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On the correlation of pseudorandom binary sequences with
composite moduli

By HUANING LIU (Jinan), TAO ZHAN (Jinan) and XIAOYUN WANG (Jinan)

Abstract. Recently J. Rivat and A. Sarkozy extended two large families of pseudo-
random binary sequences to the case of composite moduli m, where m is the product
of two different primes not far apart. In this paper we study the correlation measure
of these sequences. Our results show that these sequences are “bad” if either m is “not
large” or m is “large” but its prime factors are known.

81. Introduction

In a series of papers C. Mauduit, J. Rivat and A. Sarkézy (partly with other
coauthors) studied finite pseudorandom binary sequences

Exn=(e1,...,en) € {—1,+1}N.

In particular in [8] C. MAUDUIT and A. SARKOZY first introduced the following
measures of pseudorandomness: the well-distribution measure of E is defined by

t—1
W (Ex) = max Z Catib|,
3=0

a,b,t
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where the maximum is taken over all a, b, t e Nwith 1 <a <a+ (t —1)b < N.
The correlation measure of order k of E is defined as

M
Cr(En) = max Z €n+dy Cntds - - - Cntdy >
n=1
where the maximum is taken over all D = (di,...,d;) and M with 0 < d; <

- <dp < N—M, and the combined (well-distribution-correlation) PR- measure
of order k

t

E €a+jb+di €atjb+ds - - - Catjbtdy

E —
Qr (En) Jnax | 0
J:

is defined for all a, b, t, D = (dy,...,d;) with 1 < a+jb+d; < N(i=1,2,...,k).

Many pseudorandom binary sequences were given and studied, see [1], [2],
[3], [4], [5], [6], [7], [9], [10] for details. For example, two large families of pseudo-
random binary sequences have been given. The first construction was given by
C. MaupuIT, J. RIVAT and A. SARKOZY in [7].

Proposition 1.1. Let p be an odd prime number, f(z) € F,[x] of degree d,
and define E, = (e1,...,¢,) by

+1, if 0< Ry(f(n)) <p/2,
, i p/2 < Rp(f(n)) <p,

€en =

-1

where R,(n) denotes the unique r € {0,1,...,p — 1} such that n = r(modp).

Then we have
W (E,) < dp/?(logp)?,

and for 2 <1 <d— 1, we also have
Ci(E,) < dp*/?(log p)+t.
The other construction was given by C. MAUDUIT and A. SARKOZzY in [9)].

Proposition 1.2. Assume that p is a prime number, f(x) € Fp[z] has degree
k(1 < k < p) and no multiple zero in F,,. For (a,p) = 1, denote the multiplicative

1

inverse of a by a~! such that aa~' = 1(modp). Define the binary sequence

E,=(e1,...,ep) by

+1, if (f(n),p) =1, Ry(f(n)™") <p/2,
—1, ifeither (f(n),p) =1, R,(f(n)~%) >p/2 orp| f(n).

€Ep =
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Then we have
W(E,) < kp'/?(logp)?.

Moreover assume that [ € N, and one of the following conditions holds:
()1 =2, (ii) (4k)' < p.

Then we have
Ci(E,) < klp*/?(log p)*.

Note that the above constructions are with a prime moduli p. One might like
to look for constructions with composite moduli m, since this type of constructions
are more important in cryptography. Let m be a modulus of “RSA type”, i.e., it
is the product of two primes not far apart, say,

m=pq, p,qareprimes, p<q<2p. (1.1)

J. RIvAT and A. SARKOZY [11] tried to extend the above two constructions to the
case of composite moduli m defined by (1.1). They wrote that,“...we will show
that a partial extension of the construction above is possible, but we also run into,
perhaps, unexpected difficulties.” Indeed, in [11] first they study the extension of
the Legendre symbol construction [2] to Jacobi symbol with modulus of form
(1.1). Then they study the pseudorandom properties of two further constructions
with moduli of form (1.1). Their main results on these constructions are the
following.

Proposition 1.3. Assume that m € N is of the form (1.1), f(z) = aqz? +
o+ a4+ ag € Zlz], (ag,pq) = 1, and 2 < d < p(< q). Define the binary
sequence E! = (e},...,e..) by
+1, if 0 <R, (f(n)) <m/2,

-1, if m/2 < R,(f(n)) <m,
where R,,(n) denotes the unique r € {0,1,...,m — 1} with n = r(modm). Then

we have
W(E!) < d*m'/*(logm)?.

Assume that d > 3. Then we also have

Cy(E!) < dm®/*(logm)?.
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Definition 1.1. For a € Z and m € N such that (a,m) = 1, let i,,(a) denote
the unique integer b such that 0 < b < m — 1 and ab = 1(modm).

Proposition 1.4. Assume that m € N is of the form (1.1), f(z) = apa* +
-+ a1z + ag € Zx], (ag,pq) = 1, and 1 < k < p(< q). Define the binary
sequence E!! = (e,... ,el") by

»Em

gyt it (f(n),m) =1, R (im(f(n))) <m/2,
" —1, ifeither (f(n),m) =1, Ry (im(f(n))) > m/2, or (f(n),m) > 1.
Then we have
W (Ey,) < k*m!/?(logm)?,

and
Co(E") < k2m®/*(logm)3.

In this paper we shall study the correlation measure of order greater than 2
of the sequences defined in Proposition 1.3 and Proposition 1.4. In Section 3 we
shall prove the following.

Theorem 1.1. Define m, d, f(x) and E!, as in Proposition 1.3. Assume
that d > 4. Then we have

C3(E!) < dm®*(logm)*.

m

Theorem 1.2. Define m, k, f(z) and E! as in Proposition 1.4. Assume
that (4k)® < p(< q). Then we have

Cs(Ey,) < k*m®/*(logm)*.

Since
Cy(E!)) < dm®/*(logm)?, C3(E!) < dm®/*(logm)*,
Cy(E") < k2m®/*(logm)?, C3(E") < k3m®/*(logm)*,

it is natural to expect that
Ci(E!) < dm®*(logm)'™'  and C(E") < k'm®/*(logm)"+?

for I > 4. However, in Section 4 we shall prove that Cy(E!,) and Cy(E!,) are
large for | € N.



On the correlation of pseudorandom binary sequences with composite moduli 199

Theorem 1.3. Define m, d, f(x) and E!, as in Proposition 1.3. Assume
that the prime factors p, q of m are made known, and

1<!I<min((d-1)/2,g—p+1).

Then we have

9 41
C4l(E7/n> > () m.

™

Theorem 1.4. Define m, k, f(z) and E! as in Proposition 1.4. Assume
that the prime factors p, ¢ of m are made known, and (4k)?' < p. Then we have

o\ 4
Cu(Ey,) > (W) m.

82. Some lemmas

To prove the theorems, we need the following lemmas.

Lemma 2.1. If n € Z and m is an odd integer, then we have

LS e (Z)-

laj<m/2 -1, 1fm/2 < Rm(n) <m,

+1, if 0 < Rp,(n) <m/2,

where v, (a) is a function of period m such that

(=1)* — cos(wa/m)

vm(0) =1, vyu(a)=1+1 stn(ma/m) (1< al <m/2).
Furthermore, v,,(a) satisfies
0(1), if a is even,
vm(a) = %
Sl O(1), ifa isodd.
wa
PROOF. This is Lemma 2 in [7]. O

Lemma 2.2. Let p be a prime number, k € N, 1 < k < p, f(z) € Fplz] a
polynomial of degree d > k, and let dy, . .., d;, be k different elements of F,. Then
for all (hy,..., hi) € IE";\(O, ...,0), the polynomial

g(@) =hi1f(x+di) + -+ hef(z +dy)

is of degree > d — k + 1.
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PROOF. This is Lemma 3 in [7]. O

Lemma 2.3. Let p, q be distinct prime numbers and f(z) = axt + -+
a1z + ag € Z[x] with 2 < | < min(p,q), pq 1 @ and X, Y real numbers with
0 <Y <pq. Then

n
S o (M) <t ionon) o (an) =1
X<n<X+Y Pq
>, e (M) < Ipg'/*log(pq) for (ar,q) =1,
X<n<X+Y Pq
Z e (f(n)) < Ip'?qlog(pq) for (a;,p) =1.
X<n<X+Y Pq
PrOOF. This is Lemma 10 in [11]. O

Lemma 2.4. Assume that p is a prime number, f(z) € Fp[z] has degree
(0 <)k(< p) and no multiple zero in F,,. Assume that | € N with 2 <[ < p, and
one of the following conditions holds:

()1 =2, (ii) (4k)' < p.
Let dy,...,d; bel different elements of IF,. Then for all

(h1,..., ) € FLN(O,...,0),
the polynomial

!
g(x) =Y h [[ fn+dy)

i=1  1<j<l
J#i
is not the 0 polynomial.
PROOF. This is Lemma 5 in [9)]. O

Lemma 2.5. Let p and q be two distinct prime numbers. Let Q, R € Z[z]
be polynomials such that reducing them modulo p the polynomials @, and R,
obtained in this way determine a rational function Q,/R, over F,, and reducing
them modulo q the polynomials (), and R, obtained in this way determine a
rational function Qq/R, over F,. Write D = max(deg(R),deg(Q)) and let X, Y
be real numbers with 0 <Y < pq. Then we have

3o (Anlinti)

X<n<X+Y P
(R(n),pg)=1

if Qp/R, and Qq/R, are not constants or linear polynomials,

< D*p'2¢*?1og(pq),
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S e (Q<>m<(>>> < Dpq'/* log(pq),
X<n<X+Y ba
(R(n),pg)=1

if Qq/Ry is not a constant or linear polynomial,

> o (Qnlintrio))

X<n<X+Y Pq
(R(n),pg)=1

if Qp/R, is not a constant or linear polynomial.

< Dp'’?qlog(pq),

PrOOF. This Lemma can be proved from Lemmas 1, 11 and 13 in [11]. O

Lemma 2.6. Let p, g be distinct prime numbers. Then for any polynomial
f(z) € Z[z], we have

e (50) = (G [ () e (42)
in(9)f(0)

D)

ProoOF. This is formula (19) in [11]. O

v

Lemma 2.7. Suppose that p is a prime number and f(x) = aqjz! + - +
a1z + ag € Z[zx] is a polynomial with 0 <1 < p and (a;,p) = 1. Then

S

PRrROOF. This is Corollary 2F in [12]. O

<(1—-1)p'2

Lemma 2.8. Assume that m € N is of the form (1.1). Then we have

Z Z Z Z U (11)Vm (12)Vm (73) - . v (11)

Ir1|<m/2 |ra|<m/2 |rs|<m/2  |ri|<m/2
plritre
r1+r2#£0

1-1/2

«Lm (log m)l .

PROOF. From Lemma 2.1 we have

Z Z Z Z ’Um(Tl)Um(TQ)vm(TS) ~«~'Um(7'l)

[ril<m/2 |ra|<m/2 |rg|<m/2 [r]<m/2
plritra
ri+r2#0
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-2
=30 D DEED DI TSI () S PACT)

—q<Il<q |ri|<m/2 |ri|<m/2 |r|<m/2
#0 ri+re=lp

<<m logm Z Z Z L

|ry72]
—q<l<q |r1|<m/2 |ra|<m/2
175 7‘1#0 T‘z?éo
r1+r2=Ip

=m! logm Z Z Z

_ql;l<q [ri|<m/2 |ra|<m/2

o ()
_ + _
71 +7‘2 rLo T2
170 r27#0

r1+ra=lp

_ 1 1 1
< m'(logm)'—2 Z Ui)l Z |7_|_ Z 7"2]

,
—q<l<q r1]|<m/2 il |ra|<m/2
1#0 r1#0 ro#0

1-1/2

«Lm (log m)l . O

Lemma 2.9. Let p,q € N with (p,q) =1 and Q(z), R(x) € Z[z]. Then

> o (Yndinthl)

1<n<pgq pq
(R(n),pq)=1
-y e (Q(U)lq(pR(U))> T e (Q(U)Zp(qR(v)))
1<u<q q 1<0<p p
(R(u),q)=1 (R(v),p)=1
PROOF. This is Lemma 11 in [11]. O

Lemma 2.10. Let p be a prime number and Q/R a rational function over
IF,, which is not constant. Let s be the number of distinct roots of the polynomial
R in E,. If ) is a non-trivial additive character of F),, then

(i)
R(n)#0

< (max(deg(Q),deg(R)) +s—1)/p.

ProoF. This is Lemma 13 in [11]. O
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83. Proof of Theorem 1.1 and Theorem 1.2

First we prove Theorem 1.1. Let M € N, dy,ds,ds € Z such that 0 < d; <
do < dz3 <m — M. By Lemma 2.1 we get

Z €ty EntdsCrtds = 3 Z d>oow (rlf(”"‘dl))

m
n=1 |ri|<m/2

x>y vm(rQ)e<r2f(n+dz)> 3 vm(r?))e(’M)

m m
|7"2\<m/2 [ra|<m/2

Z Z Z m (T1) U (12) U (73)

\r1|<m/2 [ral<m/2 |rs|<m/2

rif(n+dy) +rof(n+da) +r3f(n+ds)
S ( )

m

7;323:( > S0 Y vnr)vmr)om(rs)

=1 [ril<m/2 |ra|<m/2 |ra3|<m/2
(75, ,m)>1,.. ,(TJ’ m)>1

f: <T1f(n+d1)+7‘2f(n+d2)+r3f(n+d3)>

m

n=1

73 Z Z Z 7'1 Um T2)U7rn(r3)

|ri|<m/2 |r2|<m/2 |r3|<m/2
(r1,m)=1 (r2,m)=1 (rz,m)=1

" Z (mf n+di) +raf(n+ds) +r3f(n+d3)>

m

From Lemma 2.1 we easily have

ﬂ;i(‘?’) T Y on)em(raon()

[r1|<m/2 |ra|<m/2 |r3|<m/2
(rjy,m)>1,....(rj; ;m)>1

% Z (’I"lf n -+ dl) + ’I"Qf(?’L + dg) + Tgf(’ﬂ + d3)>

m

<<n]‘fg(3)< > |vm<r>|)“< > |vm<s>|>i

[r|<m/2 |s|]<m/2
(r,m)=1 (s,m)>1
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z0(z) (220

rl<m/2 [s|<m/2
(r,m)=1 (s,m)>1
s#0
3 i
M 3—i m m
<23 ()t 3 e > M)
= |s|<m/2 |s|<m/2
pls als
s#0 s#0
M 3
32( ) {(logm)>~'mi/?(logm)’ < m*?(logm)?.
Therefore
M
Do nrdCnidlnra, = 5 D D D m(r)vm(r2)um(rs)
n=1 |r1\<m/2 |r2|<m/2 |rs|<m/2

(r1,m)=1 (ro,m)=1 (rz,m)=1

) Z (Tlf n+dp) +rof(n+ds) +7“3f(n+d3)> +0(m'?(logm)?).

m

Since 0 < d; < do < d3 < m — M, there exists at least one d; such that d; #
d;(modp) or d; # dj(modg) for j € {1,2,3}\{i}. Without loss of generality,
we suppose that d3 # di(modp), d3 # do(modp). Note that deg(f) > 4 and
(r3,m) = 1, from Lemma 2.2 we know that the polynomial

rif(n+di) +raf(n+ds) +rsf(n+ds)

is of degree > 2 in F,,. Then from Lemma 2.3 we have

m

M
erjm+awwﬁm+@ﬂwﬁm+%)
e )

n=1

< dp**qlog(pg) < dm®/*logm.
Then by Lemma 2.1 we get

M 3
1
Dy s vy < o) ( > |Um(7")|> -dm®*logm +m'/?(log m)?

n=1 |r|<m/2
(rym)=1
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3
1 m
< ’rn3< Z > ,dm3/4 logm + 77,L1/2(10g m)S < dm3/4(logm)4.

r
[r|<m/2
(r,m)=1

Therefore
Cs(E!) < dm®*(logm)*.

Now we prove Theorem 1.2. Let M € N, dy,ds,d3 € Z such that 0 < d; <
do < d3 < m— M. By Lemma 2.1 and the methods of proving Theorem 1.1

we get

M

1
E :enerl n+d2 n+d3 mg E

n=1
(f (n4d1) f(n+d2) f (n+ds),m)=1

x > ”m(rl)e<’W(~f(7"“F‘11))>

|r1|<m/2 m
X Z Um(r2)e (TQim(fg""dﬁ)) Z v (73)e <T3im(f£:+d3))>+0(k)
[ra|<m/2 [ra|<m/2

Z Z Z m (T1) U (12) U (73)

|7"1\<m/2 [ra2|<m/2 |rg|<m/2

||M§

(f(n+d1)f(n+ ) (n+ds),m)=1

. (m'm(f(n+ dh)) + rain (f(n + do)) +r3im(f(n+d3))) +O(k)

0

m

;i(?’) S50 S vl vm(ra)vm(rs) f[:

2 2 2 =1
e (F () f(n412) () m)=1

o (rlz’m(f(n +di))+ rgim(fgz +d2)) + r3im(f(n+ d3))>

M

> X S onr)om(r)on(rs) >

r m T m T m r3,m)= n=1
[l /B el /3 rsl<m/2 (ra.m) =1 (F(n-+ds) f(nt d2)f (n-tds)m) =1

) <mim(f(n+d1)) +r2im<f§z+dz>> +rsim<f<”+d3>>> +O(k)

M

Z Z Z m (1) Vm (12) U (73) Z

T m/2 |r m/2 |r m/2 n=1
'(Tﬁ‘,fn)z/l 2l sl (f (k) (n+03) () ) =1
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o (Tlim(f(n + d1)) 4 r2im(f(n + d2)) 4 r3im(f(n + d3))>

+0 (ml/z(log m)3) .
Define

Qn)=r1f(n+da)f(n+ds)+r2f(n+di)f(n+ds)+r3f(n+di)f(n+ds),
R(n) = f(n+di)f(n+da) f(n+ ds),

then we have

M
n=1
(f(n+d1) f(n+dz) f(ntds),m)=1

S o (AialBe))

n=

(R(n),m)=1

(Crlim(f(n+d1))+r2im(f(n+d2))+r3im(f(n+d3)) )

Since 0 < d; < dy < ds < m — M, there exists at least one d; such that d; #Z
d;j(modp) or d; # dj(modgq) for j € {1,2,3}\{i}. Without loss of generality, we
suppose that d3 Z di(modp), ds Z dz2(modp). Reducing Q(n) and R(n) modulo
p we get Qp(n) and R,(n) respectively, where

rif(n+dz) f(n+ds)+raf(n+di)f(n+ds)+rsf(n+di)f(n+dz),
if dy # do(modp),

fn+dy) ((ry+72) f(n+ds) + 73 f(n+d1)),
if dy = do(modp),

Qp(n) =

R fn+di)f(n+dz)f(n+ds), if di# dy(modp),
p\) =
(f(n+dv))? f(n+ ds), if d; = dy(modp).
Note that (rs,m) = 1 and (4k)® < p, by Lemma 2.4 we know that @Q,(n) is not

the 0 polynomial in [F,,. Since deg(@,) < deg(R,), then @,/R, is not a constant
or linear polynomial. So from Lemma 2.5 we have

m

‘ S . (mm(f(n+d1))+7"zzm(f(n+d2))+r31m(f(n+d3))) ‘

n=1

(f(n+dy) f(n+d2) f(n+ds),m)=1
< K*p'%qlog(pq) < K*m* *logm.
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Then by Lemma 2.1 we get

M 3
1
Z €ntdy Entdy 6Z+d3 < oo < Z |’Um(7‘)|> CEPm3* logm + m1/2(log m)3

|r|<m/2
(rym)=1

n=1

3
! m 3,,3/4 1/2 3 _ 13, 3/4 4
<<m3< Z r> -k*m> % logm + m*/(logm)® <« k*m?>/*(logm)".
lr|<m/2
(r,m)=1

Therefore
C3(E") < k3m®/*(logm)*.

This completes the proof of Theorem 1.2.

84. Proof of Theorem 1.3 and Theorem 1.4
First we prove Theorem 1.3. Let M € N, 4] € N with
1<I<min((d-1)/2,q—p+1),
dy,...,d4 € 7Z such that
0<di<--<dy<m-M (4.1)
and

d; =d;j(modp), if21iand j=1i+1,
i = dj( ) t (42)

d; # dj(modp), otherwise.
d; = dj(modq), if either (z,7) = (4k + 1,4k +3) or (4,7) = (4k + 2,4k + 4),
d; # dj(modgq), otherwise.

(4.3)

By Lemma 2.1 we get

M

/ /
z :en+d1 © - Cntdy
n=1

=%§: 3 vm(rl)e<”f<"+dl))... 3 um(ml)e(”lf(”ﬂiu)>

n=1 |ry|<m/2 |rar|<m/2
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— # Z Z vm(rl)...vm(T4z)

[r1|<m/2 |rar|<m/2

« Z <7"1f n+d1) n'l-‘r 7“4lf(n—|-d4l)) -

(4.4)

Write F(n) =r1f(n+di)+ -+ raf(n+dy). By Lemma 2.6 we have

ie(7“1f(n+d1)+"'+r4lf(n+d4l)>
S (TSR () - B ) e ()

2 (5 :
7;5322 NEr (7$»’}(_w@y%@);ée<%@ﬂF@0+zw>1
y le <ip qu (0) )Z_;e <ip(q) (F;v) +zv))] |
Then from (4.3) we get

ﬁie(%@MFao+zw)

q

v o iq(p) (rif(u+dy) + - 41y f(u+dy) + zu)
=3 ; )
iq(p)[lzl((wcﬂ+T4k+3)f(U+d4k+1)+(7“4k+2+7“4k+4)f(U+d4k+2))+zu

q
k=0
= E e
u=1

q
If q | ran41 + Tans3, @ | Tanq2 + Tapqa, for E=0,...,1 =1, then
. iq(p) (F(u) + zu) 1 iq(p) - zu q, if q|z,
Ze ( d ) = Ze (q> =
u=1 q u=1 q 0, if ¢fz.

Otherwise by Lemma 2.2 we know that F'(u) is of degree > d — 2l + 1 > 2, then
from Lemma 2.7 we have

5ie<@@ﬂFun+zm>

u=1 q

S dql/Q.
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That is to say,

q, if ¢ | Taps1 + ranyss @ | rant2 + Tanta,
for k=0,...,1—1, and ¢ | z,
iq(p) (F(u)+2u) .
Ze (qq =40, if q | raps1 + Tars3, @ | rango F Tapta,
u=t for k=0,...,1—1, and ¢1 z,
0] (dql/Q) , otherwise.

Similarly we get

S (HOLE )

v=1 p

D, if plrej_1+re, for j=1,...,2[, and p| 2,
=40, if p|roj—1+rey, for j=1,...,2l, and p1{z,
(0] (dpl/z), otherwise.

Therefore

m

JZ”:Q (Tlf(n+d1)+-~-+T4lf(n+d4l)>
n=1
M, if p|rojo1+mry,j=1,...,2,
_ ql7rakr1+7ar 3, G| Takr2tTakga, (4.5)
k=0,...,1-1,

0] (dm?’/4 log m) , otherwise.

Then from (4.4), (4.5) and Lemma 2.1 we have

M

/ / o M
Zen_‘_dl...en_‘_dy—— Z Z Um (1) -+ - U (Ta1)
n=1

Al
[r1|<m/2 [rar|<m/2

plrej 1412, j=1,...,21
qlrak+1+Tak3, Qa2 +Trak4a, k=0,...,01—1

1

41
+0 m41< > |vm(T)|> dm?/*logm

|r|<m/2



210 Huaning Liu, Tao Zhan and Xiaoyun Wang

:% S Y vl o)

[r1|<m/2 |rar|<m/2
plrej 14125, j=1,...,21
qlrak+1+Tak3, qlTakpt2+Trak4a, k=0,...,01—1

+0 (dm3/4(1og m)4l+1) .

By Lemma 2.8 we easily get

M
/ / _ M

Z€n+d1~~-€n+d4l*W Z Z V(1) - - Um (rar)

n=1

[ri|<m/2 |rar)]<m/2
roj—1+r2;=0, j=1,...,21
Tak+1+Tan+3=Tap42+7rap44=0, k=0,...,[—1

+0 (dm3/4(log m)4l+1)

l
= nﬁ( Z (vm(r)vm(_r))2> +0 (dm3/4(1og m)4l+1) '

|r|<m/2

So from Lemma 2.1 we have

M l
Z €hpdy - Cnidy = M < Z (vm(r)vm(—r))2> +0 (dm3/4(log m)4l+1)
n=1

mAl
[r|<m/2
2fr

1
M 16m* m? 3
-7 m- /4 4l+1
_m‘“( Z <7r47"4 +O<r3>>> +O(dm (logm) )

rl<m/2
2fr

24l+1 1 3/4 41+1

where ((s) is the Riemann zeta function.

Now taking
dap+1=0+Ek
dapyo =p+k
i k=0,....0—1, M=m~—2q. (4.7)
dakys =q+k

daypya=p+q+k,
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Since 1 <1 < qg—p+ 1, it is not hard to show that the integers dy,...,dy, M
satisfy (4.1), (4.2) and (4.3). Then from (4.6) we have

o\
> () m.
T

9\ 4
> () m.
™
This proves Theorem 1.3.
Now we prove Theorem 1.4. Let M €N, 4] € N with (4k)? < p, dy,...,dy €7Z
satisfying (4.1), (4.2) and (4.3). Using Lemmas 2.1, 2.9, 2.4, 2.10, 2.8 and the
methods of proving Theorem 1.3 we have

M
’ 1
Z €ntd -+ Cntdy
n=1

Therefore

C4l (E;n) — max
M,D

M

! !
Zenerl ...€n+d4l
n=1

1

mAl

NE

Z Um(“)

M
" " _
2 : Cntdy - Cntdy =
n=1 =1 |r1|<m/2

(f et} f (0t dar) ) =1

o (Tlim(f(n‘i‘ dl))) xoox S um(rade (T4lim(f(n+d4z))> + O(kl)

m m

|rar|<m/2

:# Z Z 'Um(’rl)...vm(ru)

[ri|<m/2 |rar]<m/2

M N .
m d m d
% Z e(ml (f(n+ 1))-1— + 74t (f(n+ 41))) —|—O(k;l)
n=1 m
(f(n+dy)...f(n+da),m)=1
M
1 Z o Z V(1) + o U (Tar) + O(klm3/4(log m)4l+1)
" [r1|<m/2 |rar)|<m/2
plrej—1+re;, j=1,...,21
qlrapr1+rakts, qlrantatranga, k=0,..,1—1
M
T oo > U (1) - . Om (ra) + O (klm3/* (log m)* 1)
m [r1]<m/2 |rar|<m/2

roj—1+12;=0, j=1,...,21
Tak4+1+tTak+3=Takt+2+7Tax+4=0, k=0,...,1-1

l
:ﬁz( Z (vm(r)vm(r))2> +O(klm3/4(logm)4l+1)

[r|<m/2

24l+1 1 3/4 4141
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Now taking dy,...,dsy, M as in (4.7), then from (4.8) we have
> | = m.
™
9\ 4
> () m.
w

M

2 : 7 "
6n+d1...6n+d4l

n=1

Therefore

O E// —
w(Er) max

M
" "
2 : Entdy - Cntdy
n=1

This completes the proof of Theorem 1.4.

85. Further discussions
In [11] J. RIvAT and A. SARKOzY proved the following.

Proposition 5.1. Define p, q, m, d, f(z) and E|, = (e},...,€l,) as in

rm
Proposition 1.3. Assume that 2 <[ <d—1, and dy < dy < --- < d; and M are
positive integers with

d; # dj(modp), d; #d;(modgq), for 1<i<j<lI

and M < m — d;. Then we have

M

1 1 ! 2, .1/2 I+1
E €ntdy Cntdy -+ Crtd < d*m!/ (logm)" ™.
n=1

Proposition 5.2. Define p, q, m, k, f(z) and E!! = (ef,...,ell) as in

rm

Proposition 1.4. Assume that | € N, and one of the following conditions holds:
()i=2 (i) (46) <p(< q).
Then if dy < dy < --- < d; and M are positive integers with
d; # dj(modp), d; #d;(modgq), for 1<i<j<lI

and M < m — d;, we have

M

" 7 " 472, 1/2 I+1
Zen+dlen+d2 sl | K KM= (logm) T
n=1
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Our Theorem 1.3 and Theorem 1.4 show that E and E!/ are “bad” binary
sequences provided the prime factors p, ¢ of m are known. However, if m = pq is
large and p, ¢ are kept secret, from Proposition 5.1 and Proposition 5.2 we know
that E! and E!! can be considered as “good” sequences. Especially for positive
integers dy,da,...,d; and M such that dy < ds < -+ < p(< ¢) and M < m — dj,
we have

M

I 1 1 2, 1/2 +1
§ Cntds Cntds ++ Cnpdy | K AM /(logm)
n=1

and
M

" " " 472, 1/2 I+1
Cntdy Crtdy -+ - Cntd, | K KTTTM /2 (logm)*1.
1

n=

This suggests that the high order “short range” correlations of E/ and E! can
be small.
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