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Spectral subspaces on hypergroup algebras

By ALI REZA MEDGHALCHI (Tehran) and S. M. TABATABAIE (Tehran)

Abstract. In this paper we develop the concepts of Arveson spectrum and spectral

subspaces on hypergroups and extend some of their basic properties to commutative

hypergroups.

1. Introduction and notation

Let K be a commutative locally compact hypergroup. We denote by M(K)
the space of all bounded regular complex Borel measures on K, by M+(K) the
subset of positive measures in M(K), by E◦ the interior of E ⊆ K, and by δx the
Dirac measure at the point x. Hypergroups were introduced in a series of papers
by R. I. Jewett [9], C. F. Dunkl [6], and R. Spector [14] in 70’s. They are
in fact extensions of topological groups. Roughly speaking, a hypergroup is a
locally compact space which has enough structure so that a convolution on the
space of finite regular Borel measures can be defined. Therefore, the extension
of Fourier analysis on hypergroups is made with more difficulties and sometimes
with different proofs to that of groups. Examples include locally compact groups,
double-coset hypergroups, GH hypergroups, polynomial hypergroups, etc. We
refer to [2] for more examples. In this paper, we develop the notion of Arveson
spectrum and extend spectral subspaces to hypergroups. In [12] we have used this
notion to give an extension of the spectral mapping theorem.

The conjugate space of a Banach space Y is denoted by Y ∗. If a Banach
space X is the conjugate space of a Banach space Y , we shall say that Y is the
predual of X, and write Y = X∗.
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A C∗-algebra M is called W ∗-algebra if for a Banach algebra M∗, (M∗)∗=M .
Any W ∗-algebra is unitary (with unit 1M ). The famous examples of W ∗-algebras
are von Neumann algebras. We can consider σ(M,M∗) topology on M [11].
In this paper M is always a W ∗-algebra. We denote by Bσ(M) the set of all
(σ(M,M∗), σ(M, M∗))- continuous operators on M .

Let σ : M(K) → Bσ(M) be a norm-decreasing algebra-homomorphism. For
any t ∈ K we denote σt = σ(δt). Suppose that σ has the following properties,

(1) For any t ∈ K, σt : M → M is an ∗-automorphism.

(2) For every x ∈ M and ρ ∈ M∗, the function t 7→ 〈σt(x), ρ〉 is continuous.

(3) σe = IM , where e is the identity of K and IM is the identity mapping on M .

For any µ ∈ M(K) we have

〈σ(µ)(x), ρ〉 =
∫

K

〈σt(x), ρ〉 dµ(t),

where x ∈ M and ρ ∈ M∗. A proof of this formula is given in Section 2.
Spectral subspaces were introduced by R. Godement [7], which may be

viewed as an attempt to extend the Stone theorem. A systematic study of spectral
subspaces and their applications to dynamic systems was presented by W. Arve-

son [1]. In this paper, we define the Arveson spectrum and spectral subspaces
for hypergroups and study their properties. The hypergroups we study are com-
mutative, strong, and we also assume that Xb(K) = K̂. We give some examples
of this type in Section 2. The proofs of some results are completely different
from the group case. For instance, the proof of Lemma 3.4 in group case is
based on (fg)x = fxgx, while this is not true in general for hypergroups. The
Lemma 3.4 helps us to extend some significant results of Arveson spectrum, from
A. Connes [4], to hypergroups. In Section 2, we will first give definition and
some basic properties of commutative locally compact hypergroups.

2. Some basic properties of hypergroups

First we recall the definition and basic properties of a hypergroup. The main
references are [2] and [9].

Definition 2.1. Let K be a locally compact Hausdorff space. The space K is
a hypergroup if there exists a binary mapping (x, y) 7→ δx ∗ δy from K ×K into
M+(K) satisfying the following conditions,
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(1) The mapping (δx, δy) 7→ δx ∗ δy extends to a bilinear associative operator ∗
from M(K)×M(K) into M(K) such that

∫

K

fd(µ ∗ ν) =
∫

K

∫

K

∫

K

fd(δx ∗ δy)dµ(x)dν(y)

for all continuous functions f on K vanishing at infinity.

(2) For each x, y ∈ K the measure δx ∗ δy is a probability measure with compact
support.

(3) The mapping (µ, ν) 7→ µ ∗ ν is continuous from M+(K) × M+(K) into
M+(K); the topology on M+(K) being the cone topology.

(4) There exists an e ∈ K such that δe ∗ δx = δx = δx ∗ δe for all x ∈ K.

(5) There exists a homeomorphism involution x 7→ x− from K onto K such that,
for all x, y ∈ K, we have (δx ∗ δy)− = δy− ∗ δx− where for µ ∈ M(K), µ− is
defined by

∫
K

f(t)dµ−(t) =
∫

K
f(t−)dµ(t), and also, e ∈ supp(δx ∗ δy) if and

only if y = x−, where supp(δx ∗ δy) is the support of the measure δx ∗ δy.

(6) The mapping (x, y) 7→ supp(δx ∗ δy) from K × K into the space C(K) of
compact subsets of K is continuous, where C(K) is given the topology whose
subbasis is given by all CU,V = {A ∈ C(K) : A ∩ U 6= ∅ and A ⊆ V }, where
U , V are open subsets of K.

Note that δx ∗ δy is not necessarily a Dirac measure. The set Z(K) :=
{x ∈ K : for all y ∈ K, supp(δx ∗ δy) is a singleton} is called the center of K.
A hypergroup K is commutative if δx ∗ δy = δy ∗ δx for all x, y in K. Each
commutative hypergroup K carries a Haar measure m such that δx ∗m = m for
all x ∈ K, as shown by Spector [15]. Let f , g be Borel functions on K and
µ ∈ M(K). For any x, y ∈ K we denote fx(y) = f(x ∗ y) :=

∫
K

fd(δx ∗ δy). Also
we define

(µ ∗ f)(x) :=
∫

K

f(y− ∗ x) dµ(y) and (f ∗ g)(x) :=
∫

K

f(x ∗ y)g(y−) dm(y),

where x∈K. If x, y ∈K and A,B⊆K we denote A−= {x−: x ∈ A}, {x} ∗ {y} =
supp(δx ∗ δy), and A ∗B =

⋃
x∈A,y∈B{x} ∗ {y}.

A complex continuous function ξ on K is said to be multiplicative if ξ(x∗y) =
ξ(x)ξ(y) holds for all x, y ∈ K. The space of all multiplicative functions on K is
denoted by Xb(K). A nonzero multiplicative function ξ on K is called a character
if ξ(x−) = ξ(x) for all x in K. The dual K̂ of K is the locally compact Hausdorff
space of all characters with the topology of uniform convergence on compacta. In
general K̂ is not necessarily a hypergroup. A hypergroup K is called strong if its
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dual K̂ is also a hypergroup with complex conjugation as involution, pointwise
product as convolution, that is

η(x)χ(x) =
∫

K̂

ξ(x) dδη ∗ δχ(ξ)

for all η, χ ∈ K̂ and x ∈ K, and have the constant function 1 as the identity
element. By [13], ξ ∈ Z(K̂) if and only if |ξ| = 1.

We denote

Lp(K) = Lp(K, m) and Lp(K̂) = Lp(K̂, π),

where π is the Plancherel measure on K̂ associated with m. In despite of the
group case, the structure space ∆(L1(K)) of Banach algebra L1(K) does not
necessarily equal to K̂ and we only have ∆(L1(K)) = Xb(K), while K̂ ⊆ Xb(K).
Throughout this paper, we assume that K is a commutative strong hypergroup
(i.e. K̂ is also a hypergroup) and K̂ = Xb(K) (we refer to these conditions
by notation (℘)). Observe that any locally compact abelian group has these
properties. Also, if G is a locally compact abelian group and H is a compact
subgroup of Aut(G), then the space GH containing all H-orbits is a commutative
hypergroup satisfying (℘). In fact, (GH )̂ ∼= (Ĝ)H . We refer to [13] for more
details. As another example, let G be a group such that G/Z is compact, where
Z = {x ∈ G : for any y ∈ G, xy = yx}. If K is the hypergroup containing all
conjugacy classes of G, then K and its dual K̂ satisfy (℘) [2]. On the contrary,
an interesting example of Naimark given in [9] does not satisfy conditions (℘).

For any f ∈ L1(K) and µ ∈ M(K), the Fourier–Stieltjes transform µ̂ of µ

and the Fourier transform f̂ of f are defined by

µ̂(ξ) =
∫

K

ξ(t)dµ(t) and f̂(ξ) =
∫

K

ξ(t)f(t)dm(t),

where ξ ∈ K̂. For any f, g ∈ L2(K), we have f̂ , ĝ ∈ L2(K̂) and f̂ ∗ ĝ = (fg)̂ [2].
Let M be a W ∗-algebra with predual M∗. Let x ∈ M and ρ ∈ M∗. Ob-

viously for any measure υ ∈ M(K) with finite support, we have 〈σ(υ)(x), ρ〉 =∫
K
〈σt(x), ρ〉 dυ(t). Let µ ∈ M(K). Since the set E containing all measures in

M(K) that have finite support is dense in M(K), there exists a net (υβ) ⊆ E

such that υβ −→ µ in M(K). Then by ([9], 2.2C) we have
∫

K
f dυβ −→

∫
K

f dµ,
where f(t) = 〈σt(x), ρ〉 (t ∈ K). On the other hand by continuity of σ,

∫
K

f dυβ =
〈σ(υβ)(x), ρ〉 −→ 〈σ(µ)(x), ρ〉. Then for any µ ∈ M(K) we have

〈σ(µ)(x), ρ〉 =
∫

K

〈σt(x), ρ〉 dµ(t),

where x ∈ M and ρ ∈ M∗.
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3. Arveson spectrum on hypergroups

If A is a commutative Banach algebra and E ⊆ A, the hull of E is defined by
hull(E) := {ϕ ∈ ∆(A) : for any a ∈ E, â(ϕ) = 0}, where ∆(A) is the structure
space of A.

Definition 3.1. Let σ : M(K) → Bσ(M) be the function introduced in Sec-
tion 1.

(i) The Arveson spectrum of σ is defined by sp σ := hull({f ∈L1(K) : σ(f)= 0}).
Trivially sp σ =

⋂{f̂−1(0) : f ∈ L1(K) and σ(f) = 0}.
Since for any f ∈ L1(K), f̂ ∈ C0(K̂), so sp σ is a closed subset of K̂. Also
for any ρ ∈ M∗ and f ∈ L1(K),

〈σ(f)(1M ), ρ〉 =
∫

K

〈σt(1M ), ρ〉 f(t) dm(t) = 〈f̂(1)1M , ρ〉.

Therefore for each f ∈ L1(K), σ(f)(1M ) = f̂(1)1M , and so if σ(f) = 0 then
f̂(1) = 0. In other words 1 ∈ spσ.

(ii) Let x ∈ M . We define spσ(x) := hull({f ∈ L1(K) : σ(f)(x) = 0}). Then
spσ(x) is a closed subset of K̂.

(iii) Let E be a closed subset of K̂. We define the associated spectral subspace
by M(σ,E) := {x ∈ M : spσ(x) ⊆ E}.
The following lemma is very useful in the sequel.

Lemma 3.2. Let ξ ∈ K̂ and U be a closed neighborhood of ξ. Then there

exists a function k ∈ L1(K) such that 0 ≤ k̂ ≤ 1, k̂(ξ) = 1 and supp k̂ ⊆ U .

Proof. We consider a symmetric neighborhood V of e such that {ξ} ∗ V ∗
V ⊆U and 0 < π(V ) < ∞ (this neighborhood exists by Definition 2.1(6)). Since
ˆ : L2(K) → L2(K̂) is surjective [2] and χV , χ{ξ}∗V ∈ L2(K̂), then there are
g, h ∈ L2(K) such that ĝ = χ{ξ}∗V and ĥ = χV . Put k := gh

π(V ) . Then k ∈ L1(K)

and k̂ = 1
π(V ) (gh)̂ = 1

π(V ) ĝ ∗ ĥ ([2], 2.2.23). So

k̂(η) =
1

π(V )
ĝ ∗ ĥ(η) =

1
π(V )

∫

K

χV (γ)χ{ξ}∗V (η ∗ γ−) dπ(γ)

=
1

π(V )

∫

V

∫

{ξ}∗V
dδη ∗ δγ− dπ(γ).

If k̂(η) 6= 0, then there are characters γ, λ such that γ ∈ V and λ ∈ {ξ}∗V ∩{η}∗
{γ−}. Therefore by ([9], 4.1B), η− ∈ {λ−}∗{γ−} ⊆ {ξ−}∗V ∗{γ−} ⊆ {ξ−}∗V ∗V,

and so η ∈ {ξ} ∗ V ∗ V ⊆ U . This implies that supp(k̂) ⊆ U . Clearly we have
k̂(ξ) = 1. ¤
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Theorem 3.3. (i) spσ(x) = ∅ if and only if x = 0.

(ii) For any closed subset E ⊆ K̂, 0 ∈ M(σ,E).

(iii) spσ(x∗) = spσ(x)− (= {ξ̄ : ξ ∈ spσ(x)}).
(iv) If t ∈ K is such that for any ξ ∈ K̂, ξ(t) 6= 0, then for any x ∈ M , spσ(x) ⊆

spσ(σt(x)).

(v) For any f ∈ L1(K) and x ∈ M , spσ(σ(f)(x)) ⊆ spσ(x)
⋂

supp(f̂).

(vi) Let E be a closed subset of K̂. Then x ∈ M(σ,E) if and only if for any

f ∈ L1(K) with f̂ ≡ 0 on a neighborhood of E, σ(f)(x) = 0.

(vii) If t ∈ K is such that for each ξ ∈ K̂, ξ(t) 6= 0, then for any closed subset

E ⊆ K̂, M(σ,E) ⊆ σt(M(σ,E)).

(viii) If x ∈ M and µ ∈ M(K) and µ̂ ≡ 0 on a neighborhood of spσ(x) then

σ(µ)(x) = 0. Also if f ∈ L1(K) and f̂ ≡ 1 on a neighborhood of spσ(x) then

σ(f)(x) = x.

(ix) spσ = ∪x∈M spσ(x).

Proof. (i) Let ξ ∈ K̂. There exists an h ∈ Cc(K̂) such that ξ ∈ supp(h).
Since the set {f̂ : f ∈Cc(K)} is a dense self-adjoint subalgebra of C0(K̂), there
is a function f ∈ Cc(K) such that |f̂ | > 0 on supp(h). Then f̂(ξ) 6= 0. Ob-
viously σ(f)(0) = 0. This implies that ξ /∈ spσ(0), i.e. spσ(0) = ∅. Conversely
let spσ(x) = ∅. Then hull({f ∈ L1(K) : σ(f)(x) = 0}) = ∅. By abstract
Tauberian Theorem [8], ∅ is a spectral synthesis subset of K̂. Then L1(K) =
{f ∈ L1(K) : σ(f)(x) = 0}. So for any f ∈ L1(K) and ρ ∈ M∗, 0 = 〈σ(f)(x), ρ〉 =∫

K
〈σt(x), ρ〉 f(t) dm(t). But the mapping t 7→ 〈σt(x), ρ〉 is bounded and contin-

uous (|〈σt(x), ρ〉| ≤ ‖ρ‖ ‖σt(x)‖ = ‖ρ‖ ‖x‖). So for any t ∈ K and ρ ∈ M∗,
〈σt(x), ρ〉 = 0, i.e. x = 0.

(ii) is obvious by (i).

(iii) First we note that σ(f)(x)∗ = σ(f̄)(x∗), because by ([5], Proposition 1.12
page 240) for any ρ ∈ M∗,

〈σ(f̄)(x∗), ρ〉 =
∫

K

〈σt(x∗), ρ〉 f̄(t) dm(t) =
∫

K

〈σt(x)∗, ρ〉 f̄(t) dm(t)

=
∫

K

〈σt(x), ρ〉 f̄(t) dm(t) = 〈σ(f)(x), ρ〉 = 〈σ(f)(x)∗, ρ〉.

Now by some calculations one can conclude that

spσ(x∗) = {ξ ∈ K̂ : for any f ∈ L1(K), σ(f̄)(x)∗ = 0 implies f̂(ξ) = 0}
= {ξ ∈ K̂ : for any f ∈ L1(K), σ(f)(x) = 0 implies f̂(ξ̄) = 0} = spσ(x)−.
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(iv) For any t ∈ K and ξ ∈ K̂ we have f̂t(ξ) = f̂(ξ)ξ(t) because

f̂t(ξ) =
∫

K

ξ(s)ft(s) dm(s) =
∫

K

ξ(s)f(t ∗ s) dm(s) =
∫

K

ξ(t− ∗ s)f(s) dm(s)

=
∫

K

ξ(t)ξ(s)f(s) dm(s) = f̂(ξ)ξ(t).

Since ξ ∈ K̂ implies ξ(t) 6= 0, we have f̂(ξ) = 0 if and only if f̂t(ξ) = 0. Now we
show that σ(f)(σt(x)) = σ(δt∗f)(x). For x ∈ K and ρ ∈ M∗ put h := 〈σ(.)(x), ρ〉.
Then

〈σ(f)(σt(x)), ρ〉 =
∫

K

〈σs(σt(x)), ρ〉f(s) dm(s) =
∫

K

〈σ(s ∗ t)(x), ρ〉f(s) dm(s)

=
∫

K

h(s ∗ t)f(s) dm(s) =
∫

K

h(s)f(s ∗ t−) dm(s)

=
∫

K

〈σ(s)(x), ρ〉δt ∗ f(s) dm(s) = 〈σ(δt ∗ f)(x), ρ〉.

Therefore,

spσ(σt(x)) = {ξ ∈ K̂ : for any f ∈ L1(K), σ(δt ∗f)(x) = 0 implies f̂(ξ)ξ(t−) = 0}
and then it clearly shows that spσ(x) ⊆ spσ(σt(x)).

(v) Let ξ ∈ K̂\ supp(f̂). Since supp(f̂) is closed then by the regularity of
L1(K) [3], there exists a function g ∈ L1(K) such that ĝ(ξ) = 1 and ĝ ≡ 0 on
supp(f̂). Then we have (g ∗ f )̂ = ĝf̂ = 0 and so that by injectivity of the Fourier
transform, g ∗ f = 0. So for any ρ ∈ M∗,

〈σ(g)(σ(f)(x)), ρ〉 = 〈σ(g ∗ f)(x), ρ〉 =
∫

K

〈σt(x), ρ〉 g ∗ f(t) dm(t) = 0.

Then σ(g)(σ(f)(x)) = 0, while ĝ(ξ) 6= 0. So ξ /∈ spσ(σ(f)(x)). Therefore
spσ(σ(f)(x)) ⊆ supp(f̂). On the other hand if σ(g)(x) = 0 then σ(g)(σ(f)(x)) =
σ(g ∗ f)(x) = σ(f ∗ g)(x) = σ(f)(σ(g)(x)) = 0 and so spσ(σ(f)(x)) ⊆ spσ(x).

(vi) Suppose that f̂ ≡ 0 on a neighborhood of E and x ∈ M(σ,E) i.e.
spσ(x)⊆E. Then f̂ vanishes on a neighborhood of hull({g ∈L1(K) : σ(g)(x)= 0}).
Now a well-known result of Shilov states that an ideal I in a regular Banach alge-
bra A contains all elements a in A that â vanishes on a neighborhood of hull(I) in
∆(A) [10]. Then f ∈ {g ∈ L1(K) : σ(g)(x) = 0}, that is σ(f)(x) = 0. Conversely
suppose that for any f ∈ L1(K) with f ≡ 0 on a neighborhood of E we have
σ(f)(x) = 0. If x /∈ M(σ,E) then we can consider an element ξ ∈ spσ(x)\E and
a closed neighborhood U of ξ such that U

⋂
E = ∅. By Lemma 3.2 there exists

a function k ∈ L1(K) such that k̂(ξ) = 1 and supp(k̂) ⊆ U . Then k̂ ≡ 0 on the
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neighborhood K̂\U of E, and so that σ(k)(x) = 0. Since ξ ∈ spσ(x), k̂(ξ) = 0, a
contradiction. So x ∈ M(σ,E).

(vii) Let x ∈ σ−1
t (M(σ,E)). Then we have spσ(σt(x)) ⊆ E. By (iv),

spσ(x) ⊆ E and so x ∈ M(σ,E). Since σt is bijective, (vii) holds.

(viii) Suppose that µ̂ ≡ 0 on a neighborhood of spσ(x). For any f ∈ L1(K)
we show that σ(f)(σ(µ)(x)) = 0 and this proves the first claim in (viii). For any
f ∈ L1(K), f∗µ ∈ L1(K) and (f∗µ)̂ = f̂ µ̂ = 0 on a neighborhood of spσ(x). So by
the regularity of L1(K) (as in the proof of (vi)), σ(f)(σ(µ)(x)) = σ(f ∗µ)(x) = 0.
Now let f ∈ L1(K) and f̂ ≡ 1 on a neighborhood of spσ(x). Since δ̂e(ξ) = ξ(e) = 1
(ξ ∈ K̂), then (f − δe)̂ ≡ 0 on a neighborhood of spσ(x). So σ(f − δe)(x) = 0 and
therefore σ(f)(x) = σ(δe)(x) = IM (x) = x.

(ix) It is clear that ∪x∈M spσ(x) ⊆ spσ. Conversely if ξ /∈ ∪x∈M spσ(x) then
we choose a closed neighborhood U of ξ such that U ∩ (∪x∈M spσ(x))= ∅. By
Lemma 3.2 there exists a function k ∈ L1(K) such that k̂(ξ) = 1 and supp(k̂) ⊆ U .
Then k̂ ≡ 0 on a neighborhood of ∪x∈M spσ(x). So for any x ∈ M , k̂ ≡ 0
on a neighborhood of spσ(x). On the other hand since always we have x ∈
M(σ, spσ(x)), by (vi) for any x ∈ M we have σ(k)(x) = 0, i.e. σ(k) = 0. Now
because of k̂(ξ) = 1, ξ /∈ spσ. ¤

Lemma 3.4. Let ε > 0, ξ ∈ Z(K̂), f ∈ L1(K) and f̂(ξ) = 0. Then there

exists a function k ∈ L1(K) such that ‖f ∗ k‖1 < ε and k̂ ≡ 1 on a neighborhood

of ξ.

Proof. We consider positive arbitrary numbers ε1, ε2, ε3. Since f ∈ L1(K),
there exists a compact set E ⊆ K such that

∫
K\E |f(s)| dm(s) < ε1. Then the set

W = {η ∈ K̂ : |η(x)−ξ(x)| < ε2, for any x ∈ E−} is an open neighborhood of ξ in
K̂. Since K̂ is Hausdorff and locally compact, there are compact neighborhoods
U1 and V of ξ such that V ⊆ U◦

1 ⊆ U1 ⊆ W . We consider a symmetric open
neighborhood U of 1 in K̂ such that V ∗ U ∗ U ⊆ U◦

1 , 0 < π(U) < ∞, 0 <

π(V ∗ U) < ∞, and U ⊆ {η ∈ K̂ : |η(x) − 1| < ε3, for any x ∈ E−}. Since
ˆ : L2(K) → L2(K̂) is bijective [2], there are g, h ∈ L2(K) such that ĝ = χV ∗U ,
ĥ = χU . If k := gh

π(U) , similar to the proof of Lemma 3.2, k̂ ≡ 1 on V , and also

‖k‖1 ≤ ‖g‖2 ‖h‖2 π(U)−1 = π(V ∗ U)
1
2 π(U)

−1
2 . For any x ∈ K we have

(k ∗ f)(x) =
∫

K

f(y)k(x ∗ y−) dm(y) =
∫

K

f(y)k(x ∗ y−) dm(y)− k(x)f̂(ξ)

=
∫

K

f(y)[k(x ∗ y−)− ξ(y)k(x)] dm(y).
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So,

‖k ∗ f‖1 ≤
∫

K

∫

K

|f(y)| |k(x ∗ y−)− ξ(y)k(x)| dm(y) dm(x)

=
∫

K

|f(y)|
∫

K

|k(x ∗ y−)− ξ(y)k(x)| dm(x) dm(y)

=
∫

E

|f(y)| ‖ky− − ξ(y)k‖1 dm(y) +
∫

K\E
|f(y)| ‖ky− − ξ(y)k‖1 dm(y).

In the sequel we compute two latter integrals. Since

‖ky− − ξ(y)k‖1 ≤ ‖ky−‖1 + ‖ξ(y)k‖1 ≤ 2‖k‖1,
then

∫

K\E
|f(y)| ‖ky− − ξ(y)k‖1 dm(y) ≤ 2‖k‖1 ε1 ≤ 2π(V ∗ U)

1
2 π(U)

−1
2 ε1.

For the other integral,

∫

E

|f(y)| ‖kz − ξ(y)k‖1 dm(y) ≤ ‖f‖1 sup
y∈E

‖kz − ξ(y)k‖1

= ‖f‖1 sup
y∈E

∫

K

|k(x ∗ z)− ξ(y)k(x)| dm(x),

where z = y−. But

π(U) [k(x ∗ z)− ξ(z)k(x)] =
∫

K

g(t)h(t) dδx ∗ δz(t)− ξ(z)g(x)h(x)

=
∫

K

((h(t)− h(x))(g(t)− ξ(z)g(x))dδx ∗ δz(t)

+ ξ(z)g(x)[hz(x)− h(x)] + h(x)[gz(x)− ξ(z)g(x)].

Then

π(U) ‖kz − ξ(z)k‖1 ≤
∫

K

|H1(x)| dm(x) +
∫

K

|H2(x)| dm(x) +
∫

K

|H3(x)| dm(x),

where

H1(x) =
∫

K

((h(t)− h(x))(g(t)− ξ(z)g(x))dδx ∗ δz(t),

H2(x) = ξ(z)g(x)[hz(x)− h(x)] and H3(x) = h(x)[gz(x)− ξ(z)g(x)].
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Now we compute these three integrals. Since |ξ| = 1,
∫

K

|H2(x)| dm(x) =
∫

K

|g(x)| |hz(x)− h(x)| dm(x)

= ‖g(hz − h)‖1 ≤ ‖g‖2 ‖hz − h‖2 ≤ π(V ∗ U)
1
2 π(U)

1
2 ε3,

because ‖g‖22 = ‖ĝ‖22 = π(V ∗ U), and for each z ∈ E−

‖hz − h‖22 = ‖ĥz − ĥ‖22 =
∫

K

|ĥz(γ)− ĥ(γ)|2 dπ(γ) =
∫

K

|ĥ(γ)|2 |γ(z)− 1|2 dπ(γ)

=
∫

U

|γ(z)− 1|2 dπ(γ) ≤ π(U) ε23.

Also we have
∫

K

|H3(x)| dm(x) =
∫

K

|h(x)| |gz(x)− ξ(z)g(x)| dm(x) = ‖h(gz − ξ(z)g)‖1

≤ ‖h‖2 ‖gz − ξ(z)g‖2 ≤ π(U)
1
2 π(V ∗ U)

1
2 ε2,

because ‖h‖22 = ‖ĥ‖22 = π(U) and for each z ∈ E−

‖gz − ξ(z)g‖22 = ‖ĝz − ξ(z)ĝ‖22 =
∫

K

|ĝz(γ)− ξ(z)ĝ(γ)|2 dπ(γ)

=
∫

K

|ĝ(γ)|2 |γ(z)− ξ(z)|2 dπ(γ)

=
∫

V ∗U
|γ(z)− ξ(z)|2 dπ(γ) ≤ π(V ∗ U) ε22.

The computing of
∫

K
|H1(x)| dm(x) needs more intricacies, because for any func-

tions f, g on a hypergroup we do not have in general (fg)x = fxgx. First note
that by Hölder inequality we have

|H1(x)|2 = |
∫

K

(h(t)− h(x))(g(t)− ξ(z)g(x)) dδx ∗ δz(t)|2 ≤ B1(x)B2(x),

where

B1(x) =
∫

K

|h(t)−h(x)|2 dδx∗δz(t) and B2(x) =
∫

K

|g(t)−ξ(z)g(x)|2 dδx∗δz(t).

So
∫

K

|H1(x)| dm(x) ≤
∫

K

B1(x)
1
2 B2(x)

1
2 dm(x)

≤
( ∫

K

B1(x) dm(x)
) 1

2
( ∫

K

B2(x) dm(x)
) 1

2

.
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But

B1(x) =
∫

K

|h(t)|2 + |h(x)|2 − 2<(h(t)h(x)) dδx ∗ δz(t)

= (|h2|)z(x) + |h(x)|2 − 2<(h(x)hz(x))

= (|h2|)z(x) + |hz(x)− h(x)|2 − |hz(x)|2.

By ([9], 3.3B), ‖hz‖2 ≤ ‖h‖2, so
∫

K

[(|h2|)z(x)− |hz(x)|2] dm(x) ≤ ‖h‖22−‖hz‖22=(‖h‖2 + ‖hz‖2)(‖h‖2−‖hz‖2)

≤ 2‖h‖2 ‖hz − h‖2 ≤ 2π(U) ε3.

Then
∫

K
B1(x) dm(x) ≤ π(U) (ε23 + 2 ε3). Similarly

B2(x) =
∫

K

|g(t)|2 + |ξ(z)g(x)|2 − 2<(g(t)ξ(z)g(x)) dδx ∗ δz(t)

= (|g2|)z(x) + |ξ(z)g(x)|2 − 2<(ξ(z)g(x)gz(x))

= (|ξ(z)g|2)z(x) + |gz(x)− ξ(z)g(x)|2 − |gz(x)|2.

Also for each z ∈ E− we have
∫

K

|ξ(z)g(x)− gz(x)|2 dm(x) = ‖ξ(z)g − gz‖22 = ‖ξ(z)ĝ − ĝz‖22

=
∫

K

|ĝ(γ)|2 |ξ(z)− γ(z)|2 dπ(γ) =
∫

V ∗U
|ξ(z)− γ(z)|2 dπ(γ) ≤ π(V ∗ U) ε22,

and ∫

K

(|ξ(z)g|2)z(x)− |gz(x)|2 dm(x) ≤ ‖ξ(z)g‖22 − ‖gz‖22
≤ (‖ξ(z)g‖2 + ‖gz‖2)(‖ξ(z)g − gz‖2) ≤ 2‖g‖2 ‖ξ(z)g − gz‖2 ≤ 2π(V ∗ U) ε2.

Then
∫

K
B2(x) dm(x) ≤ π(V ∗U) ε22 +2π(V ∗U) ε2. This completes the proof. ¤

Lemma 3.5. Let ξ ∈ Z(K̂) and ε > 0. For every compact set E ⊆ K

there exists a compact neighborhood V of ξ in K̂ such that for any s ∈ E and

x ∈ M(σ, V ),
‖σs(x)− ξ(s)x‖ < ε ‖x‖.

Proof. Since K̂ is locally compact, we can consider compact neighborhoods
W0 and W1 of ξ such that W1 ⊆ W ◦

0 ⊆ W0. By (a similar argument to) Lemma 3.2
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there exists a function f ∈ L1(K) such that f̂ ≡ 1 on W1 and supp f̂ ⊆ W ◦
0 . For

any s ∈ K, we put Fs := δs ∗ f − ξ(s)f . It is clear that Fs ∈ L1(K), and

F̂s(ξ) = (δs ∗ f )̂(ξ)− ξ(s) f̂(ξ) = f̂(ξ) ξ(s−)− ξ(s−) f̂(ξ) = 0.

Then by Lemma 3.4 for any δ > 0 and any s ∈ K there exist a function hs ∈ L1(K)
and a compact neighborhood Ws of ξ such that ‖hs ∗ Fs‖1 < δ and ĥs ≡ 1 on
Ws. The mapping s 7→ Fs from K into L1(K) is continuous. Then for any
s ∈ K and α > 0 there exists a neighborhood Us of s in K such that for any
t ∈ Us, ‖Fs −Ft‖1 < α. By compactness of E, there are s1, . . . , sn ∈ E such that
E ⊆ Us1 ∪· · ·∪Usn . We put W2 = Ws1 ∩· · ·∩Wsn . Clearly W2 is a neighborhood
of ξ and for any s ∈ E there exists a j ∈ {1, 2, . . . , n} such that ‖Fs − Fsj‖ < α.
Also since the set {‖hs‖1 : s ∈ K} is bounded (say by a bound M),

‖hsj ∗ Fs‖1 ≤ ‖hsj ∗ Fsj‖1 + ‖hsj ∗ Fs − hsj ∗ Fsj‖1 < δ + Mα.

It is clear that ĥsj ≡ 1 on W2. We can consider δ, α so small that δ + Mα < ε.
Thus for any s ∈ E there exists a function k ∈ L1(K) such that ‖Fs ∗k‖1 < ε and
k̂ ≡ 1 on W2. Now we put W = W1 ∩W2 and consider a compact neighborhood
V of ξ such that V ⊆ W ◦ ⊆ W . Let s ∈ E and x ∈ M(σ, V ). So spσ(x) ⊆ W ◦.
Since k̂, f̂ ≡ 1 on W ◦, we have (f ∗ k)̂ ≡ 1 on a neighborhood of spσ(x). Then by
Theorem 3.3(viii) σ(f ∗ k)(x) = x. So

‖σs(x)− ξ(s)x‖ = ‖σs(σ(f ∗ k)(x))− ξ(s)σ(f ∗ k)(x)‖
= ‖σ(δs ∗ f ∗ k)(x)− σ(ξ(s−)f ∗ k)(x)‖
= ‖σ([δs ∗ f − ξ(s)f ] ∗ k)(x)‖
= ‖σ(Fs ∗ k)(x)‖ ≤ ‖Fs ∗ k‖1 ‖x‖ < ε ‖x‖. ¤

Summing up, we have the following characterization of sp σ.

Theorem 3.6. Let ξ be in the center of K̂. The followings are equivalent.

(i) ξ ∈ spσ.

(ii) For any closed neighborhood V of ξ in K̂, M(σ, V ) 6= {0}.
(iii) There is a net (xι) in M such that for any ι, ‖xι‖ = 1 and limι ‖σs(xι) −

ξ(s)xι‖ = 0, uniformly on compacta.

(iv) For any f ∈ L1(K), |f̂(ξ)| ≤ ‖σ(f)‖.
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Proof. (i)⇒(ii) Let ξ ∈ spσ. If for a closed neighborhood V of ξ we have
M(σ, V ) = {0} then by Lemma 3.2 there exists a function f ∈ L1(K) such that
supp f̂ ⊆ V and f̂(ξ) = 1. Since spσ(σ(f)(x)) ⊆ supp f̂ ⊆ V , σ(f)(x) ∈ M(σ, V ).
Then σ(f) = 0 and f̂(ξ) 6= 0. This implies that ξ /∈ spσ, a contradiction.

(ii)⇒(iii) For any closed neighborhood V of ξ we consider a non-zero element
tι ∈ M(σ, V ) and put xι = tι

‖tι‖ . By Lemma 3.5 the net (xι) satisfies (iii).

(iii)⇒(iv) Let (xι) be the net in (iii). Then for any f ∈ Cc(K) and xι,

‖σ(f)‖ ≥ ‖σ(f)(xι)‖ = ‖
∫

K

σs(xι)f(s) dm(s)‖

≥ |
∫

K

ξ(s)f(s) dm(s)| ‖xι‖ −
∫

K

‖σs(xι)− ξ(s)xι‖ |f(s)| dm(s).

Then by limiting and using the compactness of support of f we have ‖σ(f)‖ ≥
|f̂(ξ)|. Now (iv) holds by density of Cc(K) in L1(K).

(iv)⇒(i) is obvious by definition of Arveson spectrum. ¤
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