of the form g = m + h where
m ⊂ g is a vector subspace such that Ad(H)(m) ⊂ m. For a fixed reductive
decomposition g = m + h, there is a natural identification of m ⊂ g = TeG with
the tangent space TpM via the projection π : G → G/H = M . Using this natural
identification and the scalar product gp on TpM , we obtain a scalar product 〈 , 〉
on m which is obviously Ad(H)-invariant.

Definition 2.1. A Riemannian homogeneous space (G/H, g) is called a g.o.
space if each geodesic of (G/H, g) (with respect to the Riemannian connection)
is an orbit of a one-parameter subgroup {exp(tZ)}, Z ∈ g, of the group of isome-
tries G.

A homogeneous Riemannian manifold (M, g) is called a Riemannian g.o.
manifold if each geodesic of (M, g) is an orbit of a one-parameter group of isome-
tries.
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Definition 2.2. Let (G/H, g) be a g.o. space. A vector Z ∈ g is called a
geodesic vector if the curve τ(exp(tZ))(p) is a geodesic. Here τ(h) denotes the
left transformation of G/H induced by h ∈ G.

Let Z ∈ g, we denote by Z∗ the corresponding fundamental vector field
on M ; that is

Z∗q =
d

dt |0
(τ(exp(tZ))(q))

for each q ∈ M . Moreover, it is easy to see from Definition 2.1 (cf. [17]) that

Proposition 2.1. G/H is a Riemannian g.o. space if and only if the projec-

tions of all geodesic vectors fill in the set TpM\{0}.
Now, we easily generalize to Riemannian g.o. spaces two important results

over naturally reductive spaces proved by K. Tojo and K. Tsukada in [21] and
[23], respectively.

Let (M, g) be a Riemannian g.o. space and Z ∈ g be an arbitrary geodesic
vector. We put

e−∇X =
∞∑

l=0

(−1)l

l!
∇l

X , X ∈ m.

Over g.o. spaces, ∇ denotes the Levi–Civita connection, so obviously the linear
map ∇X is skew-symmetric (i.e. ∇Xg=0 for all X ∈ m). Therefore, the mapping
e−∇X : (m, 〈 , 〉) → (m, 〈 , 〉) is an isometry, e−∇tx is a one-parameter subgroup of
the linear isometric transformation group SO(m) and we can obtain the following
lemmas.

Lemma 2.1. The parallel translation along the geodesic

γx(t) = τ(exp(tZ))(p) with γx(0) = p, γ′x(0) = x = Z∗p

is given by

τ(exp(tZ))∗ ◦ e−∇tx : TpM(= m) −→ Tγx(t)M.

Proof. Since (M, g) is a g.o. space, we can take

Y (t) = τ(exp(tZ))∗(e−∇tx(y))

as a vector field along the geodesic γx(t) = τ(exp(tZ))(p) such that Y (0) = y ∈ m.
From Proposition 1.2 of Chapter VI of [15], we have

∇γ′(t)Y (t) = ∇γ′(t)(τ(exp(tZ))∗(e−∇tx(y)))

= τ(exp(tZ))∗(∇x ◦ (e−∇tx(y))) + τ(exp(tZ))∗

(
d

dt
(e−∇tx(y))

)
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= τ(exp(tZ))∗

(
∇x ◦

∞∑

l=0

(−1)l

l!
tl∇l

x(y) +
∞∑

l=1

(−1)l

l − 1!
t(l−1)∇l

x(y)

)
= 0. ¤

Let R be the curvature tensor defined by

R(U, V ) = [∇U ,∇V ]−∇[U,V ],

where U and V are vector fields on M and let Pt0x denote the parallel transport
with respect to ∇ along the geodesic γx(t) = τ(exp(tZ))(p) from p to γx(t0). We
now define a (1, 3)-tensor Rx(t) on TpM and its nth covariant derivative along
γx(t) as follows:

Rn)
x (t)(u, v)w = P−1

tx ◦ Rn)
γx(t)(Ptxu, Ptxv)Ptxw

for u, v, w ∈ TpM . Here, we denote ∇n
γ̇x(t)R by Rn)

γx(t) and Rx(t) by R0)
x (t).

From now on, we denote Rn)
x (0) by Rn)

0 for brevity. Moreover, note that
Rn)

0 (u, v)w = ∇n
xR(u, v)w for u, v, w ∈ TpM , i.e.; Rn)

0 also denotes the nth

covariant derivative of the curvature tensor along γx(t) at the origin p = γx(0).

Lemma 2.2. The (1, 3)-tensor Rn)
x (t) on m obtained by the parallel trans-

lation of the nth covariant derivative of the curvature tensor along γx(t) is given

by

Rn)
x (t) = e∇tx · Rn)

0 (3)

where x = Z∗p and the dot indicates the action of e∇tx on the space R(m) of

curvature tensors on m.

Therefore, Rx(t) is in the orbit of R0 with respect to the linear isometric

transformation group SO(m) and dim(Rx(t)) ≤ n(n−1)
2 .

Proof. We denote briefly dgt = τ(exp(tZ))∗. From Lemma 2.1 and due to
the fact that e∇tx is an isometry, we have

〈
Rn)

x (t)(u, v)w, ξ
〉

=
〈
P−1

tx ◦ Rn)
γx(t)(Ptxu, Ptxv)Ptxw, ξ

〉

=
〈
e∇tx ◦ (dgt)−1 ◦ Rn)

γx(t)((dgt)e−∇tx(u), (dgt)e−∇tx(v))(dgt)e−∇tx(w), ξ
〉

=
〈
(dgt)−1 ◦ Rn)

γx(t)((dgt)e−∇tx(u), (dgt)e−∇tx(v))(dgt)e−∇tx(w), e∇−tx(ξ)
〉

= g(Rn)
γx(t)((dgt)e−∇tx(u), (dgt)e−∇tx(v))(dgt)e−∇tx(w), (dgt)e−∇tx(ξ))

=g((∇n
(dgt)e−∇tx (x)R)((dgt)e−∇tx(u),(dgt)e−∇tx(v))(dgt)e−∇tx(w),(dgt)e−∇tx(ξ))

= g((dgt)Rn)
0 (e−∇tx(u), e−∇tx(v))e−∇tx(w), (dgt)e−∇tx(ξ))

=
〈
e∇txRn)

0 (e−∇tx(u), e−∇tx(v))e−∇tx(w), ξ
〉

. ¤
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Moreover for each u ∈ m, we denote by R(u) the smallest subspace of R(m)
which satisfies R0 ∈ R(u) and ∇u ·R(u) ⊂ R(u). We define du by du = dimR(u).
Trivially, due to every element of R(u) belong to the orbit of R0 with respect to
the linear transformation group GL(m) we have du ≤ n2.

We now recall some fundamental facts about a curve in the n-dimensional
Euclidean space Rn. Let c : I → Rn be a curve defined on an open interval I of R
into Rn. We say that c(t) has constant osculating rank r if, for all t ∈ I, its higher
order derivatives c1)(t), . . . , cr)(t) are linearly independent and c1)(t), . . . , cr+1)(t)
are linearly dependent in Rn. It is a fundamental fact that if c(t) has constant
osculating rank r, there are smooth functions a1, . . ., ar : I → R such that

c(t) = c(0) + a1(t)c1)(0) + · · ·+ ar(t)cr)(0) for all t ∈ I.

Moreover, P. Dombrowski proved in [9] the following property:

Proposition 2.2. Let S denote a connected m-dimensional real analytic

manifold and f : S → Rn a real analytic map of S into Rn, let ∇ denote the

Levi–Civita connection of Rn. Then, f : S → Rn has constant osculating rank.

Let us return to a g.o. space M . Let U(t), V (t), W (t) be the vector fields
along the geodesic γx(t), arbitrary but fixed, such that U(0) = u, V (0) = v,
W (0) = w are unit vectors in m. Since e∇tx is a 1-parameter subgroup of the
group of linear isometries of R(m), it follows that Rx(t), or more explicitly

Rx(t)(u, v)w = e∇tx · R0(e∇−txu, e∇−txv)e∇−txw,

is a curve in R(m). Moreover, if S is an open interval I of the real space R and
we use the natural identification of Rn with m, Proposition 2.2 yields that Rx(t)
has constant osculating rank. Therefore, there is a number rγ ∈ N and there are
smooth functions a1, . . ., arγ : I → R for every fixed but arbitrary geodesic γx(t)
such that

Rx(t) = R0 + a1(t)R1)
0 + · · ·+ arγ (t)Rrγ)

0 for all t ∈ I. (4)

Furthermore, by the classical constant osculating rank definition there are
α1, . . . , αrγ constants depending of the fixed geodesic such that

α1R1)
x (t) + · · ·+ αrγRrγ)

x (t) +Rrγ+1)
x (t) = 0. (5)

Thus, since Ri)
0 = ∇i

x ·R0, for all i ∈ N, R(x) coincides with the subspace of
R(m) spanned by R0, ∇x · R0, . . . ,∇rγ)

x · R0. In particular, we have rγ = dx − 1
or dx.
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On the other hand, note that if we know (5), using the general theory about
ordinary differential equations we can determine the functions ai(t), i = 1, . . . , rγ ,
of (4). We only need to use the next result where Q(y) = yrγ +αrγ

yrγ−1+· · ·+α1y

is the characteristic polynomial of (5).

Proposition 2.3. Let (M, g) be a Riemannian g.o. space and let rγ be

the constant osculating rank of the curvature operator Rx(t) for an arbitrary

geodesic γx(t). Then, Rx(t) can be written as a matrix-linear combination of

the following functions: for each λ, real root of Q(y) with multiplicity k, the

functions eλt, teλt, . . . , tk−1eλt and, for each σ ± ıτ (τ 6= 0), conjugate complex

roots of Q(y) with multiplicity h, the functions eσt cos(τt), eσt sin(τt), teσt cos(τt),
teσt sin(τt), . . . , th−1eσt cos(τt), th−1eσt sin(τt). Moreover, the coefficients of such

a matrix-linear combination are linear combination of R0, R1)
0 , . . . ,Rrγ)

0 .

A useful technique to describe the curvature along a geodesic γ in a Rie-
mannian manifold (M, g), with Riemannian curvature tensor R, is the use of the
Jacobi operator J (·) = R(·, γ̇)γ̇. J determines a self-adjoint tensor field along γ.

In particular, from Lemma 2.2 the Jacobi operator on m and its nth covariant
derivative along the geodesic γx(t) are given by

J n)
x (t)(u) = Rn)

x (t)(u, x)x = P−1
tx ◦ Rn)

γx(t)(Ptxu, Ptxx)Ptxx

= P−1
tx ◦ (∇n

γ̇x(t)R)(Ptxu, γ̇x(t))γ̇x(t)

= P−1
tx ◦ J n)(Ptxu) = e∇txJ n)

0 (e−∇tx(u)) (6)

for u ∈ m. Obviously, if t = 0, J n)
0 (u) = (∇n

xR)(u, x)x, where, as before, J n)
0

denotes J n)
x (0). In addition, we will write throughout the paper J n)

t instead of
J n)

x (t) to shorten notation.
It is obvious that the property (3) can also be written as

Rn)
x (t) = e∇tx · (∇e−∇tx (x)Rn−1)

0 ). (7)

Therefore, (6) becomes

J n)
t (u) = e∇tx(∇e−∇tx (x)J n−1)

0 )(e−∇tx(u)) (8)

for u ∈ m and if t = 0 we have

J n)
0 (u) = (∇xJ n−1)

0 )(u). (9)

The following result is basic to introduce the Jacobi osculating rank of a g.o.
space.
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Lemma 2.3. The Jacobi operator J n)
t on m obtained by the parallel trans-

lation of the nth covariant derivative of the Jacobi operator along γx(t) satisfies

the following identity

J n)
t (u) = e∇tx∇e−∇tx (x)(J n−1)

0 (e−∇tx(u)))− e∇txJ n−1)
0 (∇e−∇tx (x)(e

−∇tx(u)))

for u ∈ m where x = γ̇x(0) = Z∗p , J n)
0 denotes the nth covariant derivative of

the Jacobi operator along γx(t) at the origin p = γx(0) and the dot indicates the

action of e∇tx on the space R(m) of curvature tensors on m. Moreover, in the

particular case t = 0, the identity becomes

J n)
0 (u) = ∇x(J n−1)

0 (u))− J n−1)
0 (∇xu). (10)

Proof. We denote briefly dgt = τ(exp(tZ))∗. From Lemma 2.1, formula (6),
the condition∇γ̇x(t)γ̇x(t) = 0 and due to the fact that e∇tx is an isometry, we have

〈
J n)

t (u), ξ
〉

=
〈
P−1

tx ◦ J n)(Ptxu), ξ
〉

=
〈
P−1

tx ◦ ∇γ̇x(t)(J n−1)(Ptxu)), ξ
〉
−

〈
P−1

tx ◦ J n−1)(∇γ̇x(t)(Ptxu)), ξ
〉

=
〈
e∇tx ◦ (dgt)−1 ◦ ∇(dgt)e−∇tx (x)(J n−1)((dgt)e−∇tx(u))), ξ

〉

−
〈
e∇tx ◦ (dgt)−1 ◦ J n−1)(∇(dgt)e−∇tx (x)((dgt)e−∇tx(u))), ξ

〉

= g(∇(dgt)e−∇tx (x)(J n−1)((dgt)e−∇tx(u))), (dgt)e∇−txξ)

− g(J n−1)(∇(dgt)e−∇tx (x)((dgt)e−∇tx(u))), (dgt)e∇−txξ)

= g((dgt)∇e−∇tx (x)(J n−1)
0 (e−∇tx(u))), (dgt)e∇−txξ)

− g((dgt)J n−1)
0 (∇e−∇tx (x)(e

−∇tx(u))), (dgt)e∇−txξ)

=
〈
e∇tx∇e−∇tx (x)(J n−1)

0 (e−∇tx(u)))− e∇txJ n−1)
0 (∇e−∇tx (x)(e

−∇tx(u))), ξ
〉

. ¤

It is obvious on every g.o. space that for every fixed but arbitrary geodesic
γx(t) the associated Jacobi operator, Jt, has also constant osculating rank in the
classical sense. Therefore, we can rewrite (4) and (5) substituting the curvature
operator by the Jacobi operator. In particular at t = 0, we will always have
α1, . . . , αrγ , constants depending of the fixed geodesic, such that

α1J 1)
0 + · · ·+ αrγJ rγ)

0 + J rγ+1)
0 = 0. (11)

Proposition 2.4. If (11) is known for a fixed geodesic on a g.o. space, then

it exists a relation between the first r + 1 covariant derivatives of the Jacobi

operator at t = 0 for every r ≥ rγ .
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Proof. We derive (r− rγ)-times the relation (11) using (9) and (10). Thus,
we obtain

α1J 1+m)
0 + · · ·+ αrγ

J rγ+m)
0 + J rγ+1+m)

0 = 0 for m = 1, . . . , r− rγ .

Finally, adding the previous relations we find β1, . . . , βr constants depending of γ

such that
β1J 1)

0 + · · ·+ βrJ r)
0 + J r+1)

0 = 0 for r ≥ rγ . (12)

¤

Therefore, if we put r = max{rγ : for all γ geodesic of a given g.o. space},
we can always find a relation of type (12) on every geodesic of a given g.o. space.
From now on, we say that r ∈ N is the Jacobi osculating rank of a given g.o.
space. Of course, r ≤ n2 and the constants of each relation of type (12) still
depend of the corresponding geodesic.

Lemma 2.4. Let (M, g) be a g.o. space with Jacobi osculating rank r. Let

γx(t) a geodesic and β1, . . . , βr constants depending of γ such that β1J 1)
0 + · · ·+

βrJ r)
0 + J r+1)

0 = 0. Then,

β1J k+1)
0 + · · ·+ βrJ k+r)

0 + J k+r+1)
0 = 0 for k = 0, 1, 2, . . . (13)

Proof. Let us assume that (13) is true for k = i and we will prove the result
for k = i + 1. Using (9) and (10) we have

J i+r+2)
0 = ∇xJ i+r+1)

0 = −∇x

(
β1J i+1)

0 + · · ·+ βrJ i+r)
0

)

= −β1∇xJ i+1)
0 − · · · − βr∇xJ i+r)

0 = −β1J i+2)
0 − · · · − βrJ i+1+r)

0 . ¤

Proposition 2.5. Let (M, g) be a g.o. space with Jacobi osculating rank r.

Let γx(t) : I → M a geodesic and β1, . . . , βr constants depending of γ such that

β1J 1)
0 + · · ·+ βrJ r)

0 + J r+1)
0 = 0. Then,

β1J 1)
t + · · ·+ βrJ r)

t + J r+1)
t = 0 for all t ∈ I. (14)

Moreover by Proposition 2.3, we can determine smooth functions a1, . . . , ar : I→R
to obtain the Jacobi operator along γx(t). More explicitly, we obtain that

Jt = J0 + a1(t)J 1)
0 + · · ·+ ar(t)J r)

0 . (15)
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Proof. Using the expansion in Taylor’s series of the Jacobi operator Jt, it
is clear that

J n)
t =

∞∑

i=n

ti−n

(i− n)!
J i)

0 =
∞∑

k=0

tk

k!
J k+n)

0 for n = 1, . . . , r.

Therefore, we conclude by the previous Lemma that

β1J 1)
t + · · ·+βrJ r)

t +J r+1)
t =

∞∑

k=0

tk

k!

(
β1J k+1)

0 + · · ·+ βrJ k+r)
0 + J k+r+1)

0

)
= 0.

¤

Finally, note that if the constants βi, i = 1, . . . , r, of (14) do not depend of
the geodesic then we can find an expression of type (14) valid for all geodesic of
a given g.o. space. Moreover, we obtain an expression of type (15) for the Jacobi
operator valid for all geodesic of a given g.o. space. When this happens, we say
that the given g.o. space has constant Jacobi osculating rank.

Remark 2.1. Although a g.o. space has constant Jacobi osculating rank, the
operator Jt with respect to every fixed geodesic γx(t) has still its own (as a
curve) constant osculating rank rγ that could be less than or equal to the Jacobi
osculating rank r of the g.o. space.

It is clear by the previous results that every g.o. space has Jacobi osculating
rank. Now, the question is if every g.o. space has also constant Jacobi osculating
rank. In the next section we will prove that Kaplan example is a g.o. space with
constant Jacobi osculating rank and in a forthcoming paper we will provide an
example of a g.o. space with non-constant Jacobi osculating rank.

On the other hand, note that every g.o. space with constant Jacobi osculating
rank r satisfies a relation of type (14) between the first r+1 covariant derivatives
of the Jacobi operator along anyone geodesic. These relations can be compared
with the relation ∇R = 0 that symmetric spaces satisfy.

3. Method to obtain the Jacobi osculating rank
of a g.o. space of H-type

In the previous section, we showed that on every Riemannian g.o. space with
constant Jacobi osculating rank exists an expression of the Jacobi operator valid
for all geodesic of a given g.o. space. The aim of this section is to develop a
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method to obtain such expression when we work on a g.o. space which is also an
H-type group. In particular, we will apply this method on Kaplan’s example.

We divide this section in two subsections. In the first one, we will recall some
basic definitions and results regarding “H-type groups”. In addition, we will give
a recursive expression for the nth covariant derivative of the Jacobi operator at
the origin of an H-type group. In the last subsection, we will calculate the Jacobi
osculating rank of Kaplan’s example and we will check that Kaplan’s example
has constant Jacobi osculating rank. Finally, we will use it to obtain the explicit
expression of Jt, the Jacobi operator along anyone geodesic, on Kaplan’s example.

The computer support, for example using the software Mathematica 6.0,
can be so useful in Section 3.2 to obtain the objectives without loss the trans-
parency of the calculations.

3.1. Preliminaries about H-type groups.

Definition 3.1. Let n be a 2-step nilpotent Lie algebra with an inner product
〈 , 〉. Let z be the center of n and let v be its orthogonal complement. For each
vector A ∈ z, the operator j(A) : v → v is defined by the relation

〈j(A)X,Y 〉 = 〈A, [X,Y ]〉 for all X,Y ∈ v. (16)

The algebra n is called a generalized Heisenberg algebra (H-type algebra) if, for
each A ∈ z, the operator j(A) satisfies the identity

j(A)2 = −|A|2Idv (17)

where | |2 denotes the quadratic form of the inner product 〈 , 〉. A connected,
simply connected Lie group whose Lie algebra is an H-type algebra is diffeomor-
phic to Rn and it is called an H-type group. It is endowed with a left-invariant
metric.

In particular, the Lie algebra structure on n is defined by extending the skew-
symmetric bilinear map [ , ] : v × v → z to a bracket [A + X,B + Y ] = [X, Y ]
where A,B ∈ z and X,Y ∈ v. Moreover, it is well-known that

[X, j(A)X] = A|X|2 (18)

for all A ∈ z and X ∈ v. (See [13], [6, p. 24]).
H-type groups were intrinsically described in [13] and [6, p. 28]. They

obtained that the Riemannian connection is given by

∇XY =
1
2
[X, Y ],

∇AX = ∇XA = −1
2
j(A)X,

∇AB = 0,

(19)
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where A,B ∈ z and X, Y ∈ v. A straightforward computation now shows that
the Riemannian curvature tensor is given by

R(X, Y )Z =
1
4
(2j([X, Y ])Z − j([Y,Z])X − j([Z, X])Y ),

R(X, Y )A =
1
4
([Y, j(A)X]− [X, j(A)Y ]),

R(X, A)Y = −1
4
[X, j(A)Y ],

R(X, A)B = −1
4
j(A)j(B)X,

R(A,B)X =
1
4
(j(A)j(B)X − j(B)j(A)X),

R(A,B)C = 0, (20)

where A,B,C ∈ z and X, Y, Z ∈ v.
Moreover, a geodesic, t → γ(t), through the origin p of an H-type group is

described by means of two vector-valued functions t → X(t) ∈ v, t → A(t) ∈ z

as follows: γ(t) = exp(X(t) + A(t)) such that X(0) = 0, A(0) = 0 and the unit
tangent vector of γ at the origin p is given by γ̇0 = Ẋ0 + Ȧ0 where ḟ0 denotes
(df/dt)t=0 of any real or vector-valued function f(t). (See [13], [14], [6, p. 30]
and [22] for more detailed results about geodesics over H-type groups).

Now we define the mappings ζ(n,A) : z → z, ν(n,A) : z → v, ζ(n,X) : v → z and
ν(n,X) : v → v in a recurrent way for each n ∈ N by

ζ(0,A)(B) =
1
4
|Ẋ0|2B,

ν(0,A)(B) =
1
2
j(B)j(Ȧ0)Ẋ0 − 1

4
j(Ȧ0)j(B)Ẋ0,

ζ(0,X)(Y ) =
1
4
[Ẋ0, j(Ȧ0)Y ]− 1

2
[Y, j(Ȧ0)Ẋ0],

ν(0,X)(Y ) =
1
4
|Ȧ0|2Y +

3
4
j([Y, Ẋ0])Ẋ0, (21)

ζ(n,A)(B) =
1
2
([Ẋ0, ν(n−1,A)(B)] + ζ(n−1,X)(j(B)Ẋ0)),

ν(n,A)(B) =
1
2
(ν(n−1,X)(j(B)Ẋ0)− j(Ȧ0)ν(n−1,A)(B)− j(ζ(n−1,A)(B))Ẋ0),

ζ(n,X)(Y ) =
1
2
([Ẋ0, ν(n−1,X)(Y )] + ζ(n−1,X)(j(Ȧ0)Y )− ζ(n−1,A)([Ẋ0, Y ])),

ν(n,X)(Y ) =
1
2
(ν(n−1,X)(j(Ȧ0)Y )− j(Ȧ0)ν(n−1,X)(Y )

− j(ζ(n−1,X)(Y ))Ẋ0 − ν(n−1,A)([Ẋ0, Y ])), (22)
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where B ∈ z and Y ∈ v.

Proposition 3.1. The nth covariant derivative of the Jacobi operator at the

origin p = γ(0) of an H-type group is given by

J n)
0 (B) = ζ(n,A)(B) + ν(n,A)(B),

J n)
0 (Y ) = ζ(n,X)(Y ) + ν(n,X)(Y ). (23)

where B ∈ z and Y ∈ v.

Proof. For n = 0, using (20), (18), (17) and (21) we get that

J0(B) = R(B, Ẋ0)Ẋ0 +R(B, Ẋ0)Ȧ0 +R(B, Ȧ0)Ẋ0 +R(B, Ȧ0)Ȧ0

=
1
4
|Ẋ0|2B +

1
2
j(B)j(Ȧ0)Ẋ0 − 1

4
j(Ȧ0)j(B)Ẋ0

= ζ(0,A)(B) + ν(0,A)(B),

J0(Y ) = R(Y, Ẋ0)Ẋ0 +R(Y, Ẋ0)Ȧ0 +R(Y, Ȧ0)Ẋ0 +R(Y, Ȧ0)Ȧ0

=
1
4
[Ẋ0, j(Ȧ0)Y ]− 1

2
[Y, j(Ȧ0)Ẋ0] +

1
4
|Ȧ0|2Y +

3
4
j([Y, Ẋ0])Ẋ0

= ζ(0,X)(Y ) + ν(0,X)(Y ).

Finally, assuming that (23) is true for n − 1, we prove the result for n using
(10), (19) and (22). This finishes the proof, the detailed verification of the last
statement being left to the reader. ¤

3.2. Kaplan’s example. Let n be a vector space of dimension 6 equipped with
a scalar product and let {E1, E2, E3, E4, E5, E6} form an orthonormal basis. The
elements E5 and E6 span the center z of the Lie algebra n. The structure of a Lie
algebra on n is given by the following relations:

[E1, E2] = 0,

[E1, E3] = E5, [E2, E3] = E6,

[E1, E4] = E6, [E2, E4] = −E5, [E3, E4] = 0,

[Ek, E5] = 0, for k = 1, . . . , 4,

[Ek, E6] = 0, for k = 1, . . . , 4, [E5, E6] = 0. (24)

Moreover, from (16) we easily obtain that

j(E5)E1 = E3, j(E5)E2 = −E4, j(E5)E3 = −E1, j(E5)E4 = E2,

j(E6)E1 = E4, j(E6)E2 = E3, j(E6)E3 = −E2, j(E6)E4 = −E1. (25)
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The condition (17) for the operators j(A) can be easily verified from (25). Thus,
the relation (24) defines an H-type algebra.

The H-type group corresponding to n is named Kaplan’s example. We denote
it briefly by N .

Moreover, Z. Dušek in [10] expresses N as an homogeneous space G/H

where H ∼= SU(2) and G = N o H. Here the group G is not the full isometry
group of N , but the group N is a g.o. space with respect to this group.

In the remainder of this section, our purpose is to obtain an expression of
type (15). It is mean, we want to determine explicitly the Jacobi operator along
an arbitrary geodesic γ with initial vector x = γ̇(0). From now on, we consider
that

x =
6∑

i=1

xiEi with |x|2 =
6∑

i=1

(xi)2 = 1. (26)

Thus, using the notation of Section 3.1, Ẋ0 =
∑4

i=1 xiEi and Ȧ0 =
∑6

α=5 xαEα.
There is no loss of generality in assuming that x ∈ m is a unit vector. Nevertheless,
it will be sometimes convenient to ignore it. Furthermore, we denote by {Qi},
i = 1, . . . , 6, the orthonormal frame field obtained by parallel translation of the
basis {Ei}, i = 1, . . . , 6, along the geodesic γ.

More precisely, to determine explicitly the Jacobi operator along an arbitrary
geodesic, firstly, we have to calculate which is the Jacobi osculating rank r of N .
It is mean, we must first obtain the relation of type (12) that it is satisfied on N .

Let us start with the following technical lemma on N .

Lemma 3.1. The operator [Ẋ0, Y ] ∈ z, Y ∈ v, is given by

[Ẋ0, E1] = −x3E5 − x4E6, [Ẋ0, E2] = x4E5 − x3E6,

[Ẋ0, E3] = x1E5 + x2E6, [Ẋ0, E4] = −x2E5 + x1E6. (27)

The operator j(Ȧ0) : v → v is defined by

j(Ȧ0)(E1) = x5E3 + x6E4, j(Ȧ0)(E2) = x6E3 − x5E4,

j(Ȧ0)(E3) = −x5E1 − x6E2, j(Ȧ0)(E4) = −x6E1 + x5E2. (28)

The operator j(·)(Ẋ0) : z → v is given by

j(E5)(Ẋ0) = −x3E1 + x4E2 + x1E3 − x2E4,

j(E6)(Ẋ0) = −x4E1 − x3E2 + x2E3 + x1E4. (29)
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Finally, the mappings ζ(0,X) , ν(0,X) , ζ(0,A) , ν(0,A) are defined by

ζ(0,X)(E1) =
1
4
((−x1x5 − 3x2x6)E5 + (3x2x5 − x1x6)E6),

ζ(0,X)(E2) =
1
4
((−x2x5 + 3x1x6)E5 + (−3x1x5 − x2x6)E6),

ζ(0,X)(E3) =
1
4
((−x3x5 − 3x4x6)E5 + (3x4x5 − x3x6)E6),

ζ(0,X)(E4) =
1
4
((−x4x5 + 3x3x6)E5 + (−3x3x5 − x4x6)E6),

ν(0,X)(E1) =
1
4
((−3(x2

3 + x2
4) + x2

5 + x2
6)E1 + 3(x1x3 + x2x4)E3

+ 3(x1x4 − x2x3)E4),

ν(0,X)(E2) =
1
4
((−3(x2

3 + x2
4) + x2

5 + x2
6)E2 + 3(x2x3 − x1x4)E3

+ 3(x1x3 + x2x4)E4),

ν(0,X)(E3) =
1
4
(3(x1x3 + x2x4)E1 + 3(x2x3 − x1x4)E2

+ (−3(x2
1 + x2

2) + x2
5 + x2

6)E3),

ν(0,X)(E4) =
1
4
(3(x1x4 − x2x3)E1 + 3(x1x3 + x2x4)E2

+ (−3(x2
1 + x2

2) + x2
5 + x2

6)E4),

ζ(0,A)(Eα) =
1
4
(x2

1 + x2
2 + x2

3 + x2
4)Eα, α = 5, 6,

ν(0,A)(E5) =
1
4
((−x1x5 − 3x2x6)E1 + (3x1x6 − x2x5)E2

+ (−x3x5 − 3x4x6)E3 + (−x4x5 + 3x3x6)E4),

ν(0,A)(E6) =
1
4
((3x2x5 − x1x6)E1 + (−3x1x5 − x2x6)E2

+ (3x4x5 − x3x6)E3 + (−3x3x5 − x4x6)E4). (30)

Proof. We need only consider the linearity of all involve operators and
formulas (21), (24) and (25). ¤

In general, the nth covariant derivative of the Jacobi operator at the ori-
gin of a Riemannian manifold is given by the matrix J n)

0 =
(J n

ij(0)
)

where

J n
ij(0) = 〈J n)

t (Qi), Qj〉(0) = 〈J n)
0 (Ei), Ej〉. On an H-type group, we also know

by Proposition 3.1 and the orthogonality between the center z and v that

J n)
αβ(0) = 〈ζ(n,A)(Eα), Eβ〉, J n)

αj (0) = 〈ν(n,A)(Eα), Ej〉,
J n)

iβ (0) = 〈ζ(n,X)(Ei), Eβ〉, J n)
ij (0) = 〈ν(n,X)(Ei), Ej〉, (31)
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where the indexes α, β identify the elements that span z and i, j identify the
elements of v. In particular, on Kaplan’s example i, j =1, . . . , 4 and α, β =5, 6.
Moreover, we obtain the explicit expressions of J n)

0 , n = 0, . . . , 5, on N by for-
mulas (31), (22), (24), (25), Lemma 3.1 and the linearity of all involve operators.
They can be seen in [3, p. 74–83]. Anyway, we write here the expression of J 0)

0 and
the elements J n)

11 (0), J n)
12 (0), J n)

56 (0), J n)
66 (0), n = 1, 2, 3, 4, 5, for the illustration

of the next result’s proof. In addition, we show how to obtain J 1
11(0).

The explicit expression of J 0)
0 =

(J 0
ij(0)

)
, i, j = 1, . . . , 6, is given by

J 0
11(0) = J 0

22(0) =
1
4
(−3x2

3 − 3x2
4 + x2

5 + x2
6), J 0

12(0) = J 0
34(0) = J 0

56(0) = 0,

J 0
13(0) = J 0

24(0) =
3
4
(x1x3 + x2x4), J 0

14(0) = −J 0
23(0) =

3
4
(−x2x3 + x1x4),

J 0
15(0) =

1
4
(−x1x5 − 3x2x6), J 0

16(0) =
1
4
(3x2x5 − x1x6),

J 0
25(0) =

1
4
(−x2x5 + 3x1x6), J 0

26(0) =
1
4
(−3x1x5 − x2x6),

J 0
35(0) =

1
4
(−x3x5 − 3x4x6), J 0

36(0) =
1
4
(3x4x5 − x3x6),

J 0
33(0) = J 0

44(0) =
1
4
(−3x2

1 − 3x2
2 + x2

5 + x2
6), J 0

45(0) =
1
4
(−x4x5 + 3x3x6),

J 0
46(0) =

1
4
(−3x3x5 − x4x6), J 0

55(0) = J 0
66(0) =

1
4
(x2

1 + x2
2 + x2

3 + x2
4). (32)

The elements J n
11(0) of J n)

0 , n = 1, 2, 3, 4, 5, are

J 1
11(0)

(31)
= 〈ν(1,X)(E1), E1〉 (22)

=
〈1

2
(ν(0,X)(j(Ȧ0)E1)− j(Ȧ0)ν(0,X)(E1)

− j(ζ(0,X)(E1))Ẋ0 − ν(0,A)

(
[Ẋ0, E1])

)
, E1

〉

Lem. 3.1=
1
2
(〈ν(0,X)(x5E3 + x6E4), E1〉−

〈
j(Ȧ0)

(1
4
((−3(x2

3 + x2
4)+ x2

5 + x2
6)E1

+ 3(x1x3 + x2x4)E3 + 3(x1x4 − x2x3)E4)
)
, E1

〉
− 〈j

(1
4
((−x1x5

− 3x2x6)E5 +(3x2x5−x1x6)E6)
)
Ẋ0, E1

〉
+〈ν(0,A)(x3E5 +x4E6), E1〉)

=
1
2
(x5〈ν(0,X)(E3), E1〉+ x6〈ν(0,X)(E4), E1〉

− 1
4
((−3(x2

3 + x2
4) + x2

5 + x2
6)〈j(Ȧ0)(E1), E1〉

+ 3(x1x3 + x2x4)〈j(Ȧ0)(E3), E1〉+ 3(x1x4 − x2x3)〈j(Ȧ0)(E4), E1〉)

− 1
4
((−x1x5 − 3x2x6)〈j(E5)Ẋ0, E1〉+ (3x2x5 − x1x6)〈j(E6)Ẋ0, E1〉)
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+ x3〈ν(0,A)(E5), E1〉+ x4〈ν(0,A)(E6), E1〉)
Lem. 3.1=

1
2

(
x5

(3
4
(x1x3 + x2x4)

)
+ x6

(3
4
(x1x4 − x2x3)

)

+
−3
4

(x1x3 + x2x4)(−x5) +
−3
4

(x1x4 − x2x3)(−x6)

− 1
4
((−x1x5 − 3x2x6)(−x3) + (3x2x5 − x1x6)(−x4))

+ x3

(1
4
(−x1x5 − 3x2x6)

)
+ x4

(1
4
(3x2x5 − x1x6)

))

=
1
2
(x1(x3x5 + x4x6) + 3x2(x4x5 − x3x6)),

J 2
11(0) =

1
4
(x2

1(2x2
3 + 2x2

4 − x2
5 − x2

6) + x2
2(2x2

3 + 2x2
4 − 3x2

5 − 3x2
6)

+ 2((x2
3 + x2

4)
2 + 2(x4x5 − x3x6)2)),

J 3
11(0) =

1
8
(x1(x3x5 + x4x6)(−7x2

1 − 7x2
2 − 7x2

3 − 7x2
4 − x2

5 − x2
6)

+ x2(x3x6 − x4x5)(9x2
1 + 9x2

2 + 9x2
3 + 9x2

4 + 15x2
5 + 15x2

6)),

J 4
11(0) =

1
16

(x2
1(−8x2

1x
2
3− 16x4

3− 8x2
1x

2
4− 16x4

4 +7x2
1x

2
5−x2

3x
2
5− 17x2

4x
2
5 + x4

5

+ 7x2
1x

2
6− 17x2

3x
2
6−x2

4x
2
6 +2x2

5x
2
6 +x4

6)+ x2
2(−8x2

2x
2
3− 16x4

3− 8x2
2x

2
4

− 16x4
4 + 9x2

2x
2
5 + x2

3x
2
5 − 15x2

4x
2
5 + 15x4

5 + 9x2
2x

2
6 − 15x2

3x
2
6 + x2

4x
2
6

+ 30x2
5x

2
6 + 15x4

6) + x2
1x

2
2(−16x2

3 − 16x2
4 + 16x5

5 + 16x2
6) + x2

3(−8x4
3

− 8x2
3x

2
5 − 24x2

3x
2
6 − 16x2

5x
2
6 − 16x4

6) + x2
4(−8x4

4 − 24x2
4x

2
5 − 16x4

5

− 8x2
4x

2
6 − 16x2

5x
2
6) + x2

3x
2
4(−32x2

1 − 32x2
2 − 24x2

3 − 24x2
4 − 32x2

5

− 32x2
6) + x3x4x5x6(32x2

1 + 32x2
2 + 32x2

3 + 32x2
4 + 32x2

5 + 32x2
6)),

J 5
11(0) =

−1
8

(x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6)((x
2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6)

(x1(x3x5 + x4x6) + 3x2(x4x5 − x3x6)) +
5
4
(x1(x3x5 + x4x6)(−7x2

1

− 7x2
2 − 7x2

3 − 7x2
4 − x2

5 − x2
6) + x2(x3x6 − x4x5)(9x2

1 + 9x2
2 + 9x2

3

+ 9x2
4 + 15x2

5 + 15x2
6))). (33)

The entries J n
12(0) of J n)

0 , n = 1, 2, 3, 4, 5, are

J 1
12(0) = x1(−x4x5 + x3x6) + x2(x3x5 + x4x6),
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J 2
12(0) =

1
2
(x5x6(−2x2

3 + x2
4) + 2x3x4(x2

5 − x2
6) + x1x2(x2

5 + x2
6)),

J 3
12(0) = (x1(x4x5 − x3x6)− x2(x3x5 + x4x6))(x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6),

J 4
12(0) =

1
8
(x1x2(x2

5 + x2
6)(−x2

1 − x2
2 − x2

3 − x2
4 − 7x2

5 − 7x2
6)

+ x3x4(−8x4
5 + 8x4

6 + 8(x2
6 − x2

5)(x
2
1 + x2

2 + x2
3 + x2

4))

+ x5x6(8x4
3 − 8x4

4 + 8(x2
3 − x2

4)(x
2
1 + x2

2 + x2
5 + x2

6))),

J 5
12(0) =

−1
4

(x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6)((x
2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6)

(x1(−x4x5 + x3x6) + x2(x3x5 + x4x6)) + 5((x1(x4x5 − x3x6)

− x2(x3x5 + x4x6))(x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6))). (34)

The elements J n
56(0) of J n)

0 , n = 1, 2, 3, 4, 5, are

J 1
56(0) = J 3

56(0) = J 5
56(0) = 0,

J 2
56(0) =

1
2
(x2

1 + x2
2 + x2

3 + x2
4)x5x6,

J 4
56(0) =

−1
8

(x2
1 + x2

2 + x2
3 + x2

4)x5x6(7x2
1 + 7x2

2 + 7x2
3 + 7x2

4 + x2
5 + x2

6). (35)

Finally, the entries J n
66(0) of J n)

0 , n = 1, 2, 3, 4, 5, are

J 1
66(0) = J 3

66(0) = J 5
66(0) = 0,

J 2
66(0) =

−1
4

(x2
1 + x2

2 + x2
3 + x2

4)(2x
2
1 + 2x2

2 + 2x2
3 + 2x2

4 + x2
5 − x2

6),

J 4
66(0) =

1
16

(x2
1 + x2

2 + x2
3 + x2

4)(8x4
1 + 8x4

2 + 8x4
3 + 8x4

4 + x4
5 − x4

6 + 16x2
3x

2
4

+ 15x2
3x

2
5 + 15x2

4x
2
5 + x2

3x
2
6 + x2

4x
2
6 + x2

2(16x2
3 + 16x2

4 + 15x2
5 + x2

6)

+ x2
1(16x2

2 + 16x2
3 + 16x2

4 + 15x2
5 + x2

6)). (36)

Theorem 3.1. The Kaplan’s example N has constant Jacobi osculating
rank r = 4. In fact, the derivatives of the Jacobi operator at the origin satisfy

the identity
1
4
|x|4J 1)

0 +
5
4
|x|2J 3)

0 + J 5)
0 = 0, (37)

where x denotes the unit initial tangent vector of an arbitrary geodesic on N .
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Proof. Let us consider the following linear homogeneous system of equa-
tions

1) AJ 1
11(0) + BJ 2

11(0) + CJ 3
11(0) + DJ 4

11(0) = 0,

2) AJ 1
12(0) + BJ 2

12(0) + CJ 3
12(0) + DJ 4

12(0) = 0,

3) AJ 1
56(0) + BJ 2

56(0) + CJ 3
56(0) + DJ 4

56(0) = 0,

4) AJ 1
66(0) + BJ 2

66(0) + CJ 3
66(0) + DJ 4

66(0) = 0. (38)

Using the information provide by (35) and (36) we conclude from the equations 3)
and 4) that B = D = 0 is the only possible solution valid for all geodesic in N .
Finally, we study the simplified equations 1) and 2) using (33) and (34). We obtain
that A = C = 0. Therefore, J 1)

0 , J 2)
0 , J 3)

0 and J 4)
0 are linear independent.

On the other hand by (33), it is a straightforward computation to check that
1
4
|x|4J 1

11(0) +
5
4
|x|2J 3

11(0) + J 5
11(0) = 0.

Analogously using J 1)
0 of [3, p. 74], J 3)

0 of [3, p. 76] and J 5)
0 of [3, p. 81], we

easily check that the following more general relation is satisfied
1
4
|x|4J 1

ij(0) +
5
4
|x|2J 3

ij(0) + J 5
ij(0) = 0, i, j = 1, . . . , 6.

Therefore, we obtain (37) and we state that r = 4. Moreover, this relation is
valid for all geodesic in N due to |x|2 = 1 (see (26)). Thus, the Jacobi osculating
rank of N is constant. ¤

Now, due to r = 4 and Proposition 2.5, there are four smooth functions
a1, . . . , a4 : I → R that provide an expression of type (15) for the Jacobi operator
valid for all geodesic in N . In the following, we will determine these functions.

Theorem 3.2. The Jacobi operator along anyone geodesic γ of N with unit

initial tangent vector can be written in the form

Jt = J0 + a1(t)J 1)
0 + a2(t)J 2)

0 + a3(t)J 3)
0 + a4(t)J 4)

0 (39)

where

a1(t) =
1
3
(8 sin(t/2)− sin(t)), a2(t) = 5 +

1
3
(cos(t)− 16 cos(t/2)),

a3(t) =
1
3
(8 sin(t/2)− 4 sin(t)), a4(t) = 4 +

4
3
(cos(t)− 4 cos(t/2)). (40)

Proof. From Proposition 2.3, Proposition 2.5 and due to we assume that
|x|2 = 1, we only have to solve the following homogeneous linear ordinary differ-
ential equation of order 5: 1

4J
1)
t + 5

4J
3)
t + J 5)

t = 0. Following the general theory
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about ordinary differential equations we have that y5 + 5
4y3 + 1

4y is its character-
istic polynomial whose roots are {0,± ı

2 ,±ı}. Thus, the Jacobi operator is given
by

Jt = c0 + c1 cos(t) + c2 sin(t) + c3 cos(t/2) + c4 sin(t/2), (41)

where cl, l = 1, . . . , 4 are arbitrary parameters. Now, it remains only to find the
value of cl. It is easy to obtain from (41) the relations

J0 = c0 + c1 + c3, J 1)
0 = c2 +

c4

2
, J 2)

0 = −
(
c1 +

c3

4

)
,

J 3)
0 = −

(
c2 +

c4

8

)
, J 4)

0 = c1 +
c3

16
.

Then, we have

c0 = J0 + 5J 2)
0 + 4J 4)

0 , c1 =
1
3
(J 2)

0 + 4J 4)
0 ), c2 =

−1
3

(J 1)
0 + 4J 3)

0 ),

c3 =
−16
3

(J 2)
0 + J 4)

0 ), c4 =
8
3
(J 1)

0 + J 3)
0 ).

We conclude the proof substituting these values in (41). ¤

Remark 3.1. The resolution of the Jacobi equation on N . The resolution of
the Jacobi equation on a Riemannian manifold can be quite a difficult task. In
the Euclidean space the solution is trivial. For the symmetric spaces, the problem
is reduced to a system of differential equations with constant coefficients. In [7]
and [8], I. Chavel obtained a partial solution of this problem for the naturally
reductive manifolds V1 = Sp(2)/SU(2) and V2 = SU(5)/(Sp(2) × S1). The
method used by I. Chavel, which allowed him to solve the Jacobi equation in
some particular directions of the geodesic, is based on the use of the canonical
connection. Nevertheless, his method does not seem to apply in a simple way
to solve the Jacobi equation along an unit geodesic of an arbitrary direction.
For naturally reductive compact homogeneous spaces, W. Ziller [24] solves the
Jacobi equation working with the canonical connection; but the solution can be
considered of qualitative type (it does not allow us to obtain in an easy way the
Jacobi fields neither for any particular example nor for an arbitrary direction
of the geodesic). The methods used by I. Chavel and W. Ziller for solving the
Jacobi equation are special cases of a more general procedure (see Lemma of [6,
p. 51]). In particular, this procedure is valid on any g.o. space and any generalized
Heisenberg group. Although it is not always possible obtain explicit results using
this method, the Jacobi equation Y ′′

t +JtYt = 0 along an arbitrary geodesic γ(t)
and with respect to the Levi–Civita connection ∇ has been solved by this method
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on H-type groups by J. Berndt, F. Tricerri and L. Vanhecke in [6, p. 52].
Thus, using this result the Jacobi fields on N could be obtained explicitly.

Now, as a direct consequence of the study made in this paper, we can also
use on g.o. spaces the new method known on naturally reductive spaces namely,
the method based in the constant Jacobi osculating rank. This method allows us
to obtain explicitly the Jacobi fields for a particular example and for an arbitrary
direction of the geodesic. Moreover, it was presented by the second author and
A. Tarŕıo in [19] on the naturally reductive space Sp(2)/SU(2) and it was
used by the first author and S. Bartoll in [5] on the naturally reductive space
U(3)/(U(1)×U(1)×U(1)). In particular, as a direct consequence of Theorem 3.2,
we can apply this new method to solve the Jacobi equation on N . Moreover, the
first author calculated explicitly in [3, p. 70–73] the Jacobi field (Yt)1 on N when
the unit tangent vector γ̇0 is Ẋ0 =

∑4
i=1 xiEi (i.e., x5 = x6 = 0). Firstly, she

calculated using the method based in the constant Jacobi osculating rank of N

and later using Theorem of [6, p. 52]. Finally, she checked that both obtained
results are equivalents.
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