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Dependence of the Gauss–Codazzi equations
and the Ricci equation of Lorentz surfaces

By BANG-YEN CHEN (East Lansing)

Abstract. The fundamental equations of Gauss, Codazzi and Ricci provide the

conditions for local isometric embeddability. In general, the three fundamental equations

are independent for surfaces in Riemannian 4-manifolds. In contrast, we prove in this

article that for arbitrary Lorentz surfaces in Lorentzian Kaehler surfaces the equation

of Ricci is a consequence of the equations of Gauss and Codazzi.

1. Introduction

Let M̃n be a complex n-dimensional indefinite Kaehler manifold, that means
M̃n is endowed with an almost complex structure J and with an indefinite Rie-
mannian metric g̃, which is J-Hermitian, i.e., for all p ∈ M̃n, we have

g̃(JX, JY ) = g̃(X, Y ), ∀X, Y ∈ TpM
n, (1.1)

∇̃J = 0, (1.2)

where ∇̃ is the Levi–Civita connection of g̃. It follows that J is integrable.
The complex index of M̃n is defined as the complex dimension of the largest

complex negative definite subspace of the tangent space. When the complex
index is one, we denote the indefinite Kaehler manifold by M̃n

1 , which is called a
Lorentzian Kaehler manifold (cf. [1]).

The curvature tensor R̃ of an indefinite Kaehler manifold M̃n satisfies

R̃(X,Y ; Z,W ) = −R̃(Y,X; Z, W ), (1.3)

2000 Mathematics Subject Classification: Primary: 53C40; Secondary: 53C50.
Key words and phrases: Lorentz surfaces, equation of Ricci, equations of Gauss–Codazzi,

Lorentzian Kaehler surface.



342 Bang-Yen Chen

R̃(X,Y ; Z,W ) = R̃(Z,W ;X,Y ), (1.4)

R̃(X,Y ; JZ,W ) = −R̃(X, Y ; Z, JW ), (1.5)

where R̃(X, Y ;Z, W ) = g̃(R̃(X, Y )Z,W ).
It is well-known that the three fundamental equations of Gauss, Codazzi

and Ricci play fundamental roles in the theory of submanifolds. For surfaces in
Riemannian 4-manifolds, the three equations of Gauss, Codazzi and Ricci are
independent in general.

On the other hand, we prove in this article a fundamental result for Lorentz
surfaces; namely, for any Lorentz surface in any Lorentzian Kaehler surface the
equation of Ricci is a consequence of the equations of Gauss and Codazzi.

2. Basic formulas and fundamental equations

Let M2
1 be a Lorentz surface in a Lorentzian Kaehler surface M̃2

1 with an
almost complex structure J and Lorentzian Kaehler metric g̃. Let g denote the
induced metric on M2

1 . Denote by ∇ and ∇̃ the Levi–Civita connection on g

and g̃, respectively; and by R the curvature tensor of M .
The formulas of Gauss and Weingarten are given respectively by (cf. [2], [9])

∇̃XY = ∇XY + h(X,Y ), (2.1)

∇̃Xξ = −AξX + DXξ (2.2)

for vector fields X, Y tangent to M2
1 and ξ normal to M , where h, A and D are

the second fundamental form, the shape operator and the normal connection.
For a normal vector ξ of M2

1 at x ∈ M2
1 , the shape operator Aξ is a symmetric

endomorphism of the tangent space TxM2
1 . The shape operator and the second

fundamental form are related by

g̃(h(X,Y ), ξ) = g(AξX, Y ) (2.3)

for X, Y tangent to M2
1 .

The three fundamental equations of Gauss, Codazzi and Ricci are given by

R(X, Y ; Z, W ) = R̃(X, Y ;Z, W ) + 〈h(X, W ), h(Y, Z)〉 (2.4)

− 〈h(X,Z), h(Y, W )〉 ,
(R̃(X,Y )Z)⊥ = (∇̄Xh)(Y, Z)− (∇̄Y h)(X, Z), (2.5)

g̃(RD(X, Y )ξ, η) = R̃(X, Y ; ξ, η) + g([Aξ, Aη]X, Y ), (2.6)
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where X, Y , Z, W are vector tangent to M2
1 , and ∇̄h is defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ). (2.7)

The following lemma is an easy consequence of a result of [7].

Lemma 2.1. Locally there exists a coordinate system {x, y} on a Lorenz

surface M2
1 such that the metric tensor is given by

g = −m2(x, y)2(dx⊗ dy + dy ⊗ dx) (2.8)

for some positive function m(x, y).

Proof. It is known that locally there exist isothermal coordinates (u, v) on
a Lorentz surface M2

1 such that the metric tensor takes the form:

g = E(u, v)2(−du⊗ du + dv ⊗ dv) (2.9)

for some positive function E (see [7] (see, also [5]). Thus, after putting

x = u + v, y = u− v,

we obtain (2.8) from (2.9) with m(x, y) = E(x, y)/
√

2. ¤

3. Main theorem

The main purpose of this article is to prove the following fundamental result
for Lorentz surfaces.

Theorem 3.1. The equation of Ricci is a consequence of the equations of

Gauss and Codazzi for any Lorentz surface in any Lorentzian Kaehler surface.

Proof. Assume that φ : M2
1 → M̃2

1 is an isometric immersion of a Lorentz
surface M2

1 into a Lorentzian Kaehler surface M̃2
1 . According to Lemma 2.1, we

may assume that locally M2
1 is equipped with the following Lorentzian metric:

g = −m2(x, y)(dx⊗ dy + dy ⊗ dx) (3.1)

for some positive function m. The Levi–Civita connection of g satisfies

∇ ∂
∂x

∂

∂x
=

2mx

m

∂

∂x
, ∇ ∂

∂x

∂

∂y
= 0, ∇ ∂

∂y

∂

∂y
=

2my

m

∂

∂y
(3.2)
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and the Gaussian curvature K is given by

K =
2mmxy − 2mxmy

m4
. (3.3)

If we put

e1 =
1
m

∂

∂x
, e2 =

1
m

∂

∂y
, (3.4)

then {e1, e2} is a pseudo-orthonormal frame satisfying

〈e1, e1〉 = 〈e2, e2〉 = 0, 〈e1, e2〉 = −1. (3.5)

From (3.2) and (3.4) we find

∇e1e1 =
mx

m2
e1, ∇e2e1 = −my

m2
e1,

∇e1e2 = −mx

m2
e2, ∇e2e2 =

my

m2
e2. (3.6)

For each tangent vector X of M2
1 , we put

JX = PX + FX, (3.7)

where PX and FX are the tangential and the normal components of JX. For the
pseudo-orthonormal frame {e1, e2} defined by (3.4), it follows from (1.1), (3.5),
and (3.7) that

Pe1 = (sinhα)e1, P e2 = −(sinh α)e2 (3.8)

for some function α. We call this function α the Wirtinger angle.
If we put

e3 = (sechα)Fe1, e4 = (sechα)Fe2, (3.9)

then we may derive from (3.7)-(3.9) that

Je1 = sinh αe1 + cosh αe3, Je2 = − sinh αe2 + cosh αe4, (3.10)

Je3 = − cosh αe1 − sinhαe3, Je4 = − cosh αe2 + sinh αe4, (3.11)

〈e3, e3〉 = 〈e4, e4〉 = 0, 〈e3, e4〉 = −1. (3.12)

We call such a frame {e1, e2, e3, e4} an adapted pseudo-orthonormal frame for M2
1 .

Let us put ∇Xej =
∑2

k=1 ωk
j (X)ek; j, k = 1, 2. Then we deduce from (3.5)

that

∇Xe1 = ω(X)e1, ∇Xe2 = −ω(X)e2, ω = ω1
1 . (3.13)

Similarly, if we put DXer = ωs
r(X)es; r, s = 3, 4, then (3.12) yields

DXe3 = Φ(X)e3, DXe4 = −Φ(X)e4, Φ = ω3
3 . (3.14)
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For the second fundamental form h, we put h(ei, ej) = h3
ije3 + h4

ije4. Then,
by applying ∇̃X(JY ) = J∇̃XY , (3.10)-(3.14), we may obtain the following:

Ae3ej = h4
j2e1 + h4

1je2, Ae4ej = h3
j2e1 + h3

1je2, (3.15)

ejα = (ωj − Φj) coth α− 2h3
1j , (3.16)

e1α = h4
12 − h3

11, e2α = h4
22 − h3

12, (3.17)

ωj − Φj = (h3
1j + h4

j2) tanh α, (3.18)

where ωj = ω(ej) and Φj = Φ(ej) for j = 1, 2.
For simplicity, let us put

h(e1, e1) = βe3 + γe4, h(e1, e2) = δe3 + ϕe4, h(e2, e2) = λe3 + µe4. (3.19)

In view of (3.12), and (3.19), equation (2.4) of Gauss can be expressed as

γλ + βµ− 2δϕ =
2(mmxy −mxmy)

m4
− K̃, (3.20)

where K̃ = −R̃(e1, e2; e2, e1) is the sectional curvature of the ambient space M̃2
1

with respect to the 2-plane spanned by e1, e2.
By using (3.6), (3.14), and (3.18) we find

De1e3 =
(mx

m2
− (β + ϕ) tanh α

)
e3,

De2e3 = −
(my

m2
+ (δ + µ) tanh α

)
e3,

De1e4 =
(
(β + ϕ) tanh α− mx

m2

)
e4,

De2e4 =
(my

m2
+ (δ + µ) tanh α

)
e4. (3.21)

So, it follows from (3.6), (3.19) and (3.21) that

(∇̄e1h)(e1, e1) =
(

βx

m
− βmx

m2
− β(β + ϕ) tanh α

)
e3

+
(

γx

m
− 3γmx

m2
+ γ(β + ϕ) tanh α

)
e4,

(∇̄e1h)(e1, e2) =
(

δx

m
+

δmx

m2
− δ(β + ϕ) tanh α

)
e3

+
(ϕx

m
− ϕmx

m2
+ ϕ(β + ϕ) tanh α

)
e4,
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(∇̄e2h)(e1, e1) =
(

βy

m
+

βmy

m2
− β(δ + µ) tanh α

)
e3

+
(

γy

m
+

3γmy

m2
+ γ(δ + µ) tanh α

)
e4,

(∇̄e1h)(e2, e2) =
(

λx

m
+

3λmx

m2
− λ(β + ϕ) tanh α

)
e3

+
(µx

m
+

µmx

m2
+ µ(β + ϕ) tanh α

)
e4,

(∇̄e2h)(e1, e2) =
(

δy

m
− δmy

m2
− δ(δ + µ) tanh α

)
e3

+
(ϕy

m
+

ϕmy

m2
+ ϕ(δ + µ) tanh α

)
e4,

(∇̄e2h)(e2, e2) =
(

λy

m
− 3λmy

m2
− λ(δ + µ) tanh α

)
e3

+
(µy

m
− µmy

m2
+ µ(δ + µ) tanh α

)
e4. (3.22)

On the other hand, from (3.10) we also find

(R̃(e1, e2)e2)⊥ = − sechαR̃(e1, e2; e2, Je2)e3

− {tanh αK̃ + sechαR̃(e1, e2; e2, Je1)}e4,

(R̃(e2, e1)e1)⊥ = {tanh αK̃ − sechαR̃(e2, e1; e1, Je2)}e3

− sechαR̃(e2, e1; e1, Je1)e4. (3.23)

By applying (3.4), (3.12), (3.22), (3.23), and the equation of Codazzi we get

λx − δy = (λβ + λϕ− δ2 − δµ)m tanh α− δmy + 3λmx

m

−m sechαR̃(e1, e2; e2, Je2),

µx − ϕy = (δϕ− βµ)m tanh α +
ϕmy − µmx

m

−m sechαR̃(e1, e2; e2, Je1)−m(tanhα)K̃,

βy − δx = (βµ− δϕ)m tanh α +
δmx − βmy

m

−m sechαR̃(e2, e1; e1, Je2) + m(tanhα)K̃,

γy − ϕx = (βϕ + ϕ2 − δγ − γµ)m tanh α− ϕmx + 3γmy

m

−m sechαR̃(e2, e1; e1, Je1). (3.24)
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Also, from (3.4), (3.5), (3.15), (3.17) and (3.19) we have

Ae3 =

(
ϕ µ

γ ϕ

)
, Ae4 =

(
δ λ

β δ

)
, (3.25)

αx = m(ϕ− β), αy = m(µ− δ). (3.26)

By applying (3.10), (3.11) and (3.25) we derive that

R̃(e1, e2; e3, e4) = (sech2 α− tanh2 α)K̃

− 2 sechα tanh αR̃(e1, e2; e2, Je1), (3.27)

〈[Ae3 , Ae4 ]e1, e2〉 = γλ− βµ. (3.28)

From (3.6), (3.21), and (3.28), we find

g̃(RD(e1, e2)e3, e4) =
2mmxy − 2mxmy

m4
+ {(δ + µ)αx − (β + ϕ)αy} sech2 α

m

+{(δ + µ)mx − (β + ϕ)my + m(δx + µx − βy − ϕy)} tanh α

m2
. (3.29)

Therefore, the equation of Ricci is given by

2mmxy − 2mxmy

m4
+ {(δ + µ)αx − (β + ϕ)αy} sech2 α

m

+ {(δ + µ)mx − (β + ϕ)my + m(δx + µx − βy − ϕy)} tanh α

m2

= γλ− βµ + (sech2 α− tanh2 α)K̃ − 2 sechα tanh αR̃(e1, e2; e2, Je1). (3.30)

On the other hand, using (3.4) and (3.17) we find

(δ + µ)αx − (β + ϕ)αy = 2m(δϕ− βµ). (3.31)

Also, by applying (3.24), we get

(δ + µ)mx − (β + ϕ)my + m(δx + µx − βy − ϕy)

= 2(δϕ− βµ)m2 tanh α− 2m2 tanh αK̃

+ m2 sechα
{
R(e2, e1; e1, Je2)− R̃(e1, e2; e2, Je1)

}
. (3.32)

Substituting (3.31) and (3.32) into equation (3.30) gives

γλ + βµ− 2δϕ =
2mmxy − 2mxmy

m4
− K̃

− tanh α sechα
{
R̃(e2, e1; e1, Je2) + R̃(e1, e2; e2, Je1)

}
. (3.33)
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On the other hand, by applying the curvature identities (1.3) and (1.5),
we find

R̃(e2, e1; e1, Je2) = −R̃(e1, e2; e2, Je1).

Combining this with (3.33) shows that equation (3.33) becomes equation (3.20)
of Gauss. Consequently, the equation of Ricci is a consequence of Gauss and
Codazzi for arbitrary Lorentz surfaces in any Lorentzian Kaehler surface. ¤

From the proof of Theorem 1 we also have the following.

Theorem 3.2. The equation of Gauss is a consequence of the equations of

Codazzi and Ricci for Lorentz surfaces in Lorentzian Kaehler surfaces.

Remark 1. Some special cases of Theorem 1 are obtained in [3], [4].

Remark 2. Theorem 1 is false in general if the Lorentz surface in a Lorentzian
Kaehler surface were replaced by a spatial surface in a Lorentzian Kaehler surface.

Remark 3. Since the three fundamental equations of Gauss, Codazzi and
Ricci provide the conditions for local isometric embeddability, these equations
also play some important role in physics; in particular in the Kaluza–Klein theory
(cf. [6], [8], [10]).
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