# Dependence of the Gauss-Codazzi equations and the Ricci equation of Lorentz surfaces 

By BANG-YEN CHEN (East Lansing)


#### Abstract

The fundamental equations of Gauss, Codazzi and Ricci provide the conditions for local isometric embeddability. In general, the three fundamental equations are independent for surfaces in Riemannian 4-manifolds. In contrast, we prove in this article that for arbitrary Lorentz surfaces in Lorentzian Kaehler surfaces the equation of Ricci is a consequence of the equations of Gauss and Codazzi.


## 1. Introduction

Let $\tilde{M}^{n}$ be a complex $n$-dimensional indefinite Kaehler manifold, that means $\tilde{M}^{n}$ is endowed with an almost complex structure $J$ and with an indefinite Riemannian metric $\tilde{g}$, which is $J$-Hermitian, i.e., for all $p \in \tilde{M}^{n}$, we have

$$
\begin{gather*}
\tilde{g}(J X, J Y)=\tilde{g}(X, Y), \quad \forall X, Y \in T_{p} M^{n},  \tag{1.1}\\
\tilde{\nabla} J=0 \tag{1.2}
\end{gather*}
$$

where $\tilde{\nabla}$ is the Levi-Civita connection of $\tilde{g}$. It follows that $J$ is integrable.
The complex index of $\tilde{M}^{n}$ is defined as the complex dimension of the largest complex negative definite subspace of the tangent space. When the complex index is one, we denote the indefinite Kaehler manifold by $\tilde{M}_{1}^{n}$, which is called a Lorentzian Kaehler manifold (cf. [1]).

The curvature tensor $\tilde{R}$ of an indefinite Kaehler manifold $\tilde{M}^{n}$ satisfies

$$
\begin{equation*}
\tilde{R}(X, Y ; Z, W)=-\tilde{R}(Y, X ; Z, W) \tag{1.3}
\end{equation*}
$$

2000 Mathematics Subject Classification: Primary: 53C40; Secondary: 53C50.
Key words and phrases: Lorentz surfaces, equation of Ricci, equations of Gauss-Codazzi, Lorentzian Kaehler surface.

$$
\begin{align*}
\tilde{R}(X, Y ; Z, W) & =\tilde{R}(Z, W ; X, Y),  \tag{1.4}\\
\tilde{R}(X, Y ; J Z, W) & =-\tilde{R}(X, Y ; Z, J W), \tag{1.5}
\end{align*}
$$

where $\tilde{R}(X, Y ; Z, W)=\tilde{g}(\tilde{R}(X, Y) Z, W)$.
It is well-known that the three fundamental equations of Gauss, Codazzi and Ricci play fundamental roles in the theory of submanifolds. For surfaces in Riemannian 4-manifolds, the three equations of Gauss, Codazzi and Ricci are independent in general.

On the other hand, we prove in this article a fundamental result for Lorentz surfaces; namely, for any Lorentz surface in any Lorentzian Kaehler surface the equation of Ricci is a consequence of the equations of Gauss and Codazzi.

## 2. Basic formulas and fundamental equations

Let $M_{1}^{2}$ be a Lorentz surface in a Lorentzian Kaehler surface $\tilde{M}_{1}^{2}$ with an almost complex structure $J$ and Lorentzian Kaehler metric $\tilde{g}$. Let $g$ denote the induced metric on $M_{1}^{2}$. Denote by $\nabla$ and $\tilde{\nabla}$ the Levi-Civita connection on $g$ and $\tilde{g}$, respectively; and by $R$ the curvature tensor of $M$.

The formulas of Gauss and Weingarten are given respectively by (cf. [2], [9])

$$
\begin{align*}
\tilde{\nabla}_{X} Y & =\nabla_{X} Y+h(X, Y)  \tag{2.1}\\
\tilde{\nabla}_{X} \xi & =-A_{\xi} X+D_{X} \xi \tag{2.2}
\end{align*}
$$

for vector fields $X, Y$ tangent to $M_{1}^{2}$ and $\xi$ normal to $M$, where $h, A$ and $D$ are the second fundamental form, the shape operator and the normal connection.

For a normal vector $\xi$ of $M_{1}^{2}$ at $x \in M_{1}^{2}$, the shape operator $A_{\xi}$ is a symmetric endomorphism of the tangent space $T_{x} M_{1}^{2}$. The shape operator and the second fundamental form are related by

$$
\begin{equation*}
\tilde{g}(h(X, Y), \xi)=g\left(A_{\xi} X, Y\right) \tag{2.3}
\end{equation*}
$$

for $X, Y$ tangent to $M_{1}^{2}$.
The three fundamental equations of Gauss, Codazzi and Ricci are given by

$$
\begin{align*}
R(X, Y ; Z, W)= & \tilde{R}(X, Y ; Z, W)+\langle h(X, W), h(Y, Z)\rangle  \tag{2.4}\\
& -\langle h(X, Z), h(Y, W)\rangle, \\
(\tilde{R}(X, Y) Z)^{\perp}= & \left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z),  \tag{2.5}\\
\tilde{g}\left(R^{D}(X, Y) \xi, \eta\right)= & \tilde{R}(X, Y ; \xi, \eta)+g\left(\left[A_{\xi}, A_{\eta}\right] X, Y\right), \tag{2.6}
\end{align*}
$$

where $X, Y, Z, W$ are vector tangent to $M_{1}^{2}$, and $\bar{\nabla} h$ is defined by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{2.7}
\end{equation*}
$$

The following lemma is an easy consequence of a result of [7].
Lemma 2.1. Locally there exists a coordinate system $\{x, y\}$ on a Lorenz surface $M_{1}^{2}$ such that the metric tensor is given by

$$
\begin{equation*}
g=-m^{2}(x, y)^{2}(d x \otimes d y+d y \otimes d x) \tag{2.8}
\end{equation*}
$$

for some positive function $m(x, y)$.
Proof. It is known that locally there exist isothermal coordinates $(u, v)$ on a Lorentz surface $M_{1}^{2}$ such that the metric tensor takes the form:

$$
\begin{equation*}
g=E(u, v)^{2}(-d u \otimes d u+d v \otimes d v) \tag{2.9}
\end{equation*}
$$

for some positive function $E$ (see [7] (see, also [5]). Thus, after putting

$$
x=u+v, \quad y=u-v
$$

we obtain (2.8) from (2.9) with $m(x, y)=E(x, y) / \sqrt{2}$.

## 3. Main theorem

The main purpose of this article is to prove the following fundamental result for Lorentz surfaces.

Theorem 3.1. The equation of Ricci is a consequence of the equations of Gauss and Codazzi for any Lorentz surface in any Lorentzian Kaehler surface.

Proof. Assume that $\phi: M_{1}^{2} \rightarrow \tilde{M}_{1}^{2}$ is an isometric immersion of a Lorentz surface $M_{1}^{2}$ into a Lorentzian Kaehler surface $\tilde{M}_{1}^{2}$. According to Lemma 2.1, we may assume that locally $M_{1}^{2}$ is equipped with the following Lorentzian metric:

$$
\begin{equation*}
g=-m^{2}(x, y)(d x \otimes d y+d y \otimes d x) \tag{3.1}
\end{equation*}
$$

for some positive function $m$. The Levi-Civita connection of $g$ satisfies

$$
\begin{equation*}
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x}=\frac{2 m_{x}}{m} \frac{\partial}{\partial x}, \quad \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y}=0, \quad \nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y}=\frac{2 m_{y}}{m} \frac{\partial}{\partial y} \tag{3.2}
\end{equation*}
$$

and the Gaussian curvature $K$ is given by

$$
\begin{equation*}
K=\frac{2 m m_{x y}-2 m_{x} m_{y}}{m^{4}} \tag{3.3}
\end{equation*}
$$

If we put

$$
\begin{equation*}
e_{1}=\frac{1}{m} \frac{\partial}{\partial x}, \quad e_{2}=\frac{1}{m} \frac{\partial}{\partial y}, \tag{3.4}
\end{equation*}
$$

then $\left\{e_{1}, e_{2}\right\}$ is a pseudo-orthonormal frame satisfying

$$
\begin{equation*}
\left\langle e_{1}, e_{1}\right\rangle=\left\langle e_{2}, e_{2}\right\rangle=0, \quad\left\langle e_{1}, e_{2}\right\rangle=-1 \tag{3.5}
\end{equation*}
$$

From (3.2) and (3.4) we find

$$
\begin{array}{ll}
\nabla_{e_{1}} e_{1}=\frac{m_{x}}{m^{2}} e_{1}, & \nabla_{e_{2}} e_{1}=-\frac{m_{y}}{m^{2}} e_{1}, \\
\nabla_{e_{1}} e_{2}=-\frac{m_{x}}{m^{2}} e_{2}, & \nabla_{e_{2}} e_{2}=\frac{m_{y}}{m^{2}} e_{2} . \tag{3.6}
\end{array}
$$

For each tangent vector $X$ of $M_{1}^{2}$, we put

$$
\begin{equation*}
J X=P X+F X \tag{3.7}
\end{equation*}
$$

where $P X$ and $F X$ are the tangential and the normal components of $J X$. For the pseudo-orthonormal frame $\left\{e_{1}, e_{2}\right\}$ defined by (3.4), it follows from (1.1), (3.5), and (3.7) that

$$
\begin{equation*}
P e_{1}=(\sinh \alpha) e_{1}, \quad P e_{2}=-(\sinh \alpha) e_{2} \tag{3.8}
\end{equation*}
$$

for some function $\alpha$. We call this function $\alpha$ the Wirtinger angle.
If we put

$$
\begin{equation*}
e_{3}=(\operatorname{sech} \alpha) F e_{1}, \quad e_{4}=(\operatorname{sech} \alpha) F e_{2} \tag{3.9}
\end{equation*}
$$

then we may derive from (3.7)-(3.9) that

$$
\begin{align*}
& J e_{1}=\sinh \alpha e_{1}+\cosh \alpha e_{3}, \quad J e_{2}=-\sinh \alpha e_{2}+\cosh \alpha e_{4},  \tag{3.10}\\
& J e_{3}=-\cosh \alpha e_{1}-\sinh \alpha e_{3}, \quad J e_{4}=-\cosh \alpha e_{2}+\sinh \alpha e_{4},  \tag{3.11}\\
& \left\langle e_{3}, e_{3}\right\rangle=\left\langle e_{4}, e_{4}\right\rangle=0, \quad\left\langle e_{3}, e_{4}\right\rangle=-1 . \tag{3.12}
\end{align*}
$$

We call such a frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ an adapted pseudo-orthonormal frame for $M_{1}^{2}$.
Let us put $\nabla_{X} e_{j}=\sum_{k=1}^{2} \omega_{j}^{k}(X) e_{k} ; j, k=1,2$. Then we deduce from (3.5) that

$$
\begin{equation*}
\nabla_{X} e_{1}=\omega(X) e_{1}, \quad \nabla_{X} e_{2}=-\omega(X) e_{2}, \quad \omega=\omega_{1}^{1} \tag{3.13}
\end{equation*}
$$

Similarly, if we put $D_{X} e_{r}=\omega_{r}^{s}(X) e_{s} ; r, s=3,4$, then (3.12) yields

$$
\begin{equation*}
D_{X} e_{3}=\Phi(X) e_{3}, \quad D_{X} e_{4}=-\Phi(X) e_{4}, \quad \Phi=\omega_{3}^{3} \tag{3.14}
\end{equation*}
$$

For the second fundamental form $h$, we put $h\left(e_{i}, e_{j}\right)=h_{i j}^{3} e_{3}+h_{i j}^{4} e_{4}$. Then, by applying $\tilde{\nabla}_{X}(J Y)=J \tilde{\nabla}_{X} Y,(3.10)-(3.14)$, we may obtain the following:

$$
\begin{align*}
& A_{e_{3}} e_{j}=h_{j 2}^{4} e_{1}+h_{1 j}^{4} e_{2}, \quad A_{e_{4}} e_{j}=h_{j 2}^{3} e_{1}+h_{1 j}^{3} e_{2}  \tag{3.15}\\
& e_{j} \alpha=\left(\omega_{j}-\Phi_{j}\right) \operatorname{coth} \alpha-2 h_{1 j}^{3}  \tag{3.16}\\
& e_{1} \alpha=h_{12}^{4}-h_{11}^{3}, \quad e_{2} \alpha=h_{22}^{4}-h_{12}^{3},  \tag{3.17}\\
& \omega_{j}-\Phi_{j}=\left(h_{1 j}^{3}+h_{j 2}^{4}\right) \tanh \alpha, \tag{3.18}
\end{align*}
$$

where $\omega_{j}=\omega\left(e_{j}\right)$ and $\Phi_{j}=\Phi\left(e_{j}\right)$ for $j=1,2$.
For simplicity, let us put

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\beta e_{3}+\gamma e_{4}, \quad h\left(e_{1}, e_{2}\right)=\delta e_{3}+\varphi e_{4}, \quad h\left(e_{2}, e_{2}\right)=\lambda e_{3}+\mu e_{4} \tag{3.19}
\end{equation*}
$$

In view of (3.12), and (3.19), equation (2.4) of Gauss can be expressed as

$$
\begin{equation*}
\gamma \lambda+\beta \mu-2 \delta \varphi=\frac{2\left(m m_{x y}-m_{x} m_{y}\right)}{m^{4}}-\tilde{K} \tag{3.20}
\end{equation*}
$$

where $\tilde{K}=-\tilde{R}\left(e_{1}, e_{2} ; e_{2}, e_{1}\right)$ is the sectional curvature of the ambient space $\tilde{M}_{1}^{2}$ with respect to the 2 -plane spanned by $e_{1}, e_{2}$.

By using (3.6), (3.14), and (3.18) we find

$$
\begin{align*}
D_{e_{1}} e_{3} & =\left(\frac{m_{x}}{m^{2}}-(\beta+\varphi) \tanh \alpha\right) e_{3} \\
D_{e_{2}} e_{3} & =-\left(\frac{m_{y}}{m^{2}}+(\delta+\mu) \tanh \alpha\right) e_{3} \\
D_{e_{1}} e_{4} & =\left((\beta+\varphi) \tanh \alpha-\frac{m_{x}}{m^{2}}\right) e_{4} \\
D_{e_{2}} e_{4} & =\left(\frac{m_{y}}{m^{2}}+(\delta+\mu) \tanh \alpha\right) e_{4} . \tag{3.21}
\end{align*}
$$

So, it follows from (3.6), (3.19) and (3.21) that

$$
\begin{aligned}
\left(\bar{\nabla}_{e_{1}} h\right)\left(e_{1}, e_{1}\right)= & \left(\frac{\beta_{x}}{m}-\frac{\beta m_{x}}{m^{2}}-\beta(\beta+\varphi) \tanh \alpha\right) e_{3} \\
& +\left(\frac{\gamma_{x}}{m}-\frac{3 \gamma m_{x}}{m^{2}}+\gamma(\beta+\varphi) \tanh \alpha\right) e_{4} \\
\left(\bar{\nabla}_{e_{1}} h\right)\left(e_{1}, e_{2}\right)= & \left(\frac{\delta_{x}}{m}+\frac{\delta m_{x}}{m^{2}}-\delta(\beta+\varphi) \tanh \alpha\right) e_{3} \\
& +\left(\frac{\varphi_{x}}{m}-\frac{\varphi m_{x}}{m^{2}}+\varphi(\beta+\varphi) \tanh \alpha\right) e_{4}
\end{aligned}
$$

$$
\begin{align*}
\left(\bar{\nabla}_{e_{2}} h\right)\left(e_{1}, e_{1}\right)= & \left(\frac{\beta_{y}}{m}+\frac{\beta m_{y}}{m^{2}}-\beta(\delta+\mu) \tanh \alpha\right) e_{3} \\
& +\left(\frac{\gamma_{y}}{m}+\frac{3 \gamma m_{y}}{m^{2}}+\gamma(\delta+\mu) \tanh \alpha\right) e_{4}, \\
\left(\bar{\nabla}_{e_{1}} h\right)\left(e_{2}, e_{2}\right)= & \left(\frac{\lambda_{x}}{m}+\frac{3 \lambda m_{x}}{m^{2}}-\lambda(\beta+\varphi) \tanh \alpha\right) e_{3} \\
& +\left(\frac{\mu_{x}}{m}+\frac{\mu m_{x}}{m^{2}}+\mu(\beta+\varphi) \tanh \alpha\right) e_{4} \\
\left(\bar{\nabla}_{e_{2}} h\right)\left(e_{1}, e_{2}\right)= & \left(\frac{\delta_{y}}{m}-\frac{\delta m_{y}}{m^{2}}-\delta(\delta+\mu) \tanh \alpha\right) e_{3} \\
& +\left(\frac{\varphi_{y}}{m}+\frac{\varphi m_{y}}{m^{2}}+\varphi(\delta+\mu) \tanh \alpha\right) e_{4} \\
\left(\bar{\nabla}_{e_{2}} h\right)\left(e_{2}, e_{2}\right)= & \left(\frac{\lambda_{y}}{m}-\frac{3 \lambda m_{y}}{m^{2}}-\lambda(\delta+\mu) \tanh \alpha\right) e_{3} \\
& +\left(\frac{\mu_{y}}{m}-\frac{\mu m_{y}}{m^{2}}+\mu(\delta+\mu) \tanh \alpha\right) e_{4} . \tag{3.22}
\end{align*}
$$

On the other hand, from (3.10) we also find

$$
\begin{align*}
\left(\tilde{R}\left(e_{1}, e_{2}\right) e_{2}\right)^{\perp}= & -\operatorname{sech} \alpha \tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{2}\right) e_{3} \\
& -\left\{\tanh \alpha \tilde{K}+\operatorname{sech} \alpha \tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{1}\right)\right\} e_{4}, \\
\left(\tilde{R}\left(e_{2}, e_{1}\right) e_{1}\right)^{\perp}= & \left\{\tanh \alpha \tilde{K}-\operatorname{sech} \alpha \tilde{R}\left(e_{2}, e_{1} ; e_{1}, J e_{2}\right)\right\} e_{3} \\
& -\operatorname{sech} \alpha \tilde{R}\left(e_{2}, e_{1} ; e_{1}, J e_{1}\right) e_{4} . \tag{3.23}
\end{align*}
$$

By applying (3.4), (3.12), (3.22), (3.23), and the equation of Codazzi we get

$$
\begin{align*}
\lambda_{x}-\delta_{y}= & \left(\lambda \beta+\lambda \varphi-\delta^{2}-\delta \mu\right) m \tanh \alpha-\frac{\delta m_{y}+3 \lambda m_{x}}{m} \\
& -m \operatorname{sech} \alpha \tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{2}\right), \\
\mu_{x}-\varphi_{y}= & (\delta \varphi-\beta \mu) m \tanh \alpha+\frac{\varphi m_{y}-\mu m_{x}}{m} \\
& -m \operatorname{sech} \alpha \tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{1}\right)-m(\tanh \alpha) \tilde{K}, \\
\beta_{y}-\delta_{x}= & (\beta \mu-\delta \varphi) m \tanh \alpha+\frac{\delta m_{x}-\beta m_{y}}{m} \\
& -m \operatorname{sech} \alpha \tilde{R}\left(e_{2}, e_{1} ; e_{1}, J e_{2}\right)+m(\tanh \alpha) \tilde{K}, \\
\gamma_{y}-\varphi_{x}= & \left(\beta \varphi+\varphi^{2}-\delta \gamma-\gamma \mu\right) m \tanh \alpha-\frac{\varphi m_{x}+3 \gamma m_{y}}{m} \\
& -m \operatorname{sech} \alpha \tilde{R}\left(e_{2}, e_{1} ; e_{1}, J e_{1}\right) . \tag{3.24}
\end{align*}
$$

Also, from (3.4), (3.5), (3.15), (3.17) and (3.19) we have

$$
\begin{align*}
A_{e_{3}} & =\left(\begin{array}{cc}
\varphi & \mu \\
\gamma & \varphi
\end{array}\right), & A_{e_{4}}=\left(\begin{array}{cc}
\delta & \lambda \\
\beta & \delta
\end{array}\right)  \tag{3.25}\\
\alpha_{x} & =m(\varphi-\beta), & \alpha_{y}=m(\mu-\delta) \tag{3.26}
\end{align*}
$$

By applying (3.10), (3.11) and (3.25) we derive that

$$
\begin{align*}
\tilde{R}\left(e_{1}, e_{2} ; e_{3}, e_{4}\right)= & \left(\operatorname{sech}^{2} \alpha-\tanh ^{2} \alpha\right) \tilde{K} \\
& -2 \operatorname{sech} \alpha \tanh \alpha \tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{1}\right),  \tag{3.27}\\
\left\langle\left[A_{e_{3}}, A_{e_{4}}\right] e_{1}, e_{2}\right\rangle= & \gamma \lambda-\beta \mu \tag{3.28}
\end{align*}
$$

From (3.6), (3.21), and (3.28), we find

$$
\begin{align*}
& \tilde{g}\left(R^{D}\left(e_{1}, e_{2}\right) e_{3}, e_{4}\right)=\frac{2 m m_{x y}-2 m_{x} m_{y}}{m^{4}}+\left\{(\delta+\mu) \alpha_{x}-(\beta+\varphi) \alpha_{y}\right\} \frac{\operatorname{sech}^{2} \alpha}{m} \\
& \quad+\left\{(\delta+\mu) m_{x}-(\beta+\varphi) m_{y}+m\left(\delta_{x}+\mu_{x}-\beta_{y}-\varphi_{y}\right)\right\} \frac{\tanh \alpha}{m^{2}} \tag{3.29}
\end{align*}
$$

Therefore, the equation of Ricci is given by

$$
\begin{align*}
& \frac{2 m m_{x y}-2 m_{x} m_{y}}{m^{4}}+\left\{(\delta+\mu) \alpha_{x}-(\beta+\varphi) \alpha_{y}\right\} \frac{\operatorname{sech}^{2} \alpha}{m} \\
& \quad+\left\{(\delta+\mu) m_{x}-(\beta+\varphi) m_{y}+m\left(\delta_{x}+\mu_{x}-\beta_{y}-\varphi_{y}\right)\right\} \frac{\tanh \alpha}{m^{2}} \\
& \quad=\gamma \lambda-\beta \mu+\left(\operatorname{sech}^{2} \alpha-\tanh ^{2} \alpha\right) \tilde{K}-2 \operatorname{sech} \alpha \tanh \alpha \tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{1}\right) \tag{3.30}
\end{align*}
$$

On the other hand, using (3.4) and (3.17) we find

$$
\begin{equation*}
(\delta+\mu) \alpha_{x}-(\beta+\varphi) \alpha_{y}=2 m(\delta \varphi-\beta \mu) \tag{3.31}
\end{equation*}
$$

Also, by applying (3.24), we get

$$
\begin{align*}
& (\delta+\mu) m_{x}-(\beta+\varphi) m_{y}+m\left(\delta_{x}+\mu_{x}-\beta_{y}-\varphi_{y}\right) \\
& =2(\delta \varphi-\beta \mu) m^{2} \tanh \alpha-2 m^{2} \tanh \alpha \tilde{K} \\
& \quad+m^{2} \operatorname{sech} \alpha\left\{R\left(e_{2}, e_{1} ; e_{1}, J e_{2}\right)-\tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{1}\right)\right\} \tag{3.32}
\end{align*}
$$

Substituting (3.31) and (3.32) into equation (3.30) gives

$$
\begin{align*}
\gamma \lambda+\beta \mu-2 \delta \varphi= & \frac{2 m m_{x y}-2 m_{x} m_{y}}{m^{4}}-\tilde{K} \\
& -\tanh \alpha \operatorname{sech} \alpha\left\{\tilde{R}\left(e_{2}, e_{1} ; e_{1}, J e_{2}\right)+\tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{1}\right)\right\} \tag{3.33}
\end{align*}
$$

On the other hand, by applying the curvature identities (1.3) and (1.5), we find

$$
\tilde{R}\left(e_{2}, e_{1} ; e_{1}, J e_{2}\right)=-\tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{1}\right)
$$

Combining this with (3.33) shows that equation (3.33) becomes equation (3.20) of Gauss. Consequently, the equation of Ricci is a consequence of Gauss and Codazzi for arbitrary Lorentz surfaces in any Lorentzian Kaehler surface.

From the proof of Theorem 1 we also have the following.
Theorem 3.2. The equation of Gauss is a consequence of the equations of Codazzi and Ricci for Lorentz surfaces in Lorentzian Kaehler surfaces.

Remark 1. Some special cases of Theorem 1 are obtained in [3], [4].
Remark 2. Theorem 1 is false in general if the Lorentz surface in a Lorentzian Kaehler surface were replaced by a spatial surface in a Lorentzian Kaehler surface.

Remark 3. Since the three fundamental equations of Gauss, Codazzi and Ricci provide the conditions for local isometric embeddability, these equations also play some important role in physics; in particular in the Kaluza-Klein theory (cf. [6], [8], [10]).

## References

[1] M. Barros and A. Romero, Indefinite Kaehler manifolds, Math. Ann. 261 (1982), 44-62.
[2] B. Y. Chen, Geometry of Submanifolds, Marcer Dekker, New York, 1973.
[3] B. Y. Chen, Minimal flat Lorentzian surfaces in Lorentzian complex space forms, Publ. Math. Debrecen 73 (2008), 233-248.
[4] B. Y. Chen, Nonlinear Klein-Gordon equations and Lorentzian minimal surfaces in Lorentzian complex space forms, Taiwanese J. Math. 13 (2009), 1-24.
[5] B. Y. Chen and J. Van der Veken, Spatial and Lorentzian surfaces in Robertson-Walker space-times, J. Math. Phys. 48, no. 7 (2007), 073509, 12 pp.
[6] S. Haesen and L. Verstraelen, Ideally embedded space-times, J. Math. Phys. 45 (2004), 1497-1510.
[7] J. C. Larsen, Complex analysis, maximal immersions and metric singularities, Monatsh. Math. 122 (1996), 105-156.
[8] M. D. Maia, The physics of the Gauss-Codazzi-Ricci equations, Mat. Apl. Comput. 5 (1986), 283-292.
[9] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
[10] A. Schwartz, The Gauss-Codazzi-Ricci equations in Riemannian manifolds, J. Math. Phys. Mass. Inst. Tech. 20 (1941), 30-79.

BANG-YEN CHEN
DEPARTMENT OF MATHEMATICS
MICHIGAN STATE UNIVERSITY
EAST LANSING, MICHIGAN 48824-1027
USA
E-mail: bychen@math.msu.edu
(Received August 6, 2008)

