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Sharp exponential Redheffer-type inequalities

for Bessel functions

By ÁRPÁD BARICZ (Cluj-Napoca) and SHANHE WU (Longyan)

Abstract. By using some known results on the zeros of Bessel functions of the

first kind sharp exponential Redheffer-type inequalities are established for Bessel and

modified Bessel functions of the first kind. The results presented in this paper extend

and improve the other known results in the literature.

1. Redheffer-type inequalities for Bessel functions

The following inequality

sin x

x
≥

π2 − x2

π2 + x2
,

which holds for all x ∈ R, is known in literature as Redheffer’s inequality [24].

For an interesting proof in the case of |x| < π of the above Redheffer inequality

we refer to the paper [22]. Recently, motivated by this inequality, Chen et al.

[11], by using mathematical induction and infinite product representation of cosx,

sinhx and coshx, established the following Redheffer-type inequalities

cosx ≥
π2 − 4x2

π2 + 4x2
and coshx ≤

π2 + 4x2

π2 − 4x2
for all |x| ≤ π/2,

sinhx

x
≤

π2 + x2

π2 − x2
for all |x| < π.
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In order to sharpen and extend the above results, recently Zhu and Sun [26] pre-

sented six new Redheffer-type inequalities involving circular functions and hyper-

bolic functions. We note that Redheffer’s inequality and the above Redheffer-type

inequalities has been extended recently by the first author [4] to the Bessel and

modified Bessel functions of the first kind. Moreover, it is worth mentioning that

in the recent years many known trigonometric inequalities and their hyperbolic

analogues were extended by the first author and coauthors. The interested reader

is referred to the papers [3], [4], [5], [6], [7], [8], [9], [10] and to the references

therein. In this paper our aim is to continue these investigations by extending all

of the results of Zhu and Sun [26] and by improving the results from [4]. The

paper is organized as follows: in the first two sections we present sharp expo-

nential Redheffer-type inequalities for Bessel and modified Bessel functions of the

first kind, while in the third section we offer some immediate applications of these

results. Moreover, in this section we present alternative proofs for some inequali-

ties for Bessel functions of the first kind established by Ifantis and Siafarikas

[17]. The key tools in our proofs are some known results on the zeros of Bessel

functions of the first kind, like the well-known Rayleigh bounds on the square

of the first positive zero of Bessel functions, and some recent results of the first

author on Bessel functions.

To achieve our goal first let us recall some basic facts. Suppose that ν > −1

and consider the normalized Bessel function of the first kind Jν : R → (−∞, 1],

defined by

Jν(x) = 2νΓ(ν + 1)x−νJν(x) =
∑

n≥0

(−1/4)n

(ν + 1)nn!
x2n,

where, as usual, (ν + 1)n = Γ(ν + n + 1)/Γ(ν + 1) for each n ≥ 0 is the so-called

Pochhammer (or Appell) symbol, and Jν , defined by

Jν(x) =
∑

n≥0

(−1)n(x/2)ν+2n

n!Γ(ν + n + 1)
,

stands for the Bessel function of the first kind of order ν (see [25, p. 40]).

The following preliminary result will be useful in the sequel.

Lemma 1. Let ν > −1 and let jν,1 be the first positive zero of the Bessel

function Jν . Then the equation j2
ν,1 = 8(ν + 1) has exactly one positive root

ν0 ∈ (1, 2). Moreover, if ν ∈ (−1, ν0], then j2
ν,1 ≤ 8(ν + 1), and if ν ≥ ν0, then

the above inequality is reversed.

Proof. Due to Ismail and Muldoon [18, Theorem 2] it is known that the

function ν 7→ j2
ν,1/(ν +1) is increasing on (−1,∞) (see also [19, p. 9], [14, p. 57]).
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One the other hand, concerning the local behavior of jν,1, in the neighborhood of

ν = −1 the following representation is valid [23]

jν,1 = 2(ν + 1)1/2

[

1 +
1

4
(ν + 1) −

7

96
(ν + 1)2 + . . .

]

,

which implies that j2
ν,1/(ν + 1) → 4 as ν → −1. It is also known (see for example

[18, equation 6.8]) that for each ν > −1 we have the following lower and upper

bounds for the square of the first positive zero

4(ν + 1)(ν + 2)1/2 < j2
ν,1 < 2(ν + 1)(ν + 3).

Hence j2
ν,1/(ν + 1) → ∞ as ν → ∞, and consequently indeed the equation j2

ν,1 =

8(ν + 1) has an unique solution ν0 > −1. Now we prove that ν0 ∈ (1, 2). Using

the above inequalities we get that j2
ν,1 < 8(ν + 1) for each ν ∈ (−1, 1) and

j2
ν,1 > 8(ν + 1) for each ν > 2. Since j1,1 = 3.83171 . . . and j2,1 = 5.13562 . . .

(see [1, p. 409]), it is easy to see that for ν ∈ {1, 2} the equation j2
ν,1 = 8(ν + 1)

is not satisfied and thus ν0 must lies in the interval (1, 2). With this the proof is

complete. �

Our first main result of this paper, which improves and complements [4,

equation 2.1], reads as follows.

Theorem 1. Let ν > −1 and let

λν = [8(ν + 1) − j2
ν,1]

1/2, ων =































jν,1, if ν ∈ (−1,−1/2]

λν , if ν ∈ (−1/2, 0)

jν,1, if ν ∈ [0, 1/2]

λν , if ν ∈ (1/2, ν0),

where jν,1 is the first positive zero of the Bessel function of the first kind Jν and

ν0 is the unique solution of the equation j2
ν,1 = 8(ν +1). Then the following sharp

exponential Redheffer-type inequalities hold

Jν(x) ≥

(

j2
ν,1 − x2

j2
ν,1 + x2

)αν

for all |x| < ων and ν ∈ (−1, ν0), (1.1)

Jν(x) ≤

(

j2
ν,1 − x2

j2
ν,1 + x2

)βν

for all |x| < jν,1 and ν ≥ −7/8, (1.2)

Jν+1(x)

Jν(x)
≥

(

j2
ν,1 + x2

j2
ν,1 − x2

)γν

for all |x| < jν,1 and ν ≥ −7/8, (1.3)
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Jν+1(x)

Jν(x)
≤

(

j2
ν,1 + x2

j2
ν,1 − x2

)αν

for all |x| < jν,1 and ν > −1, (1.4)

with the best possible constants

αν = 1, βν =
j2
ν,1

8(ν + 1)
and γν =

j2
ν,1

8(ν + 1)(ν + 2)
.

Proof. Observe that due to Lemma 1 λν is well defined. On the other hand,

since the function ν 7→ j2
ν,1/(ν + 1) is increasing, clearly for all ν > −1 one has

j2
ν,1 > 4(ν + 1), i.e. for all ν ∈ (−1, ν0) we have λν < jν,1. Since all functions

which appear in inequalities (1.1), (1.2), (1.3) and (1.4) are even, without loss of

generality, in what follows we assume that x ∈ (0, λν) or x ∈ (0, jν,1), depending

on the inequality in the question. First we show that, assuming that the inequal-

ities (1.1), (1.2), (1.3) and (1.4) hold, then the constants αν , βν and γν are the

best possible. For this consider the functions fν , gν : (0, jν,1) → R, defined by

fν(x) =
logJν(x)

log
(

j2
ν,1−x2

j2
ν,1+x2

) and gν(x) =
log Jν+1(x)

Jν(x)

log
(

j2
ν,1+x2

j2
ν,1−x2

) .

Since for all |x| < jν,1 and ν > −1 we have Jν(x) > 0 (see for example [7,

Theorem 3]), clearly the function fν is well defined. Similarly, because for all

|x| < jν+1,1 and ν > −1 we have Jν+1(x) > 0 and (−jν,1, jν,1) ⊂ (−jν+1,1, jν+1,1),

it follows that the function gν is well defined too. Using the l’Hospital rule it is

easy to verify that we have

lim
x→0

fν(x) = lim
x→0

J ′
ν(x)

Jν(x)
·
x4 − j4

ν,1

4xj2
ν,1

= lim
x→0

Jν+1(x)

Jν(x)
·

j4
ν,1 − x4

8(ν + 1)j2
ν,1

= βν ,

lim
x→jν,1

fν(x) = lim
x→jν,1

J ′
ν(x)

Jν(x)
·
x4 − j4

ν,1

4xj2
ν,1

= lim
x→jν,1

Jν+1(jν,1)

8(ν + 1)j2
ν,1

·
j4
ν,1 − x4

Jν(x)
= αν ,

lim
x→0

gν(x)= lim
x→0

(ν+2)[Jν+1(x)]2−(ν+1)Jν(x)Jν+2(x)

Jν(x)Jν+1(x)
·

j4
ν,1 − x4

8(ν+1)(ν+2)j2
ν,1

= γν

and then

lim
x→jν,1

gν(x) = − lim
x→jν,1

logJν(x)

log
(

j2
ν,1+x2

j2
ν,1−x2

) = lim
x→jν,1

logJν(x)

log
(

j2
ν,1−x2

j2
ν,1+x2

) = lim
x→jν,1

fν(x) = αν ,

where we have used the differentiation formula

J ′
ν(x) = −

x

2(ν + 1)
Jν+1(x), (1.5)
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which can be verified easily by using the series representation of the function Jν .

With other words, we have fν(0+)=βν , gν(0+)= γν and fν(j−ν,1)=gν(j−ν,1)=αν ,

which show that the constants αν , βν and γν are the best possible.

Now let us focus on the inequality (1.1). Recall that this inequality was

recently proved by the first author [4, equation 2.1], but under the assumption

that if ∆ν(n) = j2
ν,n+1 − jν,1jν,n − jν,njν,n+1 ≥ 0 for all n ∈ {1, 2, 3, . . .}, then

|x| < ξν , where

ξν = min
n≥1,ν>−1

{

jν,1,
√

∆ν(n)
}

.

Here jν,n stands for the nth positive zero of the Bessel function Jν . Here we show

that the above condition can be relaxed for ν ∈ [0, 1/2] and ν ∈ (−1,−1/2]. For

this consider the (unique) solution j = jν,κ of the differential equation

dj

dν
= 2j

∫ ∞

0

K0(2j sinh t)e−2νt dt,

which satisfies the condition j → 0 as ν → −κ+. Here K0 stands for the modified

Bessel function of the second kind of zero order and for κ ∈ {1, 2, 3, . . .} the jν,κ

becomes exactly the κth positive zero of the Bessel function Jν of the first kind.

Due to Elbert and Laforgia [13] it is known that if ν ∈ [0, 1/2], then jν,κ

is convex with respect to κ. With other words, in particular we have that the

sequence {jν,n}n≥0, where jν,0 = 0, is convex when ν ∈ [0, 1/2]. This implies that

for each ν ∈ [0, 1/2] and n ∈ {1, 2, 3, . . .} we have

∆ν(n) − j2
ν,1 = (jν,n+1 + jν,1)(jν,n+1 − jν,n − jν,1) ≥ 0,

since

jν,n+1 − jν,n ≥ jν,n − jν,n−1 ≥ . . . ≥ jν,2 − jν,1 ≥ jν,1.

Consequently, if ν ∈ [0, 1/2], then ξν = jν,1.

On the other hand it is known (see for example [12, Theorem 21]) that if

|ν| ≥ 1/2, then for all n ∈ {1, 2, 3, . . .} we have jν,n+1 − jν,n ≥ π, which implies

that for all ν ∈ (−1,−1/2] and all n ∈ {1, 2, 3, . . .} one has

jν,n+1 − jν,n ≥ π > π/2 = j−1/2,1 ≥ jν,1,

i.e. ξν = jν,1. Here we used that every positive zero jν,n of Jν satisfies the

inequality djν,n/dν > 1 for all ν > −1 (see [15, Corollary 3.1]) and in particular

the function ν 7→ jν,1 is increasing on (−1,∞).



262 Árpád Baricz and Shanhe Wu

For the remained part, i.e. when ν ∈ (−1/2, 0) or ν ∈ (1/2, ν0), consider the

function hν : [0, jν,1) → R, defined by

hν(x) = logJν(x) − log

(

j2
ν,1 − x2

j2
ν,1 + x2

)

.

Taking into account the inequality [17, equation 2.17] (for an alternative proof of

this inequality see the Concluding remarks below (part 5))

Jν+1(x)

Jν(x)
=

2(ν + 1)

x

Jν+1(x)

Jν(x)
<

j2
ν,1

j2
ν,1 − x2

, (1.6)

which holds for all ν > −1 and x ∈ (0, jν,1), and using (1.5), clearly we have

h′
ν(x) =

J ′
ν(x)

Jν(x)
+

4xj2
ν,1

j4
ν,1 − x4

=
4xj2

ν,1

j4
ν,1 − x4

−
x

2(ν + 1)

Jν+1(x)

Jν(x)

≥
4xj2

ν,1

j2
ν,1 − x2

[

1

j2
ν,1 + x2

−
1

8(ν + 1)

]

≥ 0,

where x ∈ [0, λν) and ν ∈ (−1, ν0), i.e. the function hν is increasing on [0, λν).

This in turn implies that hν(x) ≥ hν(0) = 0 for all x ∈ [0, λν) and ν ∈ (−1, ν0).

With this the proof of (1.1) is complete.

Now we are going to prove (1.2). Let us consider the function ϕν : [0, jν,1)→R,

defined by

ϕν(x) =
j2
ν,1

8(ν + 1)
log

(

j2
ν,1 − x2

j2
ν,1 + x2

)

− logJν(x).

In what follows we show that for each ν ≥ −7/8 the function ϕν is increasing,

and consequently ϕν(x) ≥ ϕν(0) = 0, i.e. (1.2) holds. For this recall the Rayleigh

inequalities [25, p. 502]

[

σ(2m)
ν

]−1/m

< j2
ν,1 < σ(2m)

ν /σ(2m+2)
ν , (1.7)

which hold for all m ∈ {1, 2, 3, . . .} and ν > −1, where

σ(2m)
ν =

∑

n≥1

j−2m
ν,n

is the Rayleigh function of order 2m, and the Kishore’s formula [20]

x

2

Jν+1(x)

Jν(x)
=
∑

m≥1

σ(2m)
ν x2m, (1.8)
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where |x| < jν,1 and ν > −1. Using (1.5), (1.7) and (1.8) we obtain

ϕ′
ν(x) = −

x

2(ν + 1)

j4
ν,1

j4
ν,1 − x4

−
J ′

ν(x)

Jν(x)
=

x

2(ν + 1)

Jν+1(x)

Jν(x)
−

x

2(ν + 1)

j4
ν,1

j4
ν,1 − x4

=
1

2(ν + 1)x

1

j2
ν,1 + x2

[

4(ν + 1)(j2
ν,1 + x2)

x

2

Jν+1(x)

Jν(x)
−

j4
ν,1x

2

j2
ν,1 − x2

]

=
1

2(ν +1)x

1

j2
ν,1+x2

[

4(ν +1)(j2
ν,1+x2)

∑

m≥1

σ(2m)
ν x2m− j2

ν,1x
2
∑

m≥0

(

x

jν,1

)2m ]

=
1

2(ν +1)x

1

j2
ν,1+x2

[

4(ν + 1)j2
ν,1

∑

m≥2

σ(2m)
ν x2m+, 4(ν + 1)

∑

m≥2

σ(2m−2)
ν x2m

−
∑

m≥2

1

j2m−2
ν,1

x2m

]

=
1

2(ν + 1)x

1

j2
ν,1 + x2

∑

m≥2

[

4(ν + 1)j2
ν,1σ

(2m)
ν + 4(ν + 1)σ(2m−2)

ν −
1

j2m−2
ν,1

]

x2m

≥
1

2(ν + 1)x

1

j2
ν,1 + x2

∑

m≥2

[

8(ν + 1)j2
ν,1σ

(2m)
ν −

1

j2m−2
ν,1

]

x2m

≥
1

2(ν + 1)x

1

j2
ν,1 + x2

∑

m≥2

8ν + 7

j2m−2
ν,1

x2m ≥ 0,

where we have used that due to the Rayleigh formula [25, p. 502]

σ(2)
ν =

∑

n≥1

1

j2
ν,n

=
1

4(ν + 1)

one has

4(ν + 1)j2
ν,1σ

(2)
ν x2 = j2

ν,1x
2.

Finally, we prove the inequalities (1.3) and (1.4). For this first we show that

the inequality (1.3) is in fact an immediate consequence of the inequality (1.2).

Recall that the function ν 7→ [Jν(x)]ν+1 is increasing on (−1,∞) for each fixed

x ∈ (0, jν,1) (see [7, Theorem 3]), and thus we have

Jν+1(x) ≥ [Jν(x)](ν+1)/(ν+2)

for all ν > −1 and x ∈ (0, jν,1). This in turn together with (1.2) implies that

Jν+1(x)

Jν(x)
≥ [Jν(x)]

(ν+1)/(ν+2)−1
=

1

[Jν(x)]1/(ν+2)
≥

(

j2
ν,1 + x2

j2
ν,1 − x2

)βν/(ν+2)

=

(

j2
ν,1 + x2

j2
ν,1 − x2

)γν

,
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as we required. Secondly, observe that inequality (1.4) follows easily from in-

equality (1.6). �

Concluding remarks and particular cases

1. First we note that using again the inequality [18, equation 6.8]

j2
ν,1 < 2(ν + 1)(ν + 3) we obtain that γν < 1 for all ν > −1. Moreover, using

the inequality (1.7) for m = 1, i.e. 4(ν + 1) < j2
ν,1 < 4(ν + 1)(ν + 2) (see for

example [18, equation 6.7]) we obtain that γν < 1/2 < βν for all ν > −1.

Here we used that [25, p. 502]

σ(2)
ν =

1

4(ν + 1)
and σ(4)

ν =
1

16(ν + 1)2(ν + 2)
.

2. Secondly, observe that in (1.1) the condition ν < ν0 is not only sufficient,

but also necessary. More precisely, since for all ν > −1 and x ∈ (−jν,1, jν,1)

we have
j2
ν,1 − x2

j2
ν,1 + x2

≤ 1,

form (1.1) and (1.2) it follows that βν must be less than αν = 1, i.e. ν must

lies in (−1, ν0). Moreover, when ν ≥ ν0, then the inequality (1.1) is reversed

and for ν > ν0 is weaker than (1.2). This observation is in the agreement

with the fact that for example

∆2(2) = j2
2,3 − j2,1j2,2 − j2,2j2,3 = −6.01404 < 0,

where we have used that j2,1 = 5.13562, j2,2 = 8.41724 and j2,3 = 11.61984

(see [1, p. 409]). With other words, for ν > ν0 the expression ∆ν(n) =

j2
ν,n+1−jν,1jν,n−jν,njν,n+1 is not necessarily positive for all n ∈ {1, 2, 3, . . .}.

3. It is worth mentioning that in particular the function Jν reduces to some

elementary functions, like sine and cosine. More precisely, in particular we

have

J−1/2(x) =
√

π/2 · x1/2J−1/2(x) = cosx, (1.9)

J1/2(x) =
√

π/2 · x−1/2J1/2(x) =
sin x

x
, (1.10)

J3/2(x) = 3
√

π/2 · x−3/2J3/2(x) = 3

(

sin x

x3
−

cosx

x2

)

, (1.11)

respectively, which can verified easily by using the series representation of the

function Jν and of the cosine and sine functions, respectively. Now, choosing
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in (1.1) and (1.2) ν = −1/2, in view of (1.9) we obtain the following sharp

Redheffer-type inequalities [26, Theorem 2]

(

π2 − 4x2

π2 + 4x2

)α
−1/2

≤ cosx ≤

(

π2 − 4x2

π2 + 4x2

)β
−1/2

for all |x| < π/2,

with the best possible constants α−1/2 = 1 and β−1/2 = π2/16 (see Figure 1).

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lower bound
cos(x)
upper bound

Figure 1. The graph of the functions π2
−4x2

π2+4x2 , cos x and
�

π2
−4x2

π2+4x2

�π2/16

on (0, π/2).

Similarly, taking ν = 1/2 in (1.1) and (1.2), in view of (1.10), we reobtain

the following sharp inequalities [26, Theorem 1]

(

π2 − x2

π2 + x2

)α1/2

≤
sin x

x
≤

(

π2 − x2

π2 + x2

)β1/2

for all |x| < π,

with the best possible constants α1/2 = 1 and β1/2 = π2/12 (see Figure 2).

Analogously, if we take ν = −1/2 in (1.3) and (1.4), then in view of

(1.9) and (1.10) we get the following sharp Redheffer-type inequalities [26,

Theorem 3]

(

π2 + 4x2

π2 − 4x2

)γ
−1/2

≤
tanx

x
≤

(

π2 + 4x2

π2 − 4x2

)α
−1/2

for all |x| < π/2,

with the best possible constants α−1/2 = 1 and γ−1/2 = π2/24 (see Figure 3).
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Figure 2. The graph of the functions π2
−x2

π2+x2 , sin x
x

and
�

π2
−x2

π2+x2

�π2/12
on (0, π).
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Figure 3. The graph of the functions
�

π2+4x2

π2
−4x2

�π2/24
, tan x

x
and π2+4x2

π2
−4x2

on (0, π/2).

Here we used that j−1/2,1 = π/2 and j1/2,1 = π, which can be verified

easily by using the infinite product representation of the cosine and sine

functions [1, p. 75], and of the function [1, p. 370] Jν , respectively.
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4. We note that the proof of inequality (1.2) is similar to those given by Zhu

and Sun [26] for Theorems 1 and 2. However, our approach in the proof of

inequalities (1.3) and (1.4) is much simpler than the method given in [26]. It

is worth mentioning that Kishore [20] pointed out that, if Bm denotes the

mth Bernoulli number in the even suffix notation and Gm = 2(1 − 2m)Bm,

then

σ
(2m)
−1/2 = (−1)m 22m−2

(2m)!
G2m and σ

(2m)
1/2 = (−1)m−1 22m−1

(2m)!
B2m.

Using (1.9), (1.10), (1.11) and Kishore’s expansion (1.8) for ν = −1/2 and

ν=1/2 these formulas leads to the well known power series expansions [1,

p. 75]

tanx =
∑

m≥1

(−1)m 22m(1 − 22m)

(2m)!
B2mx2m−1

=
∑

m≥1

22m(22m − 1)

(2m)!
|B2m|x2m−1, |x| < π/2,

x cotx = 1 −
∑

m≥1

(−1)m−1 22m

(2m)!
B2mx2m = 1 −

∑

m≥1

22m

(2m)!
|B2m|x2m, |x| < π,

which were the chief tools in the proof of the main results in [26].

5. We note that Ifantis and Siafarikas [17] in order to prove (1.6) have used

the power series representation [16, p. 95]

Jν+1(x)

Jν(x)
=

2(ν + 1)

x

Jν+1(x)

Jν(x)
= 1 +

∑

m≥1

‖Sm
ν e1‖

2

22m
x2m,

where ν > −1 and x ∈ (0, jν,1). Here Sν = L
1/2
ν (V + V ∗)L

1/2
ν is a compact

and self-adjoint operator, V is an unilateral shift operator with respect to the

orthonormal basis em, m ∈ {1, 2, 3, . . .} in an abstract Hilbert space, Lν is

the diagonal operator such that Lνem = (1/(ν +m))em and V ∗ is the adjoint

of V . We show here that inequality (1.6) in fact can be deduced easily without

of the above power series representation of the quotient Jν+1(x)/Jν(x). For

this we prove first that for all ν > −1 and m ∈ {0, 1, 2, . . .} the following

inequality holds

4(ν + 1)σ(2m+2)
ν j2m

ν,1 ≤ 1, (1.12)

and for m ≥ 1 is strict. For m = 0 clearly we have equality, while for m = 1

the above inequality becomes exactly the right hand side of (1.7) for the case
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m = 1, i.e. j2
ν,1 < 4(ν + 1)(ν + 2). Now suppose that (1.12) holds for some

m = k − 1 ≥ 2, i.e. we have

4(ν + 1)σ(2k)
ν j2k−2

ν,1 < 1.

Then by using the right hand side of (1.7) we have

4(ν + 1)σ(2k+2)
ν j2k

ν,1 < 4(ν + 1)
σ

(2k)
ν

j2
ν,1

j2k
ν,1 = 4(ν + 1)σ(2k)

ν j2k−2
ν,1 < 1,

and thus by mathematical induction we have that indeed the inequality (1.12)

is true. Consequently, by using the Kishore expansion (1.8) and inequality

(1.12) it follows that

2(ν + 1)

x

Jν+1(x)

Jν(x)
−

j2
ν,1

j2
ν,1 − x2

=
4(ν + 1)

x2

x

2

Jν+1(x)

Jν(x)
−

j2
ν,1

j2
ν,1 − x2

=
4(ν + 1)

x2

∑

m≥1

σ(2m)
ν x2m −

∑

m≥0

1

j2m
ν,1

x2m

=
∑

m≥1

[

4(ν + 1)σ(2m+2)
ν −

1

j2m
ν,1

]

x2m < 0

for all x ∈ (0, jν,1) and ν > −1, i.e. the proof of (1.6) is complete. Moreover,

using the above argument it can be proved that

2(ν + 1)

x

Jν+1(x)

Jν(x)
−

[

1 +
x2j2

ν,1

4(ν + 1)(ν + 2)(j2
ν,1 − x2)

]

=
4(ν + 1)

x2

∑

m≥1

σ(2m)
ν x2m −

[

1 +
x2

4(ν + 1)(ν + 2)

∑

m≥0

1

j2m
ν,1

x2m

]

=
∑

m≥2

[

4(ν + 1)σ(2m+2)
ν −

1

4(ν + 1)(ν + 2)j2m−2
ν,1

]

x2m < 0

for all x ∈ (0, jν,1) and ν > −1. Here we used that from the right hand side

of (1.7) by using again mathematical induction it follows that

σ(2m+2)
ν ≤ σ(4)

ν /j2m−2
ν,1

for all m ∈ {1, 2, 3, . . .}, and when m ≥ 2 the above inequality is strict. This

leads to the known inequality [17, equation 2.18]

2(ν + 1)

x

Jν+1(x)

Jν(x)
< 1 +

x2j2
ν,1

4(ν + 1)(ν + 2)(j2
ν,1 − x2)

,
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which is better than (1.6).

It is also worth mentioning here that [15] the eigenvalues of Sν are pre-

cisely the values ±2/jν,m and ‖Sν‖ = 2/jν,1. However, comparing (1.8)

with the above expansion of Ifantis and Siafarikas, it follows that for all

m ∈ {0, 1, 2, . . .} we have

‖Sm
ν e1‖

2 = (ν + 1)22m+2σ(2m+2)
ν .

This relation complements the results of Ifantis and Siafarikas [15], [16],

[17].

6. Finally, we note that based on numerical experiments, we conjecture that

the inequality (1.1) holds true for all ν ∈ (−1, ν0) and |x| < jν,1, while the

inequalities (1.2) and (1.3) hold true for all ν > −1 and |x| < jν,1.

2. Redheffer-type inequalities for modified Bessel functions

In this section we are going to present the hyperbolic counterpart of the

results from the previous section. For ν > −1 let us consider the function Iν :

R → [1,∞), defined by

Iν(x) = 2νΓ(ν + 1)x−νIν(x) =
∑

n≥0

(1/4)n

(ν + 1)nn!
x2n,

where Iν is the modified Bessel function of the first kind, defined by [25, p. 77]

Iν(x) =
∑

n≥0

(x/2)
ν+2n

n!Γ(ν + n + 1)
.

Corresponding to Theorem 1 we have the following results for the function

Iν . We note that this theorem improves and complements the earlier result of

the first author [4, equation 2.2].

Theorem 2. Let ν > −1 and let |x| < jν,1, where jν,1 is the first positive zero

of the Bessel function of the first kind Jν . Then the following sharp exponential

Redheffer-type inequalities hold

(

j2
ν,1 + x2

j2
ν,1 − x2

)αν

≤ Iν(x) ≤

(

j2
ν,1 + x2

j2
ν,1 − x2

)βν

, (2.1)
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(

j2
ν,1 − x2

j2
ν,1 + x2

)γν

≤
Iν+1(x)

Iν(x)
≤

(

j2
ν,1 − x2

j2
ν,1 + x2

)αν

, (2.2)

with the best possible constants

αν = 0, βν =
j2
ν,1

8(ν + 1)
and γν =

j2
ν,1

8(ν + 1)(ν + 2)
.

Proof. As in the proof of Theorem 1, since all functions which appear in

inequalities (2.1) and (2.2) are even, without loss of generality, in what follows

we assume that x ∈ (0, jν,1). First we show that the constants αν , βν and γν are

the best possible. For this consider the functions fν, gν : (0, jν,1) → R, defined by

fν(x) =
log Iν(x)

log
(

j2
ν,1+x2

j2
ν,1−x2

) and gν(x) =
log Iν+1(x)

Iν(x)

log
(

j2
ν,1−x2

j2
ν,1+x2

) .

Using the l’Hospital rule it is easy to verify that we have

lim
x→0

fν(x) = lim
x→0

I ′
ν(x)

Iν(x)
·
j4
ν,1 − x4

4xj2
ν,1

= lim
x→0

Iν+1(x)

Iν(x)
·

j4
ν,1 − x4

8(ν + 1)j2
ν,1

= βν

and

lim
x→0

gν(x) = lim
x→0

(ν + 2)[Iν+1(x)]2 − (ν + 1)Iν(x)Iν+2(x)

Iν(x)Iν+1(x)
·

j4
ν,1 − x4

8(ν + 1)(ν + 2)j2
ν,1

= γν ,

where we have used the differentiation formula

I ′
ν(x) =

x

2(ν + 1)
Iν+1(x), (2.3)

which can be verified easily by using the series representation of the function Iν .

On the other hand we have

lim
x→jν,1

fν(x) = lim
x→jν,1

gν(x) = αν .

With other words, we have fν(0+) = βν , gν(0+) = γν and fν(j−ν,1) = gν(j−ν,1) =

αν , which show that the constants αν , βν and γν are the best possible.

Now let us focus on inequalities (2.1) and (2.2). Since the function x 7→ Iν(x)

is increasing on (0,∞) for each ν > −1, we have Iν(x) ≥ 1, and thus the left hand

side of (2.1) is obvious. Similarly, since the function ν 7→ Iν(x) is decreasing on
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(−1,∞) for each fixed x ∈ R (see [7, Theorem 1]), one has Iν+1(x) ≤ Iν(x), and

thus the right hand side of (2.2) is true. For the right hand side of (2.1) consider

the function hν : [0, jν,1) → R, defined by

hν(x) =
j2
ν,1

8(ν + 1)
log

(

j2
ν,1 + x2

j2
ν,1 − x2

)

− log Iν(x).

Then by using again the Rayleigh formula [25, p. 502]

σ(2)
ν =

∑

n≥1

1

j2
ν,n

=
1

4(ν + 1)

and the factorization

Iν(x) =
∏

n≥1

(

1 +
x2

j2
ν,n

)

, (2.4)

which can be easily derived from [25, p. 498]

Jν(x) =
∏

n≥1

(

1 −
x2

j2
ν,n

)

, (2.5)

we have

h′
ν(x) =

1

4(ν + 1)

2xj4
ν,1

(j4
ν,1 − x4)

−
∑

n≥1

2x

j2
ν,n + x2

=
2xj4

ν,1

(j4
ν,1 − x4)

∑

n≥1

1

j2
ν,n

−
∑

n≥1

2x

j2
ν,n + x2

= 2x
∑

n≥1

[

j4
ν,1

(j4
ν,1 − x4)j2

ν,n

−
1

j2
ν,n + x2

]

≥ 0,

for all ν > −1 and x ∈ [0, jν,1), i.e. the function hν is increasing. Hence hν(x) ≥

hν(0) = 0, and thus the proof of the right hand side of (2.1) is done. However,

there is another way to deduce (2.1). Namely, by the well-known monotone form

of l’Hospital’s rule (see [2, Lemma 2.2]) to prove that the function fν , defined

above, is decreasing, it is enough to show that the function

x 7→
d
dx log Iν(x)

d
dx log

(

j2
ν,1+x2

j2
ν,1−x2

) =
1

2j2
ν,1

∑

n≥1

j4
ν,1 − x4

j2
ν,n + x2

is decreasing too on (0, jν,1), which is clearly true, since each terms in the above

series are decreasing as functions of x. Consequently for each x ∈ (0, jν,1) the

inequalities

αν = fν(j−ν,1) < fν(x) < fν(0+) = βν
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hold, as we required. Here we used on the one hand that the numerator and

denominator of fν(x) vanishes at zero and on the other hand that from the infinite

product formula (2.4) one has

I ′
ν(x)

Iν(x)
=
∑

n≥1

2x

j2
ν,n + x2

.

Finally, we prove the left hand side of (2.2). It is known that the function

ν 7→ [Iν(x)]ν+1 is increasing on (−1,∞) for each x ∈ R (see [7, Theorem 1]), and

thus we have

Iν+1(x) ≥
[

Iν(x)
](ν+1)/(ν+2)

for all ν > −1 and x ∈ R. This in turn together with the right hand side of (2.1)

implies that

Iν+1(x)

Iν(x)
≥
[

Iν(x)
](ν+1)/(ν+2)−1

=
1

[Iν(x)]1/(ν+2)
≥

(

j2
ν,1 − x2

j2
ν,1 + x2

)βν/(ν+2)

=

(

j2
ν,1 − x2

j2
ν,1 + x2

)γν

,

and with this the proof is complete. �

Concluding remarks and particular cases

1. First note that in [4], by using mathematical induction and the infinite

product representation (2.4), we proved that if ∆ν(n) ≥ 0 for each n =

{1, 2, 3, . . .} and ν > −1, then for all |x| < jν,1 the following Redheffer-type

inequality

Iν(x) ≤
j2
ν,1 + x2

j2
ν,1 − x2

(2.6)

holds. Due to Lemma 1 if ν ∈ (−1, ν0), then βν < 1, and thus the right

hand side of (2.1) is better than (2.6). When ν = ν0, then βν = 1, and

thus the right hand side of (2.1) and (2.6) are the same. However, when

ν > ν0 the inequality (2.6) does not hold necessarily, since for all ν > ν0 and

n ∈ {1, 2, 3, . . .} the inequality ∆ν(n) ≥ 0 is not true. For example, as we

have pointed out above, ∆2(2) = −6.01404 < 0.

2. It is worth mentioning that in particular the function Iν reduces to some ele-

mentary functions, like hyperbolic sine and hyperbolic cosine. More precisely,

in particular we have

I−1/2(x) =
√

π/2 · x1/2I−1/2(x) = coshx, (2.7)
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I1/2(x) =
√

π/2 · x−1/2I1/2(x) =
sinhx

x
, (2.8)

I3/2(x) = 3
√

π/2 · x−3/2I3/2(x) = −3

(

sinhx

x3
−

coshx

x2

)

, (2.9)

respectively, which can verified easily by using the series representation of

the function Iν and of the hyperbolic cosine and hyperbolic sine functions,

respectively. Now, choosing in (2.1) the value ν = −1/2, in view of (2.7) we

obtain the following sharp Redheffer-type inequalities (see [26, Theorem 5]

for r = π/2)

(

π2 + 4x2

π2 − 4x2

)α
−1/2

≤ coshx ≤

(

π2 + 4x2

π2 − 4x2

)β
−1/2

for all |x| < π/2,

with the best possible constants α−1/2 = 0 and β−1/2 = π2/16 (see Figure 4).

0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3
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5
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9

10

1
cosh(x)
upper bound

Figure 4. The graph of the functions 1, cosh x and
�

π2+4x2

π2
−4x2

�π2/16
on (0, π/2).

Similarly, taking ν = 1/2 in (2.1), in view of (2.8), we reobtain the

following sharp inequalities (see [26, Theorem 4] for r = π)

(

π2 + x2

π2 − x2

)α1/2

≤
sinhx

x
≤

(

π2 + x2

π2 − x2

)β1/2

for all |x| < π,

with the best possible constants α1/2 = 0 and β1/2 = π2/12 (see Figure 5).
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Figure 5. The graph of the functions 1, sinh x
x

and
�

π2+x2

π2
−x2

�π2/12
on (0, π).

Analogously, if we take ν = −1/2 in (2.2), then in view of (2.7) and (2.8)

we get the following sharp Redheffer-type inequalities (see [26, Theorem 6]

for r = π/2)

(

π2 − 4x2

π2 + 4x2

)γ
−1/2

≤
tanhx

x
≤

(

π2 − 4x2

π2 + 4x2

)α
−1/2

for all |x| < π/2,

with the best possible constants α−1/2 = 0 and γ−1/2 = π2/24 (see Figure 6).

3. Further results on Bessel and modified Bessel functions

Observe that combining (1.2) with the right hand side of (2.1) we easily

obtain that Jν(x)Iν (x) ≤ 1 for all |x| < jν,1 and ν ≥ −7/8. Moreover, combining

(1.3) with the left hand side of (2.2) we obtain that Jν(x)Iν(x) ≤ Jν+1(x)Iν+1(x)

for all |x| < jν,1 and ν ≥ −7/8. The next result shows that the above properties

hold true for all ν > −1.

Theorem 3. The following assertions are true:

a. the function x 7→ Jν(x)Iν (x) is increasing on (−jν,1, 0] and decreasing on

[0, jν,1) for all ν > −1;

b. the function ν 7→ Jν(x)Iν (x) is increasing on (−1,∞) for all |x| < jν,1 fixed;
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Figure 6. The graph of the functions
�

π2
−4x2

π2+4x2

�π2/24
, tanh x

x
and 1 on (0, π/2).

c. the following inequalities hold

0 < Jν(x)Iν (x) ≤ Jν+1(x)Iν+1(x) ≤ 1 (3.1)

for all |x| < jν,1 and ν > −1.

Proof. a. By using the differentiation formulas (1.5) and (2.3) we obtain

d

dx
[Jν(x)Iν (x)] =

x

2(ν + 1)
[Iν+1(x)Jν (x) − Iν(x)Jν+1(x)] .

Since the function x 7→ Jν(x)Iν (x) is even, it is enough to show that the above

expression is negative for all [0, jν,1) and all ν > −1. For this recall that [7] the

function ν 7→ Jν(x) is increasing on (−1,∞) for each fixed |x| < jν,1, while the

function ν 7→ Iν(x) is decreasing on (−1,∞) for all x ∈ R fixed. These properties

in particular imply that for all |x| < jν,1 and ν > −1 we have

Iν+1(x)/Iν(x) ≤ 1 ≤ Jν+1(x)/Jν(x),

and thus the proof of this part is complete. Another proof can be obtained if we

consider the factorizations (2.4) and (2.5). Namely, in view of these formulas, it

is enough to show that

∏

n≥1

(

1 +
x2

j2
ν+1,n

)(

1 −
x2

j2
ν,n

)

≤
∏

n≥1

(

1 −
x2

j2
ν+1,n

)(

1 +
x2

j2
ν,n

)

,
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which clearly holds because each terms in the above products are positive and

(

1 +
x2

j2
ν+1,n

)(

1 −
x2

j2
ν,n

)

≤

(

1 −
x2

j2
ν+1,n

)(

1 +
x2

j2
ν,n

)

holds for all ν > −1, n ∈ {1, 2, 3, . . .} and x ∈ [0, jν,1). Here we have used that

1/j2
ν+1,n − 1/j2

ν,n ≤ 1/j2
ν,n − 1/j2

ν+1,n,

that is, jν,n < jν+1,n holds for all ν > −1 and n ∈ {1, 2, 3, . . .}.

b. Recall that the function ν 7→ jν,n is increasing on (−1,∞) for each

n ∈ {1, 2, 3, . . .}. From this we deduce that the function ν 7→ log(1 − x4/j4
ν,n) is

increasing too on (−1,∞) for each n ∈ {1, 2, 3, . . .} and |x| < jν,1 fixed. Conse-

quently, by using the infinite product formulas (2.4) and (2.5), the function

ν 7→ log
[

Jν(x)Iν (x)
]

=
∑

n≥1

log

(

1 −
x4

j4
ν,n

)

is increasing on (−1,∞) for each |x| < jν,1 fixed.

c. This follows from part a and b. �

Particular cases

We note that if we choose ν ∈ {−1/2, 1/2, 3/2} in part a of Theorem 3, then

in view of (1.9), (1.10), (1.11), (2.7), (2.8) and (2.9) we obtain the following

inequalities:

0 < (cos x)(cosh x) ≤ 1 for all |x| < π/2,

0 <

(

sin x

x

)(

sinhx

x

)

≤ 1 for all |x| < π,

0 < 9

(

sin x

x3
−

cosx

x2

)(

coshx

x2
−

sinhx

x3

)

≤ 1 for all |x| < j3/2,1,

where j3/2,1 = 4.493409 in view of (1.11) is in fact the first positive zero of the

equation tanx = x. We note that the first two inequalities presented above were

communicated to the first author by Professor Matti Vuorinen. Thanks are

due to him for this information. It is also worth mentioning here that after we

have finished the first draft of this manuscript we have found the paper [21], which

the first inequality appears with interval of validity (0, π/4) and the second with
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(0, π/2). Finally, observe that using (3.1) for all |x| < π/2 the following chain of

inequalities holds true

0 < (cos x)(cosh x) ≤

(

sin x

x

)(

sinhx

x

)

≤ 9

(

sinx

x3
−

cosx

x2

)(

coshx

x2
−

sinhx

x3

)

≤ 1.
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to Professor Péter T. Nagy for his continuous support and encouragement.

The second author’s research was supported, in part, by the Natural Science

Foundation of Fujian Province of China under Grant S0850023, and, in part,

by the Foundation of Scientific Research Project of Fujian Province Education

Department of China under grant No. JA08231.

References

[1] M. Abramovitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1965.

[2] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Inequalities for quasiconfor-
mal mappings in space, Pacific J. Math. 160(1) (1993), 1–18.
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