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On continuous solutions of functional equations

By ANTAL JÁRAI (Debrecen)

To the memory of Professor András Rapcsák

Abstract. In this work it is proved that under certain conditions the real con-
tinuous solutions f of the functional equation

f(t) = h(t, y, f(g1(t, y)), . . . , f(gn(t, y))),

are locally Lipschitz functions.

As it is treated in Aczél’s classical book [1961], regularity is very im-
portant in the theory and practice of functional equations. The regularity
problem of functional equations with two variables can be formulated as
follows (see Aczél [1984] and Járai [1986]):

Problem. Let T and Z be open subsets of Rs and Rm, respectively,
and let D be an open subset of T × T . Let f : T → Z, gi : D → T
(i = 1, 2, . . . , n) and h : D × Zn+1 → Z be functions. Suppose that

(1) f(t) = h(t, y, f(y), f(g1(t, y)), . . . , f(gn(t, y))) whenever (t, y) ∈ D;

(2) h is analytic;
(3) gi is analytic and for each t ∈ T there exists a y for which (t, y) ∈ D

and
∂gi

∂y
(t, y) has rank s (i = 1, 2, . . . , n).

Is it true that every f , which is measurable or has the Baire property
is analytic?
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The following steps may be used:

(I) Measurability implies continuity.
(II) Almost open solutions are continuous.

(III) Continuous solutions are locally Lipschitz.
(IV) Locally Lipschitz solutions are continuously differentiable.
(V) All p times continuously differentiable solutions are p + 1 times

continuously differentiable.
(VI) Infinitely many times differentiable solutions are analytic.

The complete answer to this problem is unknown. The problems cor-
responding to (I), (II), (IV) and (V) are solved in Járai [1986]. In the
same paper, partial results in connection with (III) are treated. A partial
result in connection with (VI) is treated in Járai [1988] (in Hungarian).
Papers Járai [1992b] and [1992c] deal with locally Hölder continuous so-
lutions, proving that locally Hölder continuous solutions with exponent
0 < α < 1 are also locally Hölder continuous with exponent 2α/(1 + α).
The paper Járai [1992a] deals with the local Lipschitz property of real
solutions having locally bounded variation.

In this paper we deal with continuous real solution, and under certain
additional conditions on the given functions gi we prove that continuous
solutions of the above functional equation are locally Lipschitz functions.
The following lemma is similar to that proved in Járai [1992c]:

Lemma. Let V, W and U be open real intervals, R > 0, [y0 − R,
y0 + R] ⊂ W , g : V × W → U a continuously differentiable function,
and f : U → R a continuous function. Suppose that all partial functions
y 7→ g(t, y) are monotonic with inverse denoted by x 7→ Gt(x). If there
exist constants B, B′, L and L′ such that |f(x)| ≤ B, |G′t(x)| ≤ B′,
|g(t, y) − g(t′, y′)| ≤ L(|t− t′|+ |y − y′|) and |G′t(x) −G′t′(x)| ≤ L′|t− t′|
whenever t, t′ ∈ V and the left hand sides are defined, then the absolute
value of the integral

∫ y0+R

y0−R

f(g(t, y))− f(g(t′, y)) dy

is bounded by 2LBB′|t− t′|+LBL′|t− t′|(|t− t′|+2R) whenever t, t′ ∈ V .

Proof. The integral above can be written as the difference of two in-
tegrals. Using the substitution x = g(t, y) in the first, and the substitution
x = g(t′, y) in the second integral, we get

∫ g(t,y0+R)

g(t,y0−R)

f(x)G′t(x)dx−
∫ g(t′,y0+R)

g(t′,y0−R)

f(x)G′t′(x) dx =
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=
∫ g(t′,y0−R)

g(t,y0−R)

f(x)G′t(x)dx +
∫ g(t,y0+R)

g(t′,y0−R)

f(x)(G′t(x)−G′t′(x)) dx+

+
∫ g(t,y0+R)

g(t′,y0+R)

f(x)G′t′(x) dx.

The first and the last term can be estimated by L|t − t′|BB′, and the
middle term by L(|t− t′|+ 2R)BL′|t− t′|.

Theorem. Let T, Y, and Z be open subsets of R, let D be an open
subset of T × Y , and let C be a compact subset of T . Consider the
functions f : T → Z, gi : D → T (i = 1, . . . , n), h : D×Zn → Z. Suppose,
that
(1) for each (t, y) ∈ D,

f(t) = h(t, y, f(g1(t, y)), . . . , f(gn(t, y)));

(2) h is twice continuously differentiable;
(3) gi is twice continuously differentiable on D and for each t ∈ T there

exists a y such that (t, y) ∈ D, gi(t, y) ∈ C and
∂gi

∂y
(t, y) 6= 0 for

i = 1, . . . , n;
(4) the function f is continuous.

Then f is locally Lipschitz function on T .

Proof. For an ε > 0 let Cε = {x : dist(x,C) ≤ ε} denote the (closed)
ε neighbourhood of C. Let us fix an ε > 0 such that Cε ⊂ T . Then |f | is
bounded by B on Cε. For each 0 ≤ r ≤ ε let

ω(r) = sup{|f(t)− f(t′)| : t ∈ Cε, |t− t′| ≤ r, t′ ∈ Cε−|t−t′|}.
Clearly ω is increasing, ω(0) = 0, ω is continuous in 0 because f is uni-
formly continuous on the compact set Cε, and ω(r1 + r2) ≤ ω(r1) + ω(r2)
whenever 0 ≤ r1, r2, r1 + r2 ≤ ε. To prove the last assertion, sup-
pose that this inequality does not hold. Then there exist t, t′ such that
|t−t′| ≤ r1+r2, t ∈ Cε and t′ ∈ Cε−|t−t′|, but |f(t)−f(t′)| > ω(r1)+ω(r2).
Choosing t′′ between t and t′ such that |t− t′′| ≤ r1 and |t′′ − t′| ≤ r2, we
have t′′ ∈ Cε−|t−t′′|, hence |f(t)−f(t′′)| ≤ ω(r1) and |f(t′′)−f(t′)| ≤ ω(r2),
which is a contradiction.

For an arbitrary t0 ∈ Cε, let us choose a y0 (depending on t0) by (3).
Let us choose δt0 > 0 and Rt0 > 0 such that for the open interval Vt0 with
center t0 and length 4δt0 and for the closed interval Wt0 with center y0

and length 2Rt0 the closure of Vt0 ×Wt0 be contained in D, and
∂gi

∂y
does

not vanish on Vt0 × Wt0 . Hence the partial functions y 7→ gi(t, y) have
inverse on Wt0 for all t ∈ Vt0 and i = 1, 2, . . . , n. Decreasing δt0 and Rt0
if necessary we may suppose that these inverses have derivatives bounded
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(in absolute value) by B′
t0 and are Lipschitz continuous with Lipschitz

constant L′t0 for i = 1, 2, . . . , n. Similarly, we may suppose that gi is a
Lipschitz function with Lipschitz constant Lt0 on Vt0 × Wt0 . We may
suppose that Lt0 is an integer. Let us choose a positive constant ηt0 such
that the closed (n+2)ηt0 neighbourhood of {t0}×{y0}×f(C)n be contained
in D×Zn. Let us choose an 0 < εt0 ≤ ε such that ω(εt0) ≤ ηt0 . Decreasing
δt0 and Rt0 if necessary we may suppose that 2δt0 ≤ ηt0 , Rt0 ≤ ηt0 , and
gi(Vt0×Wt0) is contained in the open interval with midpoint gi(t0, y0) and
length 2εt0 .

The open intervals with center t0 ∈ Cε and length 2δt0 give an open
covering of the compact set Cε. Hence there exists a finite set T0 ⊂ Cε
such that the open intervals corresponding to all t0 ∈ T0 give a finite open
covering of Cε. Let L = sup{Lt0 : t0 ∈ T0} and let 0 < δ ≤ inf{δt0 :
t0 ∈ T0}, 0 < R0 ≤ inf{Rt0 : t0 ∈ T0} be such that L(δ + R0) ≤ ε.
Let K denote the closure of

⋃
t0∈T0

Vt0 × Wt0 . Clearly, K is a compact
subset of D. Similarly, let K ′ denote the union of the closed (n + 2)ηt0
neighbourhoods of {t0}× {y0}× f(C)n for t0 ∈ T0. Then K ′ is a compact

subset of D × Zn, and hence the functions
∂h

∂zi
are Lipschitz continuous

with Lipschitz constant L′i, and the functions
∣∣∣∣
∂h

∂t

∣∣∣∣ and
∣∣∣∣
∂h

∂zi

∣∣∣∣ are bounded

by B′
0 and B′

i, respectively on K ′ (i = 1, 2, . . . , n). Moreover, let B′ =
sup{B′

t0 : t0 ∈ T0} and L′ = sup{L′t0 : t0 ∈ T0}. Let t be an arbitrary
element of Cε, and let t′ be an element of Cε−|t−t′| for which |t− t′| < δ.
There exists a t0 ∈ T0 such that |t − t0| < δt0 . In what follows, let us fix
this t0, the corresponding y0, V = Vt0 and W = Wt0 . Clearly t, t′ ∈ V .
Let R be an arbitrary real number for which 0 < R < R0. Let us integrate
the two sides of the functional equation over the interval [y0 −R, y0 + R]
with respect to y. We have

2Rf(t) =
∫ y0+R

y0−R

h(t, y, f(g1(t, y)), . . . , f(gn(t, y))) dy.

Hence

|f(t)− f(t′)| = 1
2R

∣∣∣∣∣
∫ y0+R

y0−R

h(t, y, f(g1(t, y)), . . . , f(gn(t, y)))−

− h(t′, y, f(g1(t′, y)), . . . , f(gn(t′, y))) dy

∣∣∣∣∣.

To get a good upper estimate for the left hand side we need an upper
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estimate for the difference

h(t, y, f(g1(t, y)), . . . , f(gn(t, y)))− h(t′, y, f(g1(t′, y)), . . .

. . . , f(gn(t′, y))).

We may apply the Taylor theorem for the function h with points

z = (t, y, z1, . . . , zn) and z′ = (t′, y, z′1, . . . , z
′
n),

where t′, t ∈ V , y ∈ W , zi = f(gi(t, y)) and z′i = f(gi(t′, y)) for i =
1, . . . , n. The points z and z′, and hence the segment connecting them are
contained in the ball with center (t0, y0, f(g1(t0, y0)), . . . , f(gn(t0, y0))) and
radius (n + 2)ηt0 contained in K ′. We have

h(z)− h(z′) =
∫ 1

0

∂h

∂t
(τz + (1− τ)z′)(t− t′)dτ+

+
n∑

i=1

∫ 1

0

∂h

∂zi
(τz + (1− τ)z′)(zi − z′i) dτ.

Using this and omitting variables we have

2R|f(t′)− f(t)| =
∣∣∣∣∣
∫ y0+R

y0−R

( ∫ 1

0

∂h

∂t
(τz + (1− τ)z′)(t− t′) dτ +

+
n∑

i=1

∫ 1

0

∂h

∂zi
(τz + (1− τ)z′)(zi − z′i)dτ

)
dy

∣∣∣∣∣ .

Using the triangle inequality, we get n + 1 terms on the right hand side.
For the first term we get the trivial upper bound 2RB′

0|t′ − t|, where B′
0

is an upper bound of
∣∣∣∣
∂h

∂t

∣∣∣∣. Let z0
i = f(gi(t, y0)) (i = 1, 2, . . . , n), and

let z0 = (t, y0, z
0
1 , . . . , z0

n). If h′i denotes the value of the partial derivative
∂h

∂zi
at the point z0, then the other terms can be rewritten as the absolute

value of
∫ y0+R

y0−R

∫ 1

0

(
∂h

∂zi
(τz + (1− τ)z′)− h′i

)
(zi − z′i) dτ dy+

+ h′i

∫ y0+R

y0−R

(zi − z′i) dy.

First we give an upper estimate for the absolute value of the first term
of this sum. An upper estimate of |zi − z′i| is ω(L|t − t′|), because L is a
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Lipschitz-constant for gi on V ×W . Hence
∣∣∣∣∣
∫ y0+R

y0−R

∫ 1

0

(
∂h

∂zi
(τz + (1− τ)z′)− h′i

)
(zi − z′i)dτ dy

∣∣∣∣∣ ≤

≤ ω(L|t− t′|)
∫ y0+R

y0−R

∫ 1

0

∣∣∣∣
∂h

∂zi
(τz + (1− τ)z′)− h′i

∣∣∣∣ dτ dy.

We need to estimate the difference
∣∣∣∣
∂h

∂zi
(τz + (1− τ)z′)− ∂h

∂zi
(z0)

∣∣∣∣ . This

is not greater than L′i multiplied by the norm of τz + (1 − τ)z′ − z0,
that is, L′i times the maximal distance between the vectors z′ and z0 =

(t, y0, z
0
1 , . . . , z0

n), where L′i is a Lipschitz-constant for
∂h

∂zi
. The maximal

distance between z′ and z0 can be estimated by
|t− t′|+ R + nω(L(|t− t′|+ R)). Hence we have the upper bound

2Rω(|t− t′|L)L′i(|t− t′|+ R + nω(L(|t− t′|+ R)))

for the first term.
To get an upper bound for the second term, we need an upper bound

for the absolute value of
∫ y0+R

y0−R

(zi − z′i)dy =
∫ y0+R

y0−R

f(gi(t, y))− f(gi(t′, y))dy,

because |h′i| is trivially bounded by the upper bound B′
i of

∣∣∣∣
∂h

∂zi

∣∣∣∣. By our

lemma we get the upper bound 2L|t− t′|BB′ + L(|t− t′|+ 2R)BL′|t− t′|
for this integral.

Summing up all these estimates, we get

|f(t)− f(t′)| ≤

≤B′
0|t− t′|+ ω(L|t− t′|)

n∑

i=1

L′i(|t− t′|+ R + nω(L(|t− t′|+ R)))+

+
n∑

i=1

B′
i(2L|t− t′|BB′ + L(|t− t′|+ 2R)BL′|t− t′|)) /R.

If |t− t′| ≤ R, this can be rewritten as

|f(t)−f(t′)| ≤ C0|t− t′|+C1ω(|t− t′|)R+C2ω(|t− t′|)ω(R)+C3|t− t′|/R,

where C0, C1 C2 and C3 do not depend on t, t′ and R. Taking supremum
first on the right, and then on the left hand side for t∈Cε, t′ ∈ Cε−|t−t′|,



On continuous solutions of functional equations 121

|t− t′| ≤ r, we have

ω(r) ≤ C0r + C1ω(r)R + C2ω(r)ω(R) + C3r/R

whenever 0 ≤ r ≤ δ. If we choose R such that it satisfies the condition
C1R + C2ω(R) ≤ 1/2 — which can always be done by decreasing δ if
necessary — we have

ω(r) ≤ 2(C0 + C3/R)r

whenever 0 ≤ r ≤ δ. This proves that f is a locally Lipschitz function on
C. For an arbitrary t ∈ T , we may suppose without restricting generality,
that t is an inner point of C, because otherwise we may replace C by
the union of C and of a compact neighbourhood of t. Hence the theorem
follows.

Corollary. Suppose that the conditions of the above problem are sat-
isfied with s = m = 1, and the additional condition (3) from the theorem
is satisfied, too. Then f is infinitely many times differentiable.

Proof. From theorem 1.4 in Járai [1986] it follows that f is contin-
uous. The above theorem implies that f is locally Lipschitz. From theorem
1.5 in Járai [1986] it follows that f is infinitely many times differentiable.

Example. Usually the above theorem can be used with some addi-
tional argument. We illustrate this by a simple example. More compli-
cated cases can be treated similarly. Suppose that f satisfies the functional
equation

f(x + y) = h(x, y, f(x), f(y), f(x− y)), x, y ∈ R.

Here f : R → R is the unknown function and h is a given C∞ function.
Then all continuous solutions are locally Lipschitz (hence every measurable
or almost open solution is C∞ by results in Járai [1986]). To prove this
let us substitute t = x + y in the equation above. We get

f(t) = h(t− y, y, f(t− y), f(y), f(t− 2y)), t, y ∈ R.

Now let N > 0 be a natural number, T the open interval ]−2N, 2N [,
D = {(t, y) : |y| < N , t = x + y, |x| < N , |x− y| < N}, and C = [−N, N ].
Using the above theorem we have that f is locally Lipschitz on T , hence
everywhere, because N is arbitrary. We remark that although there is a
method to solve this functional equation (see Aczél [1961], pp. 62, 110)
it is not clear from the method whether the solutions are smooth.
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