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Moments method approach to characterizations
of Dirichlet tables through neutralities

By KONSTANCJA BOBECKA (Warszawa) and JACEK WESOÃLOWSKI (Warszawa)

Abstract. The concept of neutrality of random probabilities with respect to a par-

tition covers several properties of independence for unit simplex valued random vectors.

In particular the Dirichlet random vector is neutral with respect to any partition of its

indices. The main result of this paper simplifies and extends the characterization of the

Dirichlet random table due to Geiger and Heckerman (1997). This characterization

was based on independence conditions which can be viewed as neutrality with respect

to row and column partitions of a two-way random table. Its proof was based on solv-

ing a functional equations for densities with the heavy use of advanced regularization

techniques due to Járai (1986). Our approach is based on identification of moments

through solution of a functional equation for functions of discrete arguments. Moreover

the characterization is extended to multi-way tables.

1. Introduction

Let E = {1, 2, . . . , n, n + 1}. A partition of set E is a set π = {P1, . . . , PK}
of nonempty pairwise disjoint subsets P1, . . . , PK of E whose union is E. The
members of π are called the blocks of π.

Let Θ = (θ1, . . . , θn, θn+1) be a random probability on E, i.e. θj , j = 1, . . . ,

n + 1, are nonnegative and
∑n+1

j=1 θj = 1.
With any partition π one can associate an independence condition, which

will be called neutrality.

Mathematics Subject Classification: 62H05, 62E10, 60G57, 39B40.
Key words and phrases: neutrality with respect to partition, Dirichlet distribution, method of

moments, characterization, functional equations, independence, multi-way tables.
This research was partially supported by the Ministry of Science and Higher Education of Poland

(Project no. 1P03A022427).



322 Konstancja Bobecka Jacek WesoÃlowski

Definition 1. Let π = {P1, . . . , PK} be a partition of E = {1, 2, . . . , n, n+1}.
A vector Θ =

(
θ1, . . . , θn+1

)
of random probabilities is neutral with respect to π

if the vectors

S̄ =

( ∑

i∈P1

θi, . . . ,
∑

i∈PK

θi

)
,

Ū1 =

(
θj∑

i∈P1
θi

; j ∈ P1

)
, . . . , ŪK =

(
θj∑

i∈PK
θi

; j ∈ PK

)
(1.1)

are independent.

Several other concepts of neutrality exist in literature. Originally it was
introduced by Connor and Mosimann (1969) as a neutrality of a subvector
in a unit-simplex-valued random vector. They defined also complete neutrality
which was adapted to stochastic processes as neutrality-to-the-right (ntr) and
neutrality-to-the-left by Doksum (1974). It is worth to mention that ntr process
are widely investigated in recent years, see for instance Walker and Muliere

(1999), Epifani, Lijoi and Prünster (2003) or Doksum and James (2004).
In Section 2 we will show that neutrality of sub-vector and complete neutral-

ity can be expressed in terms of neutralities with respect to partitions, introduced
in Definition 1.

Neutralities appeared to be useful in studying properties of the Dirichlet
distribution and processes. In particular the concepts defined by Connor and
Mosimann (1969) were used for characterizations of the Dirichlet distribution,
see for instance Darroch and Ratcliff (1971), Fabius (1973), James and
Mosimann (1980), Bobecka and WesoÃlowski (2007) and others. For a recent
review see Gupta and Richards (2001).

Recall that a random vector (θ1, . . . , θn) has a Dirichlet distribution with
parameters (α1, . . . , αn+1), (θ1, . . . , θn) ∼ Dir(α1, . . . , αn+1), if it has the density
of the form

f(x1, . . . , xn) =
Γ
(∑n+1

i=1 αi

)
∏n+1

i=1 Γ
(
αi

) (
1−

n∑

i=1

xi

)αn+1−1
n∏

i=1

xαi−1
i ITn(x1, . . . , xn),

where αi > 0, i = 1, . . . , n + 1 and Tn = {(x1, . . . , xn) ∈ (0,∞)n :
∑n

i=1 xi < 1}.
In Section 2 we also point out the fact that, not unexpectedly, the Dirichlet

vector, understood as a vector of random probabilities, is neutral with respect to
any partition of the set of its indices.

In Section 3 we give a direct extension of a characterization of the Dirichlet
distribution obtained by Geiger and Heckerman (1997) (referred to by GH
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in the sequel). They characterized a k × n Dirichlet random table [θij ] (where∑
i,j θij = 1) by some independence conditions, which in view of Definition 1,

can be seen as neutrality of [θij ] with respect to the row and column partitions
of the set of indices of the table [θij ]. GH proved their main result under the
additional assumptions that the distribution, they wanted to characterize, has a
strictly positive density on (kn − 1)-dimensional unit simplex. Their approach
to the problem was through solution of a rather complicated functional equation,
see (4) in GH. They solved the equation using, first, advanced regularization
techniques developed by Járai (1986), and then, differentiations which led to
complicated partial differential equations, see Sections A2–A5 in GH. Moreover,
the argument they provided is split into three separate cases: k = n = 2, k, n ≥ 3,
and k = 2, n ≥ 3 or k ≥ 3, n = 2. Even more advanced analytical techniques
allowed Járai (1998) to omit the assumption of strict positivity of the density. In
this context it is proper to refer to a recent monograph by Járai (2005) devoted
to regularization methods for functional equations with Ch. 23 (Characterization
of the Dirichlet distribution, p. 275–284) devoted exclusively to the approach we
have just mentioned.

The proof we offer in this paper is free of the density assumption and is based
on the method of moments. Consequently, it does not need any sophisticated
regularization methods, as those developed in Járai (2005) and any smoothness
properties, as differentiability used in GH. It is also universal, i.e. covers all the
above cases by one approach. It is still based on solving functional equations, see
(3.2) in Section 3 and (4.1) in Section 4, but the unknown moments functions
involved in those equations are defined on discrete domains.

It is worth to mention that some of the equations appearing in our proof are
quite similar to those which are used in characterizations of the Dirichlet law by
Johnson’s “sufficientness” postulate – see Zabel (1982), Lo (1991) or Walker

and Muliere (1999).
In Section 4 we extend the result of Section 3 to multi-way tables of proba-

bilities. The proof is to a large extent based on the argument developed for the
2-way tables, that is again the method of moments is employed, though it is not
only the notation problem due to multi-dimensionality, we have to cope with.
Though the result of Section 4, is a direct extension of Theorem 2, we think that
for clarity of presentation it is reasonable, to have the intermediate step, we offer
in Section 3. The same approach was adapted by GH, where, in Section 3 they
offer another multivariate version of their Theorem 2. Their extension is based on
notions of global and local independence of multinomial parameters for Bayesian
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networks. This property can be interpreted as neutralities with respect to parti-
tions applied in a hierarchical way to the original vector of random probabilities,
i.e. in a given step we have independent vectors of random probabilities, each of
them being further partitioned producing a collection of independent vectors of
random probabilities according to the rule of Definition 1. The proof, by reduc-
tion of the multivariate case to two-dimensional situation, is given in Geiger,

Heckerman, Chickering (1995). That paper is a good reference for under-
standing the role of the Dirichlet distribution as a distribution of the parameters
associated with each node in a Bayesian network.

Finally, we would like to mention yet another approach to the GH character-
ization (and its extension) published recently in Ramamoorthi and Sangalli

(2007). Their proof of the characterization of the Dirichlet law is done completely
within the Bayesian framework and uses rather hermetic Bayesian language.

2. Neutralities, partitions and Dirichlet

Independence properties of the Dirichlet distribution can be summarized by
referring to neutrality property. Namely, it appears that the Dirichlet random
vector is neutral with respect to any partition of the set of its indices. Moreover
the sub-vectors associated with such a partition have again Dirichlet distributions.
We explain this below.

Theorem 1. Let (θ1, . . . , θn+1) be a Dirichlet vector of random probabilities,

i.e. (θ1, . . . , θn) ∼ Dir(α1, . . . , αn+1) and
∑n+1

j=1 θj = 1. For any partition π of

{1, 2, . . . , n, n + 1} the random vector (θ1, . . . , θn+1) is neutral with respect to π.

Remark 1. It follows that the random vectors S̄, Ū1, . . . , ŪK , as defined in
(1.1), have Dirichlet distributions:

S̄ ∼ Dir

( ∑

i∈Pj

αi; j = 1, . . . ,K

)
,

Ūj ∼ Dir
(
α

i1+···+ij−1+l
; l = 1, . . . , ij

)
, j = 1, . . . , K.

The proofs of both Theorem 1 and Remark 1 follow either by direct computa-
tions involving densities or by the standard gamma representation of the Dirichlet
distribution and are skipped.

Now we will show how the notion of neutrality defined by Connor and
Mosimann (1969) and independence conditions in GH can be expressed in terms
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of Definition 1. In Connor and Mosimann (1969), the notion of neutrality of
a subvector (θ1, . . . , θk) in (θ1, . . . , θn), where (θ1, . . . , θn) is a Tn-valued random
vector, was defined as independence of

(θ1, . . . , θk) and

(
θk+1

1−∑k
i=1 θi

, . . . ,
θn

1−∑k
i=1 θi

)
, where k ∈ {1, . . . , n− 1}.

Note that in view of Definition 1 it is neutrality of a vector Θ = (θ1, . . . , θn+1) of
random probabilities with respect to the partition π = {{1}, . . . , {k}, {k + 1, . . . ,
n + 1}}. Similarly, the notion of complete neutrality, which means independence
of the components of the random vector

(
θ1,

θ2

1− θ1
,

θ3

1−∑2
i=1 θi

, . . . ,
θn

1−∑n−1
i=1 θi

)
,

is equivalent to neutrality of a vector Θ = (θ1, . . . , θn+1) of random probabilities
with respect to partitions πi = {{1}, . . . , {i}, {i + 1, . . . , n + 1}}, i = 1, . . . , n− 1.

The independence conditions used in GH to characterize a k × n Dirichlet
random table [θij ] (where

∑
i,j θij = 1) were the following:

(
n∑

j=1

θ1j ,

n∑

j=1

θ2j , . . . ,

n∑

j=1

θkj

)
,

(
θM∑n

j=1 θ1j
; M ∈ {(1, 1), . . . , (1, n)}

)
, . . .

. . . ,

(
θM∑n

j=1 θkj
; M ∈ {(k, 1), . . . , (k, n)}

)
(2.1)

are mutually independent and

(
k∑

i=1

θi1,

k∑

i=1

θi2, . . . ,

k∑

i=1

θin

)
,

(
θM∑k
i=1 θi1

; M ∈ {(1, 1), . . . , (k, 1)}
)

, . . .

. . . ,

(
θM∑k
i=1 θin

; M ∈ {(1, n), . . . , (k, n)}
)

(2.2)

are mutually independent. Note that (2.1) is equivalent to neutrality of [θij ] with
respect to the row partition {{(1, 1), . . . , (1, n)}, . . . , {(k, 1), . . . , (k, n)}} of the set
of indices of the table [θij ]. Similarly (2.2) is equivalent to neutrality of [θij ] with
respect to the column partition {{(1, 1), . . . , (k, 1)}, . . . , {(1, n), . . . , (k, n)}}.

Also other existing conditions characterizing the Dirichlet distribution can
be formulated in terms of neutralities with respect to partitions. Darroch and
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Ratcliff (1971) used neutralities with respect to partitions πi = {{1}, . . . ,
{i − 1}, {i + 1}, . . . , {n}, {i, n + 1}}, i = 1, . . . , n. Fabius (1973) used mo-
ments method to refine their proof and gave a new result using partitions πi =
{{i}, {1, . . . , i − 1, i + 1, . . . , n, n + 1}}, i = 1, . . . , n. James and Mossiman

(1980) proved a characterization by neutralities with respect to πi = {{1}, . . . , {i},
{i+1, . . . , n+1}}, i = 1, . . . , n−1 and πn = {{n}, {1, . . . , n−1, n+1}}. Their re-
sult has been recently generalized in Bobecka and WesoÃlowski (2007), where
neutralities with respect to πi = {{1}, . . . , {i}, {i + 1, . . . , n + 1}}, i = 1, . . . ,
n − 1, were combined with a regression version of neutrality with respect to
πn = {{i0}, {i0 +1}, . . . , {n}, {1, . . . , i0−1, n+1}}, where i0 ∈ {2, . . . , n} is fixed.

Remark 2. A Liouville distribution, see for instance Fang, Kotz and Ng

(1989), is defined as any distribution of a random vector (X1, . . . , Xn) if only

(1) X = (X1 + · · ·+ Xn)−1(X1, . . . , Xn−1) is Dirichlet;

(2) X and X1 + · · ·+ Xn are independent.

Therefore such distributions have independence properties induced by the Dirich-
let law. For instance, complete neutrality of the Dirichlet distribution implies
that if (X1, . . . , Xn) is a Louiville random vector, then the random variables
Xi/(Xi+· · ·+Xn), i = 1, . . . , n, are independent. Moreover, the Liouville distrib-
ution can be characterized by independencies specific for the Dirichlet law written
in terms of suitable properties of the vector X combined with independence of X

and X1 + · · · + Xn. On the other hand a Liouville random vector is completely
neutral iff it is Dirichlet – see Proposition 6.4 in Gupta and Richards (1987).
That paper and subsequent papers of these authors (see the references in Gupta

and Richards (2001)), give a comprehensive study of Liouville distributions.

3. Row and column neutralities for two-way tables

In this section we formulate and prove a refinement of the GH characteriza-
tion of the Dirichlet distribution in the sense that we do not assume existence of
densities. The proof is much more elementary than the original one. It is based
on identification of the Dirichlet distribution by multivariate moments of any or-
der. But first, neutralities are translated into a functional equation for moments
functions. The results of this section can be regarded as an intermediate step
towards the investigation of multi-way tables, which is done in Section 4.
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Theorem 2. Let [θij ] be a k× n matrix with entries being positive random

variables such that
∑

i,j θij = 1. Let

π1 = {{(1, 1), . . . , (1, n)}, . . . , {(k, 1), . . . , (k, n)}} and

π2 = {{(1, 1), . . . , (k, 1)}, . . . , {(1, n), . . . , (k, n)}}
be partitions of the set {(i, j); i = 1, . . . , k, j = 1, . . . , n} of indices of [θij ]. If

[θij ] is neutral with respect to the partitions π1 and π2 then it is a Dirichlet

random probabilities table.

Proof. As already observed in Section 2, the neutrality conditions with
respect to partitions π1 and π2 are equivalent to (2.1) and (2.2). For any natural
(rij), i = 1, . . . , k, j = 1, . . . , n, from these conditions we obtain two different
factorizations of the joint moment

E

[
k∏

i=1

n∏

j=1

θ
rij

ij

]
= E

[
n∏

j=1

(θ1j

R1

)r1j

]
. . . E

[
n∏

j=1

(θkj

Rk

)rkj

]
E[Rs1

1 . . . Rsk

k ]

= E

[
k∏

i=1

(θi1

C1

)ri1

]
. . . E

[
k∏

i=1

(θin

Cn

)rin

]
E[Ct1

1 . . . Ctn
n ], (3.1)

where

Ri =
n∑

j=1

θij , si =
n∑

j=1

rij , i = 1, . . . , k, and

Cj =
k∑

i=1

θij , tj =
k∑

i=1

rij , j = 1, . . . , n.

For arbitrary vectors m̄ = (m1, . . . ,mn) and l̄ = (l1, . . . , lk) with non-negative
integer components we define

fi(m̄) = E

[
n∏

j=1

(θij

Ri

)mj

]
, i = 1, 2, . . . , k, F (l̄) = E

[
k∏

i=1

Rli
i

]
,

gj(l̄) = E

[
k∏

i=1

(θij

Cj

)li

]
, j = 1, 2, . . . , n, G(m̄) = E

[
n∏

j=1

C
mj

j

]
.

Inserting the above definitions in (3.1) we get our basic functional equation
[

k∏

i=1

fi(ri1, ri2, . . . , rin)

]
F

(
s1, s2, . . . , sk

)

=

[
n∏

j=1

gj(r1j , r2j , . . . , rkj)

]
G(t1, t2, . . . , tn), (3.2)
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for any k × n matrix r = [rij ] of non-negative integers i = 1, 2, . . . , k, j = 1, 2,
. . . , n.

We rewrite (3.2) as
[

k∏

i=1

fi(r̄i·)

]
F (s̄) =

[
n∏

j=1

gj(r̄·j)

]
G(t̄), (3.3)

where r̄i· = (ri1, . . . , rin), r̄·j = (r1j , . . . , rkj) and s̄ = (s1, . . . , sk), t̄ = (t1, . . . , tn).
Dividing two equations (3.3), taken in r + ξpj and r + ξqj for some fixed p 6= q

and j ∈ {1, . . . , n}, where ξij is the matrix with all entries equal zero except the
ij-th entry which equals 1, we get

fp(r̄p· + δ̄j)
fp(r̄p·)

fq(r̄q·)
fq(r̄q· + δ̄j)

F (s̄ + ε̄p)
F (s̄ + ε̄q)

=
gj(r̄·j + ε̄p)
gj(r̄·j + ε̄q)

,

where (δ̄j)j=1,...,n, (ε̄i)i=1,...,k are the canonical basis of Rn and Rk, respectively.
In this equation we insert zeros for all rij ’s except the lth column, where l 6= j is
taken arbitrarily. We denote it by l̄. Thus we get

F (l̄ + ε̄p)
F (l̄ + ε̄q)

=
αp(lp)
αq(lq)

, (3.4)

where

αi(x) =
fi(x δ̄l)

fi(xδ̄l + δ̄j)
gj(ε̄i), i = 1, . . . , k.

Observe that

fi(m̄) =
n∑

j=1

fi

(
m̄ + δ̄j

)
, i = 1, 2, . . . , k, (3.5)

F (l̄) =
k∑

i=1

F
(
l̄ + ε̄i

)
, (3.6)

gj(l̄) =
k∑

i=1

gj

(
l̄ + ε̄i

)
, j = 1, 2, . . . , n,

G
(
m̄

)
=

n∑

j=1

G
(
m̄ + δ̄j

)
,

where m̄ =
(
m1,m2, . . . , mn

)
and l̄ =

(
l1, l2, . . . , lk

)
are arbitrary vectors with

nonnegative integer components. From (3.6) we get for any p ∈ {1, . . . , k}

F (l̄) =
F (l̄ + ε̄p)

αp(lp)

k∑
q=1

αq(lq)
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for any k-dimensional vector l̄ with nonnegative integer components. The above
equation can be written as

F (l̄) =
αp(lp − 1)

αp(lp − 1) +
∑k

w=1,w 6=p αw(lw)
F (l̄ − ε̄p) (3.7)

if only lp ≥ 1. We repeat this procedure until at the right hand side the pth
component of the argument of F becomes zero, getting

F (l̄) =
lp−1∏
u=0

αp(u)

αp(u) +
∑k

w=1,w 6=p αw(lw)
F (l̄ − lpε̄p).

After iterating wrt to the qth component we get

F (l̄) =
lp−1∏
u=0

αp(u)

αp(u) +
∑k

w=1,w 6=p αw(lw)

×
lq−1∏
v=0

αq(v)

αp(0) + αq(v) +
∑k

w=1,w 6=p,q αw(lw)
F (l̄ − lpε̄p − lq ε̄q). (3.8)

Changing the role of p and q we get

F (l̄) =
lq−1∏
v=0

αq(v)

αq(v) +
∑k

w=1,w 6=q αw(lw)

×
lp−1∏
u=0

αp(u)

αq(0) + αp(u) +
∑k

w=1,w 6=p,q αw(lw)
F (l̄ − lpε̄p − lq ε̄q). (3.9)

Comparing (3.8) and (3.9) we have

lp−1∏
u=0

[
αp(u) +

k∑

w=1,w 6=p

αw(lw)

]
lq−1∏
v=0

[
αp(0) + αq(v) +

k∑

w=1,w 6=p,q

αw(lw)

]

=
lq−1∏
v=0

[
αq(v) +

k∑

w=1,w 6=q

αw(lw)

]
lp−1∏
u=0

[
αq(0) + αp(u) +

k∑

w=1,w 6=p,q

αw(lw)

]
. (3.10)

Inserting lp = lq = 1 we get

αp(1)− αp(0) = αq(1)− αq(0). (3.11)



330 Konstancja Bobecka Jacek WesoÃlowski

We will prove by induction that for any j ≥ 1 and any p ∈ {1, . . . , k}

αp(j)− αp(j − 1) = αp(1)− αp(0). (3.12)

The statement for j = 1 is a tautology. We assume that it holds for any j = 1,
. . . , l and prove it for j = l + 1. We write (3.10) for lp = l + 1 and lq = 1

[
l∏

u=0

(αp(u) + αq(1) + A)

]
[αp(0) + αq(0) + A]

= [αp(l + 1) + αq(0) + A]
l∏

u=0

[αp(u) + αq(0) + A],

where

A =
k∑

w=1,w 6=p,q

αw(lw).

By the induction assumption we get

[
l−1∏
u=0

(αp(u) + αq(1) + A)

]
[αp(0) + αq(0) + A] =

l∏
u=0

[αp(u) + αq(0) + A].

Hence

αp(l) + αq(1) = αp(l + 1) + αq(0).

Thus the formula (3.12) is proved. Consequently, there exist constants ap and bp

such that

αp(j) = apj + bp (3.13)

for any p ∈ {1, . . . , k} and any j ≥ 0. Moreover, by (3.11) it follows that

ap = aq = a. (3.14)

Note that taking the original formula (3.7) for p = 1 and then iterating with
respect to subsequent variables we obtain

F (l̄) =
k∏

i=1

li−1∏
u=0

αi(u)∑i−1
w=1 αw(0) + αi(u) +

∑k
w=i+1 αw(lw)

. (3.15)
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Inserting (3.13) into (3.15), and using also (3.14) we have

F (l̄) =
k∏

i=1

li−1∏
u=0

au + bi∑i−1
w=1 bw + au + bi +

∑k
w=i+1(alw + bw)

=
k∏

i=1

li−1∏
u=0

u + bi

a∑k
w=1

bw

a + u +
∑k

w=i+1 lw
.

Thus

F (l̄) =
Γ
(∑k

w=1 dw

)

Γ
( ∑k

w=1(lw + dw)
)

k∏

i=1

Γ(li + di)
Γ(di)

, (3.16)

where dw = bw/a ≥ 0, w = 1, . . . , k.
Similarly using (3.3) we can find G, i.e. there exist constants cv ≥ 0, v =

1, . . . , n, such that

G(m̄) =
Γ
( ∑n

v=1 cv

)

Γ
( ∑n

v=1(mv + cv)
)

n∏

j=1

Γ(mj + cj)
Γ(cj)

. (3.17)

To find the remaining functions fi’s and gj ’s we return to (3.3) again. We
divide two versions of (3.3), one taken in r + ξij1 and the other taken in r + ξij2 ,
for some fixed j1 6= j2 and i ∈ {1, . . . , k}. Thus we get

fi(r̄i· + δ̄j1)
fi(r̄i· + δ̄j2)

=
gj1(r̄·j1 + ε̄i)

gj1(r̄·j1)
gj2(r̄·j2)

gj2(r̄·j2 + ε̄i)
G(t̄ + δ̄j1)
G(t̄ + δ̄j2)

.

In the above equation we insert zeros for all the entries of r except for the i-th
row. Using (3.17) we conclude that

fi(r̄i· + δ̄j1)
fi(r̄i· + δ̄j2)

=
βj1(rij1)
βj2(rij2)

,

where βj1 and βj2 are some functions. Now, in view of (3.5), following the argu-
ment used in derivation of the formula for F , we arrive at

fi(m̄) =
Γ
( ∑n

v=1 µiv

)

Γ
( ∑n

v=1(mv + µiv)
)

n∏

j=1

Γ(mj + µij)
Γ(µij)

, i = 1, . . . , k, (3.18)

with µiv ≥ 0, i = 1, . . . , k, v = 1, . . . , n.
Analogously,

gj(l̄) =
Γ
( ∑k

w=1 νwj

)

Γ
( ∑k

w=1(lw + νwj)
)

k∏

i=1

Γ(li + νij)
Γ(νij)

, j = 1, . . . , n, (3.19)
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with νwj ≥ 0, w = 1, . . . , k, j = 1, . . . , n.
To identify parameters we rewrite (3.3) for arbitrary r̄1· and for other entries

of the matrix r equal zero, using (3.18), (3.16), (3.19) and (3.17):

Γ
( ∑n

v=1 µ1v

)

Γ
(∑n

v=1(r1v + µ1v)
)
(

n∏

j=1

Γ(r1j + µ1j)
Γ(µ1j)

)
Γ
(∑k

w=1 dw

)

Γ
(∑n

j=1 r1j +
∑k

w=1 dw

)

× Γ(
∑n

j=1 r1j + d1)
Γ(d1)

=

(
n∏

j=1

Γ
( ∑k

w=1 νwj

)

Γ
(
r1j +

∑k
w=1 νwj

) Γ(r1j + ν1j)
Γ(ν1j)

)

× Γ
(∑n

v=1 cv

)

Γ
(∑n

v=1(r1v + cv)
)

n∏

j=1

Γ(r1j + cj)
Γ(cj)

. (3.20)

Now, we leave only two non-zero components of the vector r̄1· . Without loss of
generality we assume that r11 and r12 are non-zero. Then the above equation
takes the form

Γ
( ∑n

v=1 µ1v

)

Γ
(
r11 + r12 +

∑n
v=1 µ1v

)
(

2∏

j=1

Γ(r1j + µ1j)
Γ(µ1j)

)
Γ
(∑k

w=1 dw

)

Γ
(
r11 + r12 +

∑k
w=1 dw

)

× Γ(r11 + r12 + d1)
Γ(d1)

=

(
2∏

j=1

Γ
(∑k

w=1 νwj

)

Γ
(
r1j +

∑k
w=1 νwj

) Γ(r1j + ν1j)
Γ(ν1j)

)

× Γ
(∑n

v=1 cv

)

Γ
(
r11 + r12 +

∑n
v=1 cv

)
2∏

j=1

Γ(r1j + cj)
Γ(cj)

. (3.21)

From the above equation it follows that

h(r11 + r12) =
Γ(r11 + r12 + d1)Γ

(
r11 + r12 +

∑n
v=1 cv

)

Γ
(
r11 + r12 +

∑n
v=1 µ1v

)
Γ
(
r11 + r12 +

∑k
w=1 dw

)

is a product of a function of r11 and of a function of r12. Consequently h(i) = αβi,
since it satisfies a multiplicative version of the Pexider equation, see e.g. Aczél

(1966), Ch. 3. On the other hand, by its definition, h is a rational function. Thus
h(i) = α, for any i ≥ 0. By inspecting the form of h we conclude that either
d1 =

∑n
v=1 µ1v or d1 =

∑k
w=1 dw. Note that the second identity, which means

dw = 0, w = 2, . . . , k, is impossible. To see this take l̄ = (l1, 0, . . . , 0) in (3.16).
Then we get F (l1, 0, . . . , 0) = 1 for any l1. On the other hand, by the definition
F (l1, 0, . . . , 0) = E

[( ∑n
j=1 θ1j

)l1], which is always < 1. Thus, we get

n∑
v=1

cv =
k∑

w=1

dw and d1 =
n∑

v=1

µ1v.
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Since the first row r̄1· was taken arbitrarily we conclude also that

di =
n∑

v=1

µiv, i = 1, . . . , k.

By symmetry of (3.20) we get also

cj =
n∑

w=1

νwj , j = 1, . . . , n. (3.22)

We return now to (3.21) getting

2∏

j=1

Γ(r1j + µ1j)
Γ(µ1j)

=

(
2∏

j=1

Γ
( ∑k

w=1 νwj

)

Γ
(
r1j +

∑k
w=1 νwj

) Γ(r1j + ν1j)
Γ(ν1j)

)
2∏

j=1

Γ(r1j + cj)
Γ(cj)

.

Using (3.22) we obtain

2∏

j=1

Γ(r1j + µ1j)
Γ(µ1j)

=
2∏

j=1

Γ(r1j + ν1j)
Γ(ν1j)

.

Consequently µ1j = ν1j , j = 1, 2, and by symmetry we conclude that µij =
νij for any i ∈ {1, . . . , k} and any j ∈ {1, . . . , n}.

Now we are in a position to obtain a general expression for any joint moment
of any order of the elements of the matrix [θij ]. Combining (3.1) and (3.3) we get

E

[
k∏

i=1

n∏

j=1

θ
rij

ij

]
=

[
k∏

i=1

fi(r̄i·)

]
F (s̄)

=

[
k∏

i=1

n∏

j=1

Γ(rij + µij)
Γ(µij)

]
Γ
(∑k

i=1

∑n
j=1 µij

)

Γ
( ∑k

i=1

∑n
j=1(rij + µij)

) ,

which is the joint moment of order [rij ] for the Dirichlet matrix with the parameter
µ = [µij ]. Since the Dirichlet distribution is identified by its moments the proof
is completed. ¤

Remark 3. Let (θ1, . . . , θL) be a vector of random probabilities and

P (X1 = k1, . . . , Xn = kn|θ1, . . . , θL) = θn1
1 . . . θnL

L

for any n = 1, 2, . . . and any k1, . . . , kn ∈ {1, . . . , L}, where nj =
∑n

i=1 Ij(ki), i.e.
nj is the number of ki’s equal to j, j = 1, . . . , L. Then Johnson’s “sufficientness”
postulate (see Zabel (1982)) has the form

P
(
Xn+1 = k|X1 = k1, . . . , Xn = kn

)
= f

(
k, nk, n

)
(3.23)
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for any k = 1, . . . , L, any n = 1, 2, . . . and any k1, . . . , kn ∈
{
1, . . . , L

}
, where f is

an unknown function. Zabel (1982) characterized the Dirichlet distribution (for
(θ1, . . . , θL)) by the condition (3.23). This result was extended to the Dirichlet
process by Lo (1991) and for the ntr processes by Walker and Muliere (1999).

Note that (3.23) can be equivalently rewritten as

E(θn1
1 . . . θnk+1

k . . . θnL

L )
E(θn1

1 . . . θnk

k . . . θnL

L )
= f(k, nk, n)

for any k = 1, . . . , L, any n1, . . . , nL ∈ {0, . . . , n} and any n = 1, 2, . . . , which
implies

E(θn1
1 . . . θnk+1

k . . . θnL

L )

E(θn1
1 . . . θ

nj+1
j . . . θnL

L )
=

f(k, nk, n)
f(j, nj , n)

(3.24)

for any j, k different. The last condition is quite similar to

E(θn1
1 . . . θnk+1

k . . . θnL

L )

E(θn1
1 . . . θ

nj+1
j . . . θnL

L )
=

αk(nk)
αj(nj)

. (3.25)

Note that (3.25) is equivalent to (3.4). Thus from the argument in the proof
above (the function F which stands for E(θn1

1 . . . θnk

k . . . θnL

L ) has been completely
identified there) it follows that (3.25) characterizes the Dirichlet distribution. On
the other hand we doubt whether (3.24), which is visibly weaker then (3.25),
suffices to obtain the characterization.

4. Multi-way tables

In this section we present the main result which extends Theorem 2 of GH
type to multi-way tables. The proof to a large extent uses the argument developed
in Section 3 for two-way tables. It appears that for k-way tables neutralities with
respect to natural k partitions characterizes the Dirichlet distribution. The tech-
nical part of the proof relies on a functional equation (4.1) which is a multivariate
version of the equation (3.2). Another extension is given in GH.

Theorem 3. Let I = {ı̄ = (i1, i2, . . . , ik), ij = 1, 2, . . . , Ij , j = 1, 2, . . . , k}
be the set of indices of a k-way table of random probabilities Θ = [θı̄, ı̄ ∈ I]. Let

πj , j = 1, 2, . . . , k, be partitions of the set I of the following form

πj =
{
P

(j)
1 , P

(j)
2 , . . . P

(j)
Ij

}
,
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where

P
(j)
l =

{
ı̄ ∈ I : ij = l

}
for l = 1, 2, . . . , Ij .

If Θ is neutral with respect to πj , j = 1, 2, . . . , k, then it is a Dirichlet k-way

table.

This result is rather different than the extension given in GH (see also Heck-

erman, Geiger and Chickering (1995)). That one was based on independence
conditions related to nested partitions, called global and local independence, de-
fined for random probabilities Θ = (θı̄)ı̄∈I , in the following way: For a complete
undirected graph G having k nodes we associate with the node i a random variable
Xi, i = 1, . . . , k, such that

P (X1 = i1, . . . , Xk = ik|Θ) = θı̄ for ı̄ = (i1, i2, . . . , ik) ∈ I.

Define independence for Θ related to the ordered path (j1, . . . , js) in G, s = 1,
. . . , k, as joint independence of the vectors

(
P

(
Xjl

= i|Xj1 = i1, . . . , Xjl−1 = il−1,Θ
))

i=1,...,Ijl

,

im = 1, . . . , Im, m = 1, . . . , l − 1, l = 1, . . . , s.

Global and local independence for Θ amounts to independence for Θ related
to any ordered path of length k in G. Theorem 3 of GH states that under smooth-
ness assumptions, global and local independence for Θ related to two ordered
paths (1, 2, . . . , k) and (k, 1, . . . , k − 1) implies that Θ is Dirichlet.

In this language assumptions of our Theorem 3 above can be expressed as
independencies for Θ related to all degenerate paths of length one in G, i.e. the
paths (s), s = 1, . . . , k.

Proof of Theorem 3. Decomposing the joint moment of the order R =
(rı̄, ı̄ ∈ I) similarly as in the proof of Theorem 2 we arrive at the following system
of functional equations

F (j)(s(j)
1 , s

(j)
2 , . . . , s

(j)
Ij

)
Ij∏

i=1

f
(j)
i (rı̄, ı̄ ∈ P

(j)
i ) = E

[ ∏

ı̄∈I
θrı̄

ı̄

]
,

j = 1, 2, . . . , k,

(4.1)

where s
(j)
i =

∑
ı̄∈P

(j)
i

rı̄, i = 1, . . . , Ij .
For any fixed l ∈ {1, 2, . . . , k} we consider the above system of equations forR

+Em̄(l) and R +En̄(l) , where Em̄(l) and En̄(l) are k-way tables with all zeros except
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for the elements with multi-indices m̄(l) = (i(0)1 , . . . , i
(0)
l−1,m, i

(0)
l+1, . . . , i

(0)
k ) and

n̄(l) = (i(0)1 , . . . , i
(0)
l−1, n, i

(0)
l+1, . . . , i

(0)
k ) which are equal one, respectively. Dividing

one of these equations by the other for any j = 1, . . . , k, we get

F (l)
(
s
(l)
1 , . . . , s

(l)
m + 1, . . . , s

(l)
Il

)

F (l)
(
s
(l)
1 , . . . , s

(l)
n + 1, . . . , s

(l)
Il

)
f

(l)
m

(
rı̄ + δı̄(m̄(l)), ı̄ ∈ P

(l)
m

)

f
(l)
m

(
rı̄, ı̄ ∈ P

(l)
m

)

× f
(l)
n

(
rı̄, ı̄ ∈ P

(l)
n

)

f
(l)
n

(
rı̄ + δı̄(n̄(l)), ı̄ ∈ P

(l)
n

) =
f

(j)

i
(0)
j

(
rı̄ + δı̄(m̄(l)), ı̄ ∈ P

(j)

i
(0)
j

)

f
(j)

i
(0)
j

(
rı̄ + δı̄(n̄(l)), ı̄ ∈ P

(j)

i
(0)
j

) (4.2)

for any j ∈ {1, 2, . . . , k} \ {l}, where δı̄(j̄) = 0 if ı̄ 6= j̄ and δı̄(̄ı) = 1.
The part of the proof, which leads to identification of functions F (j), j = 1,

. . . , k, translates the argument used in the proof of Theorem 2 into the multivari-
ate setting and for a function F (l) uses a single equation only. To this end, in the
above system we insert rı̄ = 0 for all ı̄-th except ı̄g=(i(1)1 , . . . , i

(1)
l−1, g, i

(1)
l+1, . . . , i

(1)
k ),

g = 1, . . . , Il, where i
(1)
j 6= i

(0)
j , j ∈ {1, 2, . . . , k} \ {l}, getting

F (l)
(
rı̄1 , . . . , rı̄m + 1, . . . , rı̄Il

)

F (l)
(
rı̄1 , . . . , rı̄n + 1, . . . , rı̄Il

) f
(l)
m

(
rı̄mδı̄(̄ım) + δı̄(m̄(l)), ı̄ ∈ P

(l)
m

)

f
(l)
m

(
rı̄mδı̄(̄ım), ı̄ ∈ P

(l)
m

)

× f
(l)
n

(
rı̄nδı̄(̄ın), ı̄ ∈ P

(l)
n

)

f
(l)
n

(
rı̄nδı̄(̄ın) + δı̄(n̄(l)), ı̄ ∈ P

(l)
n

) =
f

(j)

i
(0)
j

(
δı̄(m̄(l)), ı̄ ∈ P

(j)

i
(0)
j

)

f
(j)

i
(0)
j

(
δı̄(n̄(l)), ı̄ ∈ P

(j)

i
(0)
j

)

for some j 6= l. Thus
F (l)

(
x1, . . . xm + 1, . . . , xIl

)

F (l)
(
x1, . . . xn + 1, . . . , xIl

)

is a function of the quotient of a function of xm and a function of xn for any m

and n different. Moreover,

F (l)
(
x̄
)

=
Il∑

i=1

F (l)
(
x̄ + ē

(l)
i

)

for any x̄ = (x1, . . . , xIl
), where ē

(l)
i is the Il-dimensional vector with all entries

equal to zero except i-th entry, which is equal one, i = 1, . . . , Il. Hence as in the
proof of Theorem 2 we get

F (l)
(
x̄
)

=
Γ
(∑Il

i=1 d
(l)
i

)

Γ
( ∑Il

i=1

(
d
(l)
i + xi

))
Il∏

i=1

Γ
(
d
(l)
i + xi

)

Γ
(
d
(l)
i

) , l = 1, . . . , k. (4.3)
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Now we will identify functions f
(j)
i ’s. Without loss of generality we will

consider the whole system (4.2) and identify the functions f
(j)

i
(0)
j

, j ∈ {1, . . . , k}\{l}
for an arbitrary but fixed l.

Note that (4.3) implies that the left hand side of (4.2) is a function of
(
rı̄, ı̄ ∈

P
(l)
m ∪ P

(l)
n

)
, and the right hand sides are functions of

(
rı̄, ı̄ ∈ P

(j)

i
(0)
j

)
for j ∈

{1, . . . , k} \ {l}. Since

P (l)
m ∩

⋂

j∈{1,...,k}\{l}
P

(j)

i
(0)
j

=
{
m̄(1)

}
, P (1)

n ∩
⋂

j∈{1,...,k}\{l}
P

(j)

i
(0)
j

=
{
n̄(1)

}
,

we conclude that each side of the system (4.2), in particular,

f
(j)

i
(0)
j

(
rı̄ + δı̄(m̄(l)), ı̄ ∈ P

(j)

i
(0)
j

)

f
(j)

i
(0)
j

(
rı̄ + δı̄(n̄(l)), ı̄ ∈ P

(j)

i
(0)
j

) , j ∈ {1, . . . , k} \ {l}, (4.4)

is a function of
(
rm̄(l) , rn̄(l)

)
only. Inserting now rı̄ = 0 for all ı̄’s except ı̄ ∈{

m̄(l), n̄(l)
}

in (4.2) we see that (4.4) is a quotient of a function of rm̄(l) and of a
function of rn̄(l) . Moreover,

f
(j)

i
(0)
j

(
xı̄, ı̄ ∈ P

(j)

i
(0)
j

)
=

∑

ḡ∈P
(j)

i
(0)
j

f
(j)

i
(0)
j

(
xı̄ + δı̄(ḡ), ı̄ ∈ P

(j)

i
(0)
j

)

for any xı̄, ı̄ ∈ P
(j)

i
(0)
j

. Hence again using the argument developed in the proof of

Theorem 2 we get

f
(j)

i
(0)
j

(
xı̄, ı̄ ∈ P

(j)

i
(0)
j

)
=

Γ
(∑

ı̄∈P
(j)

i
(0)
j

µ
(l,j)
ı̄

)

Γ
( ∑

ı̄∈P
(j)

i
(0)
j

(
µ

(l,j)
ı̄ + xı̄

))
∏

ı̄∈P
(j)

i
(0)
j

Γ
(
µ

(l,j)
ı̄ + xı̄

)

Γ
(
µ

(l,j)
ı̄

) ,

j ∈ {1, . . . , k} \ {l}.
Since the left hand side of the above expression does not depend on l, we can
suppress the double superscript (l, j) of µ

(l,j)
ı̄ into (j). Since l, j ∈ {1, . . . , k} \ {l}

and i
(0)
j were taken arbitrarily we have

f
(j)
l

(
xı̄, ı̄ ∈ P

(j)
l

)
=

Γ
( ∑

ı̄∈P
(j)
l

µ
(j)
ı̄

)

Γ
(∑

ı̄∈P
(j)
l

(
µ

(j)
ı̄ + xı̄

))
∏

ı̄∈P
(j)
l

Γ
(
µ

(j)
ı̄ + xı̄

)

Γ
(
µ

(j)
ı̄

) ,

l = 1, . . . , Ij , j = 1, . . . , k.
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Considering now the fact that the right hand sides of (4.2) are equal we conclude
that µ

(j)
ı̄ ’s do not depend on j, that is µ

(j)
ı̄ = µı̄, for any ı̄ ∈ I.

Now, similarly as in the proof of Theorem 2 we identify the parameters of
the functions F (j), j = 1, . . . , k, as

d

(
j
)

l =
∑

ı̄∈P
(j)
l

µı̄, l = 1, . . . , Ij .

Thus Θ = [θı̄, ı̄ ∈ I] is a Dirichlet k-way table with the parameter
(
µı̄, ı̄ ∈ I). ¤
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[16] A. Járai, Regularity property of the functional equation of the Dirichlet distribution,
Aequationes Math. 56 (1998), 37–46.
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