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The stability of a general quadratic functional equation
in distributions

By YOUNG-SU LEE (Daejeon) and SOON-YEONG CHUNG (Seoul)

Abstract. Making use of the fundamental solution of the heat equation we re-

formulate and prove the stability of a general quadratic functional equation with n-

independent variables in the space of tempered distributions. Moreover, using the Dirac

sequence of regularizing functions we extend this result to the space of distribution.

1. Introduction

Functional equations can be solved by reducing them to differential equations.
This is one of the easiest methods for solving functional equations. However, we
need to assume differentiability up to a certain order of the unknown functions,
which is not required in the use of direct methods. This leads to investigations on
the regularity properties of functional equations. Járai [18] showed that, for cer-
tain general functional equations, measurability implies continuity and continuity
implies differentiability. From this point of view, there have been several works
dealing with functional equations based on the theory of distributions. Actually,
using distributional operators, it was shown that some functional equations in
distributions reduce to the classical ones when the solutions are locally integrable
functions (see [11], [13], [20], [23]). Another approach to distributional analogue
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for functional equations is via use of the regularizing functions [6], [9]. In fact,
this method gives essentially the same formulation as in [11], [13], [20], [23], but
it can be applied to stability problems of the functional equations in the space of
distributions (see [5], [7], [8]).

One of the interesting questions concerning the stability problems of func-
tional equations is as follows:

When is it true that a mapping satisfying a functional equation approx-
imately must be close to the solution of the given functional equation?

Such an idea was suggested in 1940 by Ulam [28]. The case of approximately
additive mappings was solved by Hyers [16]. In 1978, Rassias [24] generalized
Hyers’ result to the unbounded Cauchy difference. During the last decades sta-
bility problems of various functional equations have been extensively studied and
generalized by a number of authors (see [12], [14], [17], [27]). For instance, Bae

and Jun [2] investigated stability properties of the following functional equation

f

(
n∑

i=1

xi

)
+

∑

1≤i<j≤n

f(xi − xj) = n

n∑

i=1

f(xi). (1.1)

We notice that (1.1) is a generalization of the quadratic functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y). (1.2)

It is well-known [21] that if f : R → C satisfies (1.2) for all x, y ∈ R and f is
bounded on some subset of R having positive inner Lebesgue measure, then there
exists c ∈ C such that f(x) = cx2 for all x ∈ R. Moreover, a function f between
real vector spaces satisfies (1.2) if and only if there exists a unique symmetric
biadditive function B such that f(x) = B(x, x) [1].

In this paper, using the notions as in [5], [7], [8] we reformulate and prove the
stability of (1.1) in the space of generalized functions such as tempered distribu-
tions by virtue of the heat kernel. Also making use of the regularizing functions
we extend this result to the space of distributions. Recently, using the theory of
distributions Chung [5], [8] proved the stability of (1.2) in the space of distrib-
utions. As a matter of fact our approaches are based on the methods as in [5],
[8]. We reformulate the stability problem of (1.1) in the space of distributions as
follows: ∥∥∥∥u ◦A +

∑

1≤i<j≤n

u ◦Bij − n

n∑

i=1

u ◦ Pi

∥∥∥∥ ≤ ε, (1.3)

where A, Bij and Pi are the functions defined by

A(x1, . . . , xn) = x1 + · · ·+ xn,
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Bij(x1, . . . , xn) = xi − xj , 1 ≤ i < j ≤ n,

Pi(x1, . . . , xn) = xi, 1 ≤ i ≤ n.

Here ◦ denotes the pullback of generalized functions and the inequality ‖v‖ ≤ ε

in (1.3) means that |〈v, ϕ〉| ≤ ε‖ϕ‖L1 for all test functions ϕ. We refer to [15] for
pullbacks and to [3], [7], [8], [9] for more details of the space of distributions and
some related stability results.

We prove as results that every solution u in distributions of the inequality
(1.3) can be written uniquely in the form

u = q(x) + µ(x),

where q(x) is a quadratic function satisfying (1.1) and µ is a bounded measurable
function such that ‖µ‖L∞ ≤ n2+n−4

n2+n−2ε.

2. Stability in S′(Rm)

In this section we consider the stability problem of (1.1) in the space of
tempered distributions. We first introduce the space of tempered distributions.
Here we use the multi-index notations, |α| = α1 + · · ·+αm, α! = α1! . . . αm!, ζα =
ζα1
1 . . . ζαm

m and ∂α = ∂α1
1 . . . ∂αm

m , for ζ = (ζ1, . . . , ζm) ∈ Rm, α = (α1, . . . , αm) ∈
Nm

0 , where N0 is the set of non-negative integers and ∂j = ∂
∂ζj

.

Definition 2.1 ([15], [25]). We denote by S(Rm) the Schwartz space of all
infinitely differentiable functions ϕ in Rm satisfying

‖ϕ‖α,β = sup
x∈Rm

|xα∂βϕ(x)| < ∞

for all α, β ∈ Nm
0 , equipped with the topology defined by the seminorms || · ||α,β .

A linear functional u on S(Rm) is said to be tempered distribution if there exists
constant C ≥ 0 and nonnegative integer N such that

|〈u, ϕ〉| ≤ C
∑

|α|,|β|≤N

sup
x∈Rm

|xα∂βϕ|

for all ϕ ∈ S(Rm). The set of all tempered distributions is denoted by S ′(Rm).
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In order to prove the stability problem in the space S ′(Rm) we employ the
m-dimensional heat kernel

Et(x) = E(x, t) =





(4πt)−m/2 exp(−|x|2/4t), x ∈ Rm, t > 0,

0, x ∈ Rm, t ≤ 0.

Since for each t > 0, E(·, t) belongs to the Schwartz space S(Rm), the convolution

ũ(x, t) = (u ∗ E)(x, t) = 〈uy, Et(x− y)〉, x ∈ Rm, t > 0

is well defined for all u ∈ S ′(Rm), which is called the Gauss transform of u. It is
well-known that semigroup property of the heat kernel

(Et ∗ Es)(x) = Et+s(x)

holds for convolution. Semigroup property will be useful to convert inequality
(1.3) into the classical functional inequality defined on upper-half plane. We also
use the following famous result, so called heat kernel method [22], which states
as follows:
Let u ∈ S ′(Rm). Then its Gauss transform ũ is a C∞-solution of the heat equation

(∂/∂t−∆)ũ(x, t) = 0
satisfying

(i) There exist positive constants C, M and N such that

|ũ(x, t)| ≤ Ct−M (1 + |x|)N in Rm × (0, δ). (2.1)

(ii) ũ(x, t) → u as t → 0+ in the sense that for every ϕ ∈ S(Rm),

〈u, ϕ〉 = lim
t→0+

∫
ũ(x, t)ϕ(x)dx.

Conversely, every C∞-solution U(x, t) of the heat equation satisfying the growth
condition (2.1) can be uniquely expressed as U(x, t) = ũ(x, t) for some u ∈
S ′(Rm).

We are now going to consider the stability of (1.1) in the space of tempered
distributions. Since (1.1) is a generalization of (1.2), we shall first see the stability
results of (1.2). The classical stability of (1.2) was proved by Skof [26] and
generalized in [4], [10], [19] as follows:
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Theorem 2.2. Let f : G → E be a mapping from a group G to a Banach

space E satisfying

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε

for all x, y ∈ G. Then there exists a unique function q : G → E satisfying

q(x + y) + q(x− y) = 2q(x) + 2q(y)

such that

‖f(x)− q(x)‖ ≤ ε

2
for all x ∈ G.

Generalizing the above stability theorem to the space of tempered distribu-
tions Chung [5], [8] proved the following:

Theorem 2.3. Let u ∈ S ′(Rm) satisfy the inequality

‖u ◦A1 + u ◦A2 − 2u ◦ P1 − 2u ◦ P2‖ ≤ ε,

where A1(x, y) = x + y, A2(x, y) = x − y, P1(x, y) = x and P2(x, y) = y. Then

there exists a unique quadratic form

q(x) =
∑

1≤i≤j≤m

aijpipj , x = (p1, . . . , pm)

such that

‖u− q(x)‖ ≤ ε

2
.

Following the notions as in [5], [6], [7], [8], [9] we convert inequality (1.3)
into the classical functional inequality. Convolving the tensor product Et1(x1) . . .

Etn(xn) of the heat kernels in both sides of (1.3) and using the semigroup property
of the heat kernel we have

[
(u ◦A) ∗ (

Et1(x1) . . . Etn(xn)
)]

(ξ1, . . . , ξn) = ũ(ξ1 + · · ·+ ξn, t1 + · · ·+ tn),

where ũ is the Gauss transform of u. Similarly we get
[
(u ◦Bij) ∗

(
Et1(x1) . . . Etn(xn)

)]
(ξ1, . . . , ξn)= ũ(ξi− ξj , ti + tj), 1≤ i< j≤n,

[
(u ◦ Pi) ∗

(
Et1(x1) . . . Etn(xn)

)]
(ξ1, . . . , ξn) = ũ(ξi, ti), 1 ≤ i ≤ n.

Thus, inequality (1.3) is converted into the classical functional inequality
∣∣∣∣∣ũ

(
n∑

i=1

xi,

n∑

i=1

ti

)
+

∑

1≤i<j≤n

ũ(xi − xj , ti + tj)− n

n∑

i=1

ũ(xi, ti)

∣∣∣∣∣ ≤ ε

for all x1, . . . , xn ∈ Rm, t1, . . . , tn > 0.
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Lemma 2.4. Suppose that f : Rm × (0,∞) → C is a continuous function

satisfying

f

(
n∑

i=1

xi,

n∑

i=1

ti

)
+

∑

1≤i<j≤n

f(xi − xj , ti + tj) = n

n∑

i=1

f(xi, ti) (n ≥ 2) (2.2)

for all x1, . . . , xn ∈ Rm, t1, . . . , tn > 0. Then the solution f is of the form

f(x, t) =
∑

1≤i≤j≤m

aijpipj + bt, x = (p1, . . . , pm)

for some aij , b ∈ C.

Proof. Define F (x, t) := f(x, t) − f(0, t) for all x ∈ Rm, t > 0. Then F

satisfies F (0, t) = 0 for all t > 0 and

F

(
n∑

i=1

xi,

n∑

i=1

ti

)
+

∑

1≤i<j≤n

F (xi − xj , ti + tj) = n

n∑

i=1

F (xi, ti) (2.3)

for all x1, . . . , xn ∈ Rm, t1, . . . , tn > 0. Putting x1 = x and x2 = · · · = xn = 0
in (2.3) we have

F (x, t1 + · · ·+ tn) +
n∑

i=2

F (x, t1 + ti) = nF (x, t1). (2.4)

Letting t3 = · · · = tn → 0 in (2.4) we get

F (x, t1 + t2) = F (x, t1)

for all x ∈ Rm, t1, t2 > 0. This shows that F (x, t) is independent of t > 0 and we
verify that q(x) := F (x, 1) = F (x, t) satisfies (1.1). Putting x3 = . . . , xn = 0 in
(1.1) we see that q(x) satisfies (1.2). Since q is a continuous function in Rm, we
may write

q(x) =
∑

1≤i≤j≤m

aijpipj , x = (p1, . . . , pm)

for some aij ∈ C.
On the other hand, setting x1 = · · · = xn = 0 in (2.2) we get

f

(
0,

n∑

i=1

ti

)
+

∑

1≤i<j≤n

f(0, ti + tj) = n

n∑

i=1

f(0, ti) (2.5)
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for all t1, . . . , tn > 0. By virtue of (2.5) we see that c := limt→0+ f(0, t) exists.
Letting t1 = · · · = tn → 0 in (2.5) we get c = 0. Taking t3 = · · · = tn → 0 in
(2.5) we obtain

f(0, t1 + t2) = f(0, t1) + f(0, t2)

for all t1, t2 > 0. Given the continuity, we must have f(0, t) = bt for some b ∈ C.
Therefore the solution of (2.2) is of the form

f(x, t) = F (x, t) + f(0, t) = q(x) + bt.

This completes the proof. ¤

As a consequence of the above lemma we state and prove the stability the-
orem of (1.1) in the space of tempered distributions. This is a generalization of
Theorem 2.3.

Theorem 2.5. Suppose that u ∈ S ′(Rm) satisfies the inequality

‖u ◦A +
∑

1≤i<j≤n

u ◦Bij − n

n∑

i=1

u ◦ Pi‖ ≤ ε (n ≥ 2). (2.6)

Then there exists a unique quadratic form

q(x) =
∑

1≤i≤j≤m

aijpipj , x = (p1, . . . , pm)

such that

‖u− q(x)‖ ≤ n2 + n− 4
n2 + n− 2

ε.

Proof. Convoluting with the tensor product Et1(x1) . . . Etn(xn) of the heat
kernels in both sides of (2.6) we have the classical functional inequality

∣∣∣∣∣ũ
(

n∑

i=1

xi,

n∑

i=1

ti

)
+

∑

1≤i<j≤n

ũ(xi − xj , ti + tj)− n

n∑

i=1

ũ(xi, ti)

∣∣∣∣∣ ≤ ε (2.7)

for all x1, . . . , xn ∈ Rm, t1, . . . , tn > 0. Putting x1 = · · · = xn = 0 in (2.7) yields
∣∣∣∣∣ũ

(
0,

n∑

i=1

ti

)
+

∑

1≤i<j≤n

ũ(0, ti + tj)− n

n∑

i=1

ũ(0, ti)

∣∣∣∣∣ ≤ ε (2.8)

for all t1, . . . , tn > 0. In view of (2.8) it is easy to see that

c := lim sup
s→0+

ũ(0, s)
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exists. Letting t1 = · · · = tn → 0+ in (2.8) we have |c| ≤ 2ε
n2+n−2 . Setting

t1 = t2 = t, t3 = · · · = tn → 0+ in (2.8), and then dividing the result by 4 we
obtain ∣∣2−1ũ(0, 2t)− ũ(0, t)

∣∣ ≤ n2 + n− 4
2(n2 + n− 2)

ε.

Using the iterative methods gives

∣∣2−kũ(0, 2kt)− ũ(0, t)
∣∣ ≤ n2 + n− 4

n2 + n− 2
ε

for all k ∈ N, t > 0. By virtue of this inequality h(t) := limk→∞ 2−kũ(0, 2kt)
converges uniformly and is the unique function satisfying

h(t + s) = h(t) + h(s), (2.9)

|ũ(0, t)− h(t)| ≤ n2 + n− 4
n2 + n− 2

ε (2.10)

for all t, s > 0. It follows from (2.9) and (2.10) that

∣∣∣∣∣
k∑

j=1

4−j ũ(0, 2jt)− (1− 2−k)h(t)

∣∣∣∣∣ ≤
n2 + n− 4

3(n2 + n− 2)
ε. (2.11)

On the other hand, putting x1 = x2 = x, x3 = · · · = xn = 0 and letting
t1 = t2 = t, t3 = . . . tn → 0+ in (2.8) we have

|ũ(2x, 2t) + ũ(0, 2t)− 4ũ(x, t)| ≤ 2(n2 + n− 4)
n2 + n− 2

ε.

Using the induction arguments yields

∣∣∣∣ũ(x, t)− 4−kũ(2kx, 2kt)−
k∑

j=1

4−j ũ(0, 2jt)
∣∣∣∣ ≤

2(n2 + n− 4)
3(n2 + n− 2)

ε. (2.12)

Plugging (2.11) into (2.12) and letting F (x, t) := ũ(x, t)− h(t) we obtain

|F (x, t)− 4−kF (2kx, 2kt)| ≤ n2 + n− 4
n2 + n− 2

ε. (2.13)

Now we verify that
g(x, t) := lim

k→∞
4−kF (2kx, 2kt)
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is the unique function satisfying

g

(
n∑

i=1

xi,

n∑

i=1

ti

)
+

∑

1≤i<j≤n

g(xi − xj , ti + tj) = n

n∑

i=1

g(xi, ti) (2.14)

such that

|F (x, t)− g(x, t)| ≤ n2 + n− 4
n2 + n− 2

ε. (2.15)

Let us define the function G(x, t) := g(x, t) + h(t). Then, G is a continuous
function satisfying (2.14). By Lemma 2.4 the function G has the form

G(x, t) =
∑

1≤i≤j≤m

aijpipj + bt, x = (p1, . . . , pn) ∈ Rm

for some aij , b ∈ C. Thus, it follows from (2.15) that

|ũ(x, t)− q(x)− bt| ≤ n2 + n− 4
n2 + n− 2

ε. (2.16)

Letting t → 0+ in (2.16), finally we have

‖u− q(x)‖ ≤ n2 + n− 4
n2 + n− 2

ε.

This completes the proof. ¤

Remark 2.6. The above norm inequality ‖u− q(x)‖ ≤ n2+n−4
n2+n−2ε implies that

u − q(x) belongs to (L1)′ = L∞. Thus all the solutions u of the inequality (2.6)
in S ′(Rm) can be rewritten uniquely in the form

u = q(x) + µ(x),

where µ is a bounded measurable function such that ‖µ‖L∞ ≤ n2+n−4
n2+n−2ε.

3. Stability in D′(Rm)

In this section we shall extend the previous result to the space of distribu-
tions. Recall that a distribution u is a linear functional on C∞c (Rm) of infinitely
differentiable functions on Rm with compact supports such that for every compact
set K ⊂ Rm there exist constants C > 0 and N ∈ N0 satisfying

|〈u, ϕ〉| ≤ C
∑

|α|≤N

sup |∂αϕ|
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for all ϕ ∈ C∞c (Rm) with supports contained in K. The set of all distributions
is denoted by D′(Rm). It is well-known that the following topological inclusions
hold:

C∞c (Rm) ↪→ S(Rm), S ′(Rm) ↪→ D′(Rm).

As we see in [5], [7], by virtue of the semigroup property of the heat kernel, the
inequality (1.3) can be controlled easily in the space S ′(Rm). But we can not
employ the heat kernel in the space D′(Rm). Instead of the heat kernel, we use
the function ψt(x) := t−mψ(x

t ), x ∈ Rm, t > 0, where ψ(x) ∈ C∞c (Rm) such that

ψ(x) ≥ 0, supp ψ(x) ⊂ {x ∈ Rm : |x| ≤ 1},
∫

ψ(x)dx = 1.

For example, let

ψ(x) =





A exp(−(1− |x|2)−1), |x| < 1

0, |x| ≥ 1,

where

A =

(∫

|x|<1

exp(−(1− |x|2)−1)dx

)−1

,

then it is easy to see ψ(x) is an infinitely differentiable function with support
{x : |x| ≤ 1}. Now we employ the function ψt(x) := t−mψ(x/t), t > 0. If
u ∈ D′(Rm), then for each t > 0, (u ∗ ψt)(x) = 〈uy, ψt(x − y)〉 is a smooth
function in Rm and (u ∗ ψt)(x) → u as t → 0+ in the sense of distributions, that
is, for every ϕ ∈ C∞c (Rm)

〈u, ϕ〉 = lim
t→0+

∫
(u ∗ ψt)(x)ϕ(x)dx.

Making use of the regularizing functions Chung [8] extended Theorem 2.3 to the
space D′(Rm). Similarly, we generalize Theorem 2.5 to the space of distributions.
This is a main result of this paper.

Theorem 3.1. Let u ∈ D′(Rm) satisfy the inequality

‖u ◦A +
∑

1≤i<j≤n

u ◦Bij − n

n∑

i=1

u ◦ Pi‖ ≤ ε (n ≥ 2). (3.1)

Then there exists a unique quadratic form

q(x) =
∑

1≤i≤j≤m

aijpipj , x = (p1, . . . , pm)
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such that

‖u− q(x)‖ ≤ n2 + n− 4
n2 + n− 2

ε.

Proof. In view of Theorem 2.5, it suffices to show that every distribution
satisfying (3.1) belongs to the space S ′(Rm). Convoluting with ψt1(x1) . . . ψtn(xn)
in both sides of (3.1) we have

∣∣∣(u ∗ ψt1 ∗ · · · ∗ ψtn
)(x1 + · · ·+ xn)

+
∑

1≤i<j≤n

(u ∗ ψti
∗ ψtj

)(xi − xj)− n

n∑

i=1

(u ∗ ψti)(xi)
∣∣∣ ≤ ε (3.2)

for all x1, . . . , xn ∈ Rm, t1, . . . , tn > 0. By virtue of (3.2) it is easy to see that for
each fixed x,

f(x) := lim sup
s→0+

(u ∗ ψs)(x)

exists. Letting x1 = · · · = xn = 0 and t1 = · · · = tn = s → 0+ so that
(u ∗ ψs)(0) → f(0) in (3.2) we get

|f(0)| ≤ 2ε

n2 + n− 2
.

Setting x1 = x, x2 = y, x3 = · · · = xn = 0 and t3 = · · · = tn = s → 0+ so that
(u ∗ ψs)(0) → f(0) in (3.2) we obtain

|(u ∗ ψt1 ∗ ψt2)(x + y) + (u ∗ ψt1 ∗ ψt2)(x− y)

− 2(u ∗ ψt1)(x)− 2(u ∗ ψt2)(y)− n2 + n− 6
2

f(0)| ≤ ε.

Since |f(0)| ≤ 2ε
n2+n−2 , the above inequality can be rewritten as

|(u ∗ ψt1 ∗ ψt2)(x + y) + (u ∗ ψt1 ∗ ψt2)(x− y)

− 2(u ∗ ψt1)(x)− 2(u ∗ ψt2)(y)| ≤ 2(n2 + n− 4)
n2 + n− 2

ε. (3.3)

Putting y = 0 in (3.3) and dividing the result by 2 we have

|(u ∗ ψt1 ∗ ψt2)(x)− (u ∗ ψt1)(x)− (u ∗ ψt2)(0)| ≤ n2 + n− 4
n2 + n− 2

ε. (3.4)
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Letting t1 → 0+ so that (u ∗ ψt1)(x) → f(x) in (3.4) we get

|(u ∗ ψt2)(x)− f(x)− (u ∗ ψt2)(0)| ≤ n2 + n− 4
n2 + n− 2

ε. (3.5)

From the inequality (3.3), (3.4) and (3.5) and the triangle inequality we obtain

|f(x + y) + f(x− y)− 2f(x)− 2f(y)| ≤ 10(n2 + n− 4)
n2 + n− 2

ε

for all x, y ∈ Rm. According to the result as in [26] there exists a unique quadratic
function q : Rm → C satisfying

q(x + y) + q(x− y) = 2q(x) + 2q(y)
such that

|f(x)− q(x)| ≤ 5(n2 + n− 4)
n2 + n− 2

ε (3.6)

for all x ∈ Rm. It follows from (3.5) and (3.6) that

|(u ∗ ψt2)(x)− q(x)− (u ∗ ψt2)(0)| ≤ 6(n2 + n− 4)
n2 + n− 2

ε. (3.7)

Letting t2 → 0+ so that (u ∗ ψt2)(0) → f(0) in (3.7) we have

||u− q(x)|| ≤ 2(3n2 + 3n− 11)
n2 + n− 2

ε. (3.8)

By virtue of the inequality (3.8) h(x) := u − q(x) belongs to (L1)′ = L∞. Thus
we conclude that u = q(x) + h(x) ∈ S ′(Rm). This completes the proof. ¤

As an immediate consequence of Theorem 3.1, we have the following corol-
lary [8].

Corollary 3.2. Let u ∈ D′(Rm) satisfy the inequality

‖u ◦A1 + u ◦A2 − 2u ◦ P1 − 2u ◦ P2‖ ≤ ε,

where A1(x, y) = x + y, A2(x, y) = x − y, P1(x, y) = x and P2(x, y) = y. Then

there exists a unique quadratic form

q(x) =
∑

1≤i≤j≤m

aijpipj , x = (p1, . . . , pm)

such that

‖u− q(x)‖ ≤ ε

2
.
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Timişoara Lucrăr. Sem. Mat. Fiz., 1984, 62–66.

[24] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.
Math. Soc. 72 (1978), 297–300.
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