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Matrix splittings and generalized inverses

By NEBOJSA C. DINCIC (Nis)

Abstract. In this paper we introduce a splitting of the class of square singular
complex matrices induced by its inner inverses in two ways: using the Jordan normal
form, and using the concept of the condiagonalizability. Then we use the introduced
splitting to prove a special case of Harte’s theorem [5] for complex matrices.

1. The idea

Let A € C'*™ be a square complex matrix whose rank is equal to 7 < n. A
matrix B € C}*" is called an inner, or {1}-generalized inverse of A, if ABA = A
holds. It is well known that there exists some k, r < k < n, such that a matrix A
has a {1}4-inverse. Moreover, there exists a whole set of inner inverses, and that
set consists of matrices whose rank is in range from r to n, inclusively

A{1} = A{1h.

k=r

Let us now concentrate on matrices belonging to the class A{1},. They are
invertible, and we denote with A{1}-! the set of their “ordinary” inverses. This
paper deals with the question: How can a matrix A be “close” to the set A{1},1,
in terms of the spectral norm?

If B satisfies ABA=A, (AB)*=AB and (BA)*=BA, then B is an {1, 3,4}
-inverse of A. Moreover, if B is an {1,3,4}-inverse of A satisfying BAB = B,
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then B is the Moore-Penrose inverse of A, denoted by A'. It is well-known that
for any complex rectangular matrix A, the Moore-Penrose inverse At is unique
and it always exists.

The paper is organized as follows: in Section 2 one can find some important
definitions and lemmas related to the Jordan normal form, Harte’s theorem and
condiagonalizability of matrices, respectively. Section 3 consists of two main re-
sults that introduce (in two different ways) matrix splitting induced by its inner
inverses, followed by some theorems which answer the question about distance
between the matrix A and a family A{1},!. Theorem 3 is actually a proof of a
special case of Harte’s theorem. Finally, Section 4 presents some facts about the
introduced matrix splitting.

2. Auxiliary results

We start with the Jordan form.

Lemma 1. Let there be given a Jordan matrix of order k (whose dimensions

arek x k), ke N
0 Ip_:
Ji(0) = ) 1
4(0) (0 0) (1)
Then we have

Je(0){1,3,4} = <Ik01 S) - {(Ikol g) Lo e(C}. (2)

PROOF. We can reduce the matrix Ji(0) to its Hermitian normal form (using
a method described, for example, in [1], pp. 24), and obtain

Inoi O 0 1
T=FEJ(0)P = h E=1I, P= .
x(0) ( 0 0), where ks (Ikl 0)

Since P is a permutation matrix, we have det P = (—1)**! = 0. We look for a
{1, 3,4}-inverse of matrix T" using the definition, in the form

A B
7(1,34) _
C DJ’

where A, B, C' and D are submatrices whose dimensions are (k — 1) x (k — 1),
(k—1)x1,1x (k—1)and 1 x 1, respectively. It is easy to find that A = I},_4,



Matrix splittings and generalized inverses 235

B =0, C =0, but the matrix D remains arbitrary, let it be denoted by a complex
number «. Hence
T(1,3,4) Iy O
0 o

Since E and P are nonsingular unitary matrices, and since we know that

(1,3,4) _ p—1 7(1,3.4) 1
and we have T P=Jy (0)E~,

0 1\ (Iy_1 O 0 «
I (0) = PTO3 = R :
k ( ) Ik,1 0 0 « kal 0 0

Lemma 2. There exists an invertible element in the set Ji(0){1,3,4}.

PROOF. If o # 0, then det J,gl’3’4)(0) = (=1)**'a # 0. This means that in
the set J(0){1,3,4} there exists an invertible element, whose inverse we denote
with J;(0). Now it is obvious that

Ji(0) = (? Ik01> . 3)
’ (]

We use || - || to denote the spectral norm of elements in C"*™. The spectral
norm of a matrix A is the square root of the spectral radius of A*A. The following
result is well-known.

Lemma 3. Let A and B be two square complex matrices. Then we have
a) If W= (g 3), then [[W]| = [|A]l;
b) If W= (3 ), then ||[W]|| = max {||Al|, || B}

Lemma 4. A spectral norm of the matrix J;(0) — j;(()) is given by
—~ 1
176(0) = Ji (0| = ol (4)

PRrROOF. Let W be the difference J;(0) — fj;;(()) We know that
W= <_01 O(k—1>0x<k—1)> ’

which means that

L 0
W*W = aa ,
0 Om—1)x(k—1)

so a(W*W) = {0, ﬁh which implies [|[W| = L. O
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For any complex matrix A, let AT denote its unique Moore Penrose in-
verse (which always exists). The Moore-Penrose inverse of matrix J;(0) will be

0 = (1", 6)-
Lemma 5. The spectral norm of a matrix J, 434 (0) — J,,7(0) is given by

17634 (0) = T, (0)]| = |- (5)

PROOF. Let W denote difference J, 1% (0) — J,.7(0). We know that

W= 0 o ,
Ok—1)x(k—1) O

W*IW — <O(k—1)><(k—1) 0) 7

0 ol

which means

so o(W*W) = {0, |a|?}, which implies ||W| = |«a]. O

From Lemma 4 and Lemma 5 we can infer interesting conclusion
17 (0) = T (0| - 152 (0) = 2T (0)]| = 1,

which means that requests for simultaneous approximating both Ji(0) with /j;(O)
and J,Z(O) with J£1’3’4)(0) are mutually opposed.

Lemma 6. The following holds

A, 0 -0 i Al 0o -0
0 Ay -~ 0 0 A; 0
0o 0 - A, 0o 0 --- Al

where A;, i = 1, m, are square complex matrices.

Now we present some facts related to Harte’s Theorem.

Let A be Banach algebra with the unit 1. An element a € A is regular
(regular in a von Neumann sense) in A if there exists some x € A such that
azra = a. We denote by A" the set consisting of all regular elements from A. The
next notation is also correct: A” ={a € A:a € ada}. We use A*® to denote set
which consists of all idempotents from A. Then we have {a € A:a € aA la} =
AAL = A1 A [4].
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Proposition 1 (HARTE [5]). Let A be a Banach algebra with the unit 1.
Then we have

AT Ncl(A™) = A7 AC.

The proof of this proposition can be found in [5], alternatively in [8], p. 181.
More general results, concerning Fredholm operators can be found in [7], and for
Fredholm theory related to Banach algebra homomorphisms in [3]. In this paper
Theorem 3 presents a constructive proof for Harte’s theorem for a class of singular
square complex matrices, based on a matrix splitting induced by inner inverses.

We will list three definitions, one comment, and the main theorem from [6],
which deals with condiagonalizability concept.

For a matrix A = [aij]nxn, its component-wise conjugate is the matrix
A= [@ijlnxn. The component-wise conjugate is related to the adjoint and the
transpose: A = (A*)T = (AT)*, so that also A* = (A)T.

Definition 1. A matrix A € C"*" is condiagonalizable if Ap = AA (or, which
is the same, Ay, = AA) is diagonalizable by a similarity transformation.

.. . . .. . <1
Definition 2. Matrices A, B € C"*™ are said to be consimilar if A = SBS
for a nonsingular matrix S € C™**".

Definition 3. Let 0(Ar) ={A1,..., Am} be the spectrum of Ay,. The coneigen-
values of A are the m scalars pq, ..., fim,, defined as follows:
If \; ¢ (—00,0), then the corresponding coneigenvalue y; is defined as: p; = v/A;
Re(u;) > 0; the multiplicity of u; is set to that of ;.
If \; € (—00,0), then we associate two conjugate purely imaginary coneigenvalues
1; = v/ A;. The multiplicity of each is set to a half of that of \;.

If A € R™*™ then each eigenvalue of A with a nonnegative real part is at
the same time a coneigenvalue of this matrix. If an eigenvalue \ has a negative
real part, then u = —\ is a coneigenvalue of A.

We use ker A to denote the null-space of A.

Proposition 2 (IKRAMOV [6]). Let A € C*"*™ be a condiagonalizable ma-
trix. Then A can be brought by a consimilarity transformation to its canonical
form which is a direct sum of 1 x 1 and 2 x 2 blocks. The 1 x 1 blocks are the real
nonnegative coneigenvalues of A, while each 2 x 2 block corresponds to a pair of
complex conjugate coneigenvalues i, i, and has the form

(03)
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If A is singular and k = dimker A;, — dimker A > 0, then the canonical form of
A also contains k blocks of the form

0 0
1 0)°
3. Main results

We start with the following result

Theorem 1. Any complex matrix A € C}*", which Jordan normal form
does not include a J1(0) block, can be split as a sum

A=A+N, (7)

where A is invertible, A=' € A{1}, and N is a nilpotent matrix of the nilpotency
order equal to 2 (which means that N* = 0).

PROOF. Any square complex matrix can be reduced to the Jordan normal

form
a=x (" V) x,
0 Jy

where X is nonsingular, J; € C[*" is invertible, and Jj is nilpotent and consists
from blocks Jj(0), k > 1, each of them is a Jordan matrix. We look for A in

the form
P Q _
A = x X1
R S

The equation AAM A = A must be satisfied by any {1}-inverse, so we conclude
that

J\PJy=J =P=J"

J1QJy=0=QJy=0
JoRJ1 =0= JoR=0

JoSJo = Jo = S = JV

For the sake of clarity we choose @ = 0, R = 0. Hence

J8 0
‘¥<B %D>X'1€Aﬂ} (8)
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We now find a {1, 3,4}-inverse of a block

Jk, (0) 0 e 0
0  Ju(0) -+ 0
Jo=| . y . (9)
0 0 R (0)
We can assume that this inverse can be in the form
T (0) 0 . 0
0 Sl (1) B 0
I R . (10)
0 0 Y (0)

This special inner inverse for each block Ji,(0),s = 1,m, can be found as it is
described in Lemma 1. Arbitrary complex element which participate in the i-th
block we denote as «;. If we enforce the natural condition «; # 0, ¢ = 1,m,

then Lemma 2 implies the existence of the inverse of each submatrix J, ,51,1’3’4), and
further implies the existence of the inverse for the matrix J0(1’3’4)
Ji, (0) 0 . 0
i B (11)
0 0 . T

Since the inverse of the i-th submatrix depends on a parameter «;, J; depends
on complex nonzero parameters az, ..., Q.
If we use A for the inverse of AM)| it is obvious that

A-x (7 9 x (12)
0 Jo

Let N = A — A. We have

0 0
N=X —~ | x % 13
(. 5) &
The block-diagonal matrix Jy — 35 consists of blocks
0 0



240 Nebojsa C. Dinci¢
and now it is easy to obtain that
N% =0. O

Remark 1. The condition from the statement of a previous theorem, which
relates to block J;(0), significantly decreases the class of matrices for which the
theorem is applicable. For example, the class of all matrices of the index equal to
1 (there belong non-invertible hermitian, normal and range-hermitian matrices)
is an excellent example for a class to which previous theorem is unapplicable.

Counterexample. Let us deal with the matrix

1
A= 0 .
0 0
Theorem 1 can not be applied to our matrix A, and A can not be split using a
method described in Theorem 1 as a sum

A=A+ N, detA#£0, N?=0.

But, we try to find that splitting on some other way. We use the next easy-to-
prove observation

S

= a b t s
A=A+ N = 2
t2

where we assume that det A = ad — be #0. This imply a=1—% b= —s,c= "
id=t, and further

~ 1—-t — t ~
A:A+N:<tz :>+<tsz,cMA:u

and we now conclude that must be ¢ # 0. Indeed, we find the desired splitting!

t
(VNECQXQ)NQZO;AN@N:( 2 St>, teC, seC\{0}.

Now we have

Theorem 2. Any singular condiagonalizable complex matrix A € C*"™ such
that k = dimker Ay — dimker A > 0 can be split into the sum

A=A+N, (15)

where A is invertible, A~' € A{1}, and N satisfy NN = NN = 0.
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PROOF. Let the matrix A satisfy conditions from this theorem. Then, it can
be, because of Proposition 2, expressed as

Dy 0)\—=—1 ——1
A= =SB 1
S ( 0 Do> S SBS -, (16)

. 0 0 @
Dy =diag < A1,..., A\, e a

is the invertible matrix, and

mew{(38). (0 1)

consists of exactly k blocks, where k = dimker(Az) — dimker(A4) > 0. We use

Ai,i = 1,p, to denote nonnegative coneigenvalues of A, while p; and Wiy g
are pairs of complex conjugate coneigenvalues.

We look for A{1} in the form

(M N
AD = -1
S(P Q>s

Because of AAMA = A, we conclude that

where

=1,q,

DiMD, =D, = M = D;"
DiNDy=0= NDy=0
DyPDy =0= DyP =0

DoQDy =Dy = Q = Dc()l)
We put N =0, P =0. Hence,

DY 0
S|t n | STt e A{1}.
(0 Dé)>

Now, we look for a {1, 3,4}-inverse of a block-matrix

0 0
1 0

(17)

= O
o O

Dy = (18)
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in the form

0 O (1,3,4) O O (1,3,4)
D(1,374): .
0 diag 3 {1 A

It is easy to find that

0 1
B1 0

D(()1,3,4) _ By 0

Bk 0

(20)

Under the assumption that arbitrary complex elements in i-th block is subjected

by condition 3; # 0,7 = 1, k, we can find also
0 8!
1 0
0 B
DVO _ (D(()1,3,4)),1 _ 1 0

0
1

We use A for the ordinary inverse of A®). Tt is obvious that

We have

The block-diagonable matrix Dy — bvo contains the blocks
0 —g "
0 0 '

NN = NN =0.

Now it is easy to obtain that

B!
0

(21)
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The next result is a constructive proof of a special case of HARTE’s theorem
from [5].

Theorem 3. Under the assumptions from Theorem 1, we have

inf |A— Al =0, (25)
(CIT Q) EC™
a; #0,i=1,m

where «; are parameters which Ais depended from.

PRrROOF. Writing “inf” for the infimum over the parameters listed in for-
mula (25), we have

0 Jo—Jo

O O ) 2 xy ||X1||inf(max ! >:07
0 Jo—"Jo i=T,m |y

because, using Lemmas 3 and 4, we have

inf |A — A|| = inf | N| = inf || X (0 0 ~> XY

< [IXIX =" | inf

~ ~ 1 1
inf || Jo — Jo|| = inf I, (0) = Jx, (0 = inf — )= inf —
wt 15~ Jol = inf (s 0 (0) = T ) ) =int (s L) =t L

1=1m i=1,m
and it is equal to 0 when oy — oo in a complex plane. O

Theorem 4. Under the assumptions from Theorem 1, we have

inf A~ — Al =0, (26)
c(ag,...,am)EC™
a; #0,i=1,m

where «; are parameters which A is depended from.

PROOF. Again, writing “inf” for the infimum over the parameters listed in
formula (26), we have

e T . 0 0 _
IMMW—AW=mfxﬁ)%m@_H)XH

0 0
—1 - _ =1 s —
gwMX|me KWQJQHAMMXHm%gﬁmo—m
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because, using Lemmas 5 and 6:

inf {29 — JI] = inf ( mase |74 (0) = 7} <o>||)

i=1,m

= inf ( max |ai> = inf ol
i=Lm a,€C\{0}

and it is equal to 0 when ay — 0 in a complex plane. (Il

We actually concluded that we deal with good approximation, but a para-
meter in one case tends to zero, and in other to the infinity. It raises a question
whether it is possible to simultaneously approximate both A with A, and AT with
A~1. Two next theorems answer to this question negatively.

Theorem 5. Under the assumptions from Theorem 1, we have

. ~ _ _ 2
inf _ (lA= Al AT = AT < (X XD (27)
(a1,...,am)€C
a; #0,i=1,m

PRrROOF. Writing “inf” for the infimum over the parameters listed in formula
(27), and h for || X|| - [| X Y|, we have

inf||A— A -|JA~1 — AT||

0 0 _ 0 0 _
X ~ | x| x (1,3,4) L] X 1
0 Jy—.Jo 0 Jy - J3

< B2 inf || Jo — Jo - I — Jd|

= inf

W iut ( max i (0) — 7, (0)] - max 134 (0) - Jf <o>|)

i=1,m i=1,m
= h%inf ( max 1/|a;| - max aj|> = h%inf o] = h?,
i=T,m j=Lm |as]

since |as| > |a;| > |as|,i = 1, m implies loel 1; the required infimum is equal

las] =

to 1, and it can be reached for a good choice of a = (z,z2,...,2),z € C\{0}. O

Theorem 6. Under the assumptions from Theorem 1, we have

o inf (A= A+ AT AT < 20X X (2
Qi £0imT,m
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PRrOOF. Writing “inf” for the infimum over the parameters listed in formula
(28), and h for || X|| - [| X Y|, we have

inf(| A — Al + A~ - aT))

= inf X() ON;vl
0 Jo—Jo

< B2 inf || Jo = Joll - 195> = |

+

0 0
X X!
Q %wm_ﬂ>

)

= h?inf ( max |y, (0) = Ji, (0 + max 1720 0) — ] (0)|)

i=1,m

1
= h?inf ( max 1/|o;| + maxaj|) = h?inf ( + |as|) = 2h%,

i=1,m j=1lm |at|

since || > || imply |as| + IchtI > o] + ITltl > 2; the required infimum can be

reached for a good choice of a = (1,1,...,1). |

The results analogous to Theorems 3-6 are valid, with slightly changed
proofs, under the assumptions of Theorem 2, instead of Theorem 1.

4. Another results

We can prove the following results.

Proposition 3 (The spectrum of matrix A). If o(A) = o(J;) U {0}, then
o(N) = {0} and

o(A) = o(J1) U kgl{ \/1017} (29)

where we take exactly k; values of a root of complex number oy, .

PROOF. If o(A) = o(J1) U {0}, then o(A) = o(J1) Uc(Jo). Clearly, o(Jo) =
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Uk =1 o(Jx, (0)), and eigenvalues of J; (0) are k¢/1chi’ because
0

o o
o |
Q
-
)
o o
o

0= .
0 0 0 —o 1
L 0 0 -+ 0 -0
= (CDMoR o (DR = (1) )
(673 (673 ’
and now the conclusion can easily be obtained. O

Proposition 4 (Properties of the splitting).

1. If we multiply by N from the left (right) side the formula A = A+ N, we
get that NA= NA, (AN = AN);

2. Since A=' € A{1}, it have to be AA~' A = A; if we multiply this formula from
the left (right) side by A=', we obtain that AA~' and A~'A are projectors
Pray,s, (Pr,n(a)) (under the condition R(A)® S = C",(T® N(A) =C™));
this condition is, using Corollary 10, pp. 73, from [1] equivalent to the
existence of a matrix X € A{1,2}, where R(X) =T, N(X) = 5).

3. If we replace A = A+ N instead of the first (second) A in AA~'A = A, then
we obtain: NA™'A = NPy n(a) =0, (AA7IN = Pg(a) sN = 0).

4. We can use a result from [2], pp. 9 (If S € T{1}, then STS € T{1,2}), and
then conclude

ATTAAT = A YA+ N)A P = AL AINA™ € A{1,2),

because A~' € A{1}.
If a matrix splitting of A is obtained using the method described in Theo-
rem 2, previous proposition still remains true, with some minor changes.
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