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Separation and contact of sets of different dimensions
in a doubling environment

By HUGO AIMAR (Santa Fe) and LILIANA NITTI (Santa Fe)

Abstract. In this note we consider two problems related to the geometry of spaces

of homogeneous type. First, we give necessary and sufficient geometric conditions on

two components of different dimension of a metric measure space, in order to guarantee

the doubling property on the whole space. Second, we construct spaces of homogeneous

type by pasting measures of different dimensions.

1. Introduction and statement of the results

Let (X, d) be a metric space, we shall say that a measure µ defined on the
Borel subsets of X is doubling if there exists a positive constant A such that the
inequalities

0 < µ(B(x, 2r)) ≤ Aµ(B(x, r)) < ∞,

hold for every x ∈ X and every r > 0, where B(x, r) denotes the d-ball centered at
x with radius r: {y : d(x, y) < r}. If µ is a given doubling measure on (X, d), we
say that (X, d, µ) is a space of homogeneous type. There is an extensive literature
on analysis on these structures, and several examples and applications are given
in [CW], where the more general case of quasi-metric spaces is also considered.

We shall also deal with measures that satisfy the property of uniform bound-
edness of the measure of the unit balls;

Mathematics Subject Classification: 42B25.
Key words and phrases: spaces of homogeneous type, doubling property.
The authors were supported by the Consejo Nacional de Investigaciones Cient́ıficas y Técnicas

de la República Argentina and by the Universidad Nacional del Litoral.



394 Hugo Aimar and Liliana Nitti

(P ): there exist positive and finite constants a1 and a2 such that the inequalities

a1 ≤ µ(B(x, 1)) ≤ a2

hold for every x ∈ X. Not every space of homogeneous type satisfies property
(P ). In fact in (R, |x− y|, |x| 13 dx) we do not have a upper bound for µ(B(x, 1)).
In (R, |x−y|, |x|− 1

3 dx) we do not have a lower bound and both of them are spaces
of homogeneous type since |x| 13 is an A2(R)-Muckenhoupt weight.

The restriction of the same weights to any compact interval of R give spaces
satisfying property (P ). This is always the case if µ(B(x, 1)) is continuous in
x ∈ X and X is compact, which is satisfied for some classical fractal sets with
the natural Hausdorff measure.

Several examples of spaces of homogeneous type satisfy a condition finer than
doubling that in particular implies property (P ). We shall say that (X, d, µ) is a
δ-normal space, for some positive number δ, if there exist two constants A1 and
A2 such that the inequalities

A1r
δ ≤ µ(B(x, r)) ≤ A2r

δ

hold for every x ∈ X and every 0 < r < diam(X). From the point of view
of Hausdorff dimension, defined in terms of the distance d, the basic difference
between doubling and δ-normality is that for the former we only have an upper
bound for the dimension of balls, for the later instead, we have that each ball has
exactly Hausdorff dimension equal to δ.

A basic result about the integration of powers of the metric on δ-normal
spaces, shall be usefull and is contained in our first lemma which shall be proved
in Section 3.

Lemma 1.1. Let (X, d, µ) be a δ-normal space and let α > −δ. Then there

exist constants M1 and M2, such that the inequalities

M1r
δ+α ≤

∫

B(x,r)

d(x, y)α dµ(y) ≤ M2r
δ+α

hold for every x ∈ X and every 0 < r < diam(X).

In order to introduce the basic notation and terminology and to illustrate
the type of problems considered, let us start by the simple case of linear spaces.
Precisely, the doubling property for the measure obtained as the sum of Lebesgue
measures supported on two linear subspaces of Rn with different dimensions im-
plies two basic geometric properties: separation and parallelism of the supports of
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the measures. In fact, for the sake of simplicity, let us think that n = 3 and take
H a given fixed two dimensional hyperplane in R3. Let L be the straight line given
by p+ tv, for t ∈ R, with p and v two fixed vectors ∈ R3. Set µ = σH +λL, where
for each Borel subset B of R3, σH(B) is the surface area of B ∩H and L is the
length of B ∩H. Then µ is a doubling measure in H ∪L or in an equivalent way,
H ∪L, with the Euclidean distance and the measure µ is a space of homogeneous
type, if and only if L is parallel to H and L is not contained H(p /∈ H). In order
to prove that µ is a doubling measure provided that L is a straight line parallel
to H with L * H, we only have to observe that the behavior of the function of r,
µ(B(x, r)) is linear when x ∈ L and r is small, and quadratic in all the other cases,
uniformly in x. On the other hand, if L ∩H = {q}, taking xn = q + nv, n ∈ N
and rn = dist(H, xn) we obtain a quadratic growth with respect to n for µ(2Bn),
while µ(Bn) is linear with respect to n. Hence the doubling is impossible. The
case L ⊂ H is even easier. With the above example in mind we shall say that two
subsets X1 and X2 in a metric space (X, d) are separated if d(X1, X2) > 0. On
the other hand we shall say that X1 is controlled by X2 if the function d(x,X2)
is bounded above when x ranges X1. The main result concerning separation and
control in a doubling environment is given in the next theorem.

Theorem 1.1 (Separation and Control). Let (X, d) be a metric space, with

X = X1 ∪ X2, X1 and X2 disjoint, nonempty and X1 closed. For i = 1, 2, let

µi be a doubling Borel measure defined on Xi satisfying property (P ). Assume

that the function G(x, y, r) = µ2(B(y,r)∩X2)
µ1(B(x,r)∩X1)

tends to zero as r → 0 uniformly in

x ∈ X1 and y ∈ X2 and tends to ∞ for r →∞ uniformly in x ∈ X1 and y ∈ X2.

Then X1 and X2 are separated and X1 is controlled by X2, if and only if (X, d, µ)
is a space of homogeneous type with µ(E) = µ1(E ∩X1) + µ2(E ∩X2) for every

Borel subset E of X.

The simplest case for which the measures µi, i = 1, 2, satisfy property (P ) and
the required conditions on the function G is given by measures in an unbounded
δi-normal space. In fact, if (X, d, µi) is a δi-normal space, i = 1, 2, with 0 <

δ1 < δ2 < ∞, we have that G(x, y, r) behaves as rδ2−δ1 uniformly in x ∈ X1

and y ∈ X2. Hence G(x, y, r) tends uniformly to zero as r → 0 and uniformly
to infinity for r → ∞. Aside from the linear situation described before stating
Theorem 1.1, examples of this situation arise also naturally in non linear or even
in fractal settings. In fact the results in [M], show that the fractal sets produced
by the Hutchinson iteration scheme (see [H]), under the open set condition, are
spaces of homogeneous type with the right Hausdorff measure which are δ-normal
for some positive δ. That is the case of middle thirds Cantor sets and Sierpinsky
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gaskets. Periodic extensions of such sets imbedded in R2 equipped with the usual
distance, provide a whole family of examples of such spaces with two components
of different non-integer dimension.

The second problem considered in this note is the following. Under the
assumption of contact of sets X1 and X2 of different dimensions, how to modify,
introducing weights, the normal measures in order to get a doubling measure for
the whole space X1∪X2? Let us start by showing an elementary example for the
case of two linear manifolds in the n-dimensional Euclidean space.

Let Xi, i = 1, 2, be two linear manifolds in Rn with dimensions ni and
0 < n1 < n2 < n. Assume that X1 and X2 intersect at the only point p ∈ Rn.
Let µi be the ni-dimensional Lebesgue measure supported on Xi.

From Theorem 1.1 we know that the measure

µ0(E) = µ1(E ∩X1) + µ2(E ∩X2)

can not be doubling. If instead of µ0 we take a measure of the form

µα(E) =
∫

E∩X1

|x− p|α dµ1 + µ2(E ∩X2), (1.1)

some elementary situations suggest that µα could be doubling for some specific
value of α.

In fact assume that n = 3 and that X1 is a straight line, X2 is a hyperplane
and that p is the only point in the intersection of X1 and X2. It is easy to show
that µ1 is doubling in this particular situation, moreover the only α for with µα

is doubling in X1 ∪X2 is α = 1. Actually as a corollary of our theorem we shall
prove that (1.1) is doubling as a measure defined on the space X1 ∪X2 with the
restriction of the usual distance, if and only if α = n2 − n1.

Before stating our result, let us start by introducing an abstract metric notion
of local contact for two given sets.

Let (X, d) be a metric space. Assume that X = X1∪X2 with Xi, i =1, 2, non-
empty, disjoint open subsets of X such that d(X1, X2) = 0. Since inf{d(x1, x2) :
x1 ∈ X1, x2 ∈ X2} = 0, we can take two sequences x1 = {x1

k : k ∈ N} ⊂ X1 and
x2 = {x2

k : k ∈ N} ⊂ X2 such that d(x1
k, x2

k) → 0 as k →∞. In this situation we
shall say that the pair of sequences (x1,x2) is admissible. The system (X1, X2, d)
is said to satisfy property C, (contact at only one “point”), if every admissible pair
of sequences (x1,x2) is also a pair of Cauchy sequences in X1 and X2 respectively.

Notice that if (X1, X2, d) satisfies property C and (x1,x2) and (y1,y2) are
two admissible pairs, we have that both d(x1

k, y1
k) and d(x2

k, y2
k) tend to zero as

k →∞. In fact by taking two new sequences z1 and z2 by alternating the terms
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of the sequences x1 and y1, and the sequences x2 and y2 respectively, we get
that (z1, z2) is again an admissible pair. From property C, z1 and z2 must be two
Cauchy sequences. In other words for every ε > 0, there exists K(ε) such that
d(zi

k, zi
m) < ε, for every k, m ≥ K(ε) and i = 1,2. From the construction of zi,

we have that for k large enough d(xi
k, yi

k) < ε.
Since we are not assuming completness of the space this definition is a substitute
of the heuristic idea of contact at only one point of the two components X1

and X2.
The next result which follows from property C allows us to define a “distance

to the contact”.

Lemma 1.2. Assume that the system (X1, X2, d) satisfies property C. Let

(x1,x2) be an admissible pair of sequences. Then for each x in X the sequences

of real numbers {d(x1
k, x) : k ∈ N} and {d(x2

k, x) : k ∈ N} have the same finite

positive limit. Moreover this limit is independent of the particular admissible pair

of sequences chosen.

The above lemma, allows us to define the function d : X → R+, by d(x) =
limk→∞ d(x, x1

k) = limk→∞ d(x, x2
k) for an admissible pair (x1,x2). Set di denote

di(x) = d(x) for x ∈ Xi and di(x) = 0 for x /∈ Xi, in other words di = χXid

where χE denotes the indicator function of the set E.
Notice that d1(x) ≥ d(x,X2) and d2(x) ≥ d(x,X1). Generally reversed in-

equalities like d1(x) ≤ C2d(x,X1) for every x ∈ X do not hold. When these
type of reversed inequalities hold we say that X1 and X2 have contact of order
zero. Let us formalize the generalized idea of contact of order zero for the two
components of X. We say that the system (X1, X2, d) with property C satisfies
Co (contact of order zero) if if there exists a constant C such that the inequality

d1(x) ≤ Cd(x,X2),

holds for every x ∈ X. Notice that since d1(x) ≥ d(x,X2), we have that C ≥ 1.
The next lemmas show that the roles of X1 and X2 in C0 can be interchanged.

Lemma 1.3. If the system (X1, X2, d) satisfies C, then property C0 is equiva-

lent to the existence of a constant c > 0 such that for every x ∈ X1, B(x, cd1(x))∩
X2 = ∅.

Lemma 1.4. If the system (X1, X2, d) satisfies C, then (X1, X2, d) satisfies

C0 if and only if (X2, X1, d) satisfies C0.

The next statement contains our main result concerning doubling and con-
tact. For i = 1, 2 let (Xi, d, µi) be a ni-normal space with constants Ai

1 and Ai
2
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and 0 < n1 < n2 < ∞, set A1 = min{A1
1, A

2
1} and A2 = max{A1

2, A
2
2}. For

α1 > −n1 and α2 > −n2, let us define

µα1,α2(E) =
∫

E∩X1

d1(x)α1 dµ1(x) +
∫

E∩X2

d2(x)α2 dµ2(x) (1.2)

for every Borel subset E of X = X1 ∪X2.
Notice that if (X1, X2, d) satisfies C0, then

µα1,α2(E) '
∫

E∩X1

d(x,X2)α1 dµ1(x) +
∫

E∩X2

d(x,X1)α2 dµ2(x).

Theorem 1.2 (Doubling and contact). Assume that (X1, X2, d) satisfies C0.

For i = 1, 2 let (Xi, d, µi) be a ni-normal space with 0 < n1 < n2 < ∞, α1 > −n1,

α2 > −n2, let µα1,α2 be the measure defined by (1.2). Then (X1 ∪X2, d, µα1,α2)
is a space of homogenous type if and only if α1 − α2 = n2 − n1.

Let us point out that from the structure results contained in [MS], all the
above theorems can immediately be extended to quasi-metric spaces.
In Section 2 we give the proof of Theorem 1.1. In Section 3 we prove Theorem 1.2
and Lemmas 1.1, 1.2, 1.3 and 1.4 among same other technical results.

2. Proof of Theorem 1.1

We shall first prove in two independent results that in a mixed dimension
environment, doubling implies separation and that doubling implies the control
of the set of larger dimension over the set of smaller dimension. We point out
that none of them needs property (P ) which shall only be used in the proof of
the converse.

Let us start by proving that doubling implies separation.

Theorem 2.1 (Separation). Let (X, d) be a metric space. Assume that

X = X1 ∪ X2 with X1 and X2 nonempty, X1 closed and X1 ∩ X2 = ∅. Let us

assume also that for i = 1, 2, µi is a Borel measure defined on Xi such that the

function G(x, y, r) = µ2(B(y,r)∩X2)
µ1(B(x,r)∩X1)

tends to zero as r → 0 uniformly in x ∈ X1

and y ∈ X2. Let µ(E) = µ1(E ∩X1) + µ2(E ∩X2) for every Borel set E of X.

Then if (X, d, µ) is a space of homogeneous type, we have that X1and X2 are

separated.
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Proof. Assume that d(X1, X2) = 0. Pick a sequence {yn} ⊂ X2 such that
each rn = d(yn, X1) > 0 for all n and rn → 0 as n → ∞. Now, for each n ∈ N

we have a point xn ∈ X1 ∩B(yn, 2rn). Hence B(xn, rn) ⊂ B(yn, 4rn). So that

µ(B(yn, 4rn)) ≥ µ1(B(yn, 4rn)) ∩X1) ≥ µ1(B(xn, rn) ∩X1)

for every n ∈ N. On the other hand µ(B(yn, rn)) = µ2(B(yn, rn)), from the above
inequalities we have

µ(B(yn, 4rn))
µ(B(yn, rn))

≥ µ1(B(xn, rn) ∩X1)
µ2(B(yn, rn))

= (G(xn, yn, rn))−1.

Since the right hand side in the last inequality tends to infinity as n → ∞,
the doubling property is impossible for µ. ¤

Theorem 2.2 (Control). Let (X, d) be a metric space. Assume that X =
X1 ∪X2 with X1 and X2 nonempty, X1 closed and X1 ∩X2 = ∅. Let us assume

also that for i = 1, 2 µi is a Borel measure defined on Xi such the function

G(x, y, r) tends to ∞ as r → ∞ uniformly in x ∈ X1 and y ∈ X2. Let µ(E) =
µ1(E ∩X1) + µ2(E ∩X2) for every Borel set E of X. Then if (X, d, µ) is a space

of homogeneous type, we have that X1 is controlled by X2.

Proof. Assume that the function d(x,X2) for x ∈ X1 is unbounded. Let
us pick a sequence {xn} of points in X1 with d(xn, X2) →∞ as n →∞. Taking
rn = d(xn, X2) we have that B(xn, rn) ⊂ X1 and B(xn, 4rn) ⊃ B(yn, rn) with
yn ∈ X2 ∩B(xn, 2rn), hence

µ(B(xn, 4rn) ≥ µ2(B(yn, rn) ∩X2).
On the other hand

µ(B(xn, rn)) = µ1(B(xn, rn)).

So that, since µ is doubling on (X, d) we have

G(xn, yn, rn) =
µ2(B(yn, rn) ∩X2)
µ1(B(xn, rn) ∩X1)

≤ µ2(B(xn, 4rn) ∩X2)
µ1(B(xn, rn))

≤ µ(B(xn, 4rn))
µ(B(xn, rn))

,

which is bounded even when rn →∞. ¤

As a corollary of the above two theorems we get the first half of Theorem 1.1

Corollary 2.1. Let (X, d) a metric space. Assume that X = X1∪X2 with X1

and X2 disjoint, nonempty and X1 closed. Let us assume also that for i = 1, 2,

µi is a Borel measure defined on Xi such that the function G(x, y, r) tends to

zero as r → 0 and tends to ∞ for r → ∞ uniformly in x ∈ X1 and y ∈ X2. Let

µ(E) = µ1(E ∩ X1) + µ2(E ∩ X2) for every E of X. If (X, d, µ) is a space of

homogeneous type, then X1 and X2 are separated and X1 is controlled by X2.
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The next theorem shows us that under the assumption of property (P ), the
converse of Corollary 2.1 holds.

Theorem 2.3. Let (X, d) a metric space. Assume that X = X1 ∪X2 with

X1 and X2 disjoint, nonempty and X1 closed. Let us assume that for i = 1, 2 µi

is a doubling Borel measure defined on Xi and that each µi verifies property (P ).
If the function G(x, y, r) tends to zero as r → 0 uniformly in x ∈ X1 and y ∈ X2

and tends to ∞ for r → ∞ uniformly in x ∈ X1 and y ∈ X2, if X1 and X2 are

separated and if X1 is controlled by X2, then (X, d, µ) is a space of homogeneous

type with µ(E) = µ1(E ∩X1) + µ2(E ∩X2)

Proof. To prove that µ is doubling, we shall study the family of functions
of r > 0, ψx(r) = µ(B(x,2r))

µ(B(x,r)) for x ∈ X. We will see that this family is uniformly
bounded above. Suppose first that x ∈ X1. Let c1 and c2 be positive constants
such that c1 ≤ d(x,X2) ≤ c2, for every x ∈ X1. Notice that if 0 < r < c1

2 ,
B(x, 2r) ∩X2 = ∅, for x ∈ X1 then µ(B(x, 2r)) and µ(B(x, r)) are defined only
by the term corresponding to µ1. Thus, ψx(r) = µ1(B(x,2r))

µ1(B(x,r)) is bounded uniformly
because µ1 is doubling. Now we suppose that r > 2c2. Therefore there exists
y ∈ X2 such that d(x, y) < r

2 . Then B(y, r
2 ) ⊂ B(x, r), hence we obtain that

ψx(r) =
µ(B(x, 2r))
µ(B(x, r))

=
µ1(B(x, 2r) ∩X1) + µ2(B(x, 2r) ∩X2)
µ1(B(x, r) ∩X1) + µ2(B(x, r) ∩X2)

then

ψx(r) ≤ A1 +
µ2(B(x, 2r) ∩X2)
µ2(B(y, r

2 ) ∩X2)

where A1 is the doubling constant for µ1. Notice that B(x, 2r) ⊂ B(y, 4r), and
from the above inequalities we have that

ψx(r) ≤ A1 +
µ2(B(y, 4r))
µ2(B(y, r

2 ))
. (2.1)

Since µ2 is also doubling we get again that ψx is bounded above. Suppose now
that c1

2 ≤ r ≤ 2c2

ψx(r) ≤ µ1(B(x, 2r) ∩X1) + µ2(B(x, 2r) ∩X2)
µ1(B(x, r) ∩X1)

≤ A1 +
µ2(B(x, 2r) ∩X2)
µ1(B(x, r) ∩X1)

≤ A1 +
µ2(B(x, 4c2) ∩X2)
µ1(B(x, c1

2 ) ∩X1)
.

Observe that since d(x, X2) < c2, there exists y ∈ X2 such that d(y, x) < 2c2,
therefore the ball B(x, 4c2) ⊂ B(y, 8c2). Applying this to the last inequality, we
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obtain that

ψx(r) ≤ A1 +
µ2(B(y, 8c2) ∩X2)
µ1(B(x, c1

2 ) ∩X1)
.

Since each µi satisfies property (P ) and is doubling we get a uniform bound for
ψx(r).
Let us now assume that x ∈ X2. Notice that for 0 < 2r < d(x,X1) the uniform
boundedness of ψx(r) follows from the doubling property of µ2, since B(x, 2r) ∩
X1 = ∅. Assume now that d(x,X1) < 2r, hence

ψx(r) ≤ µ1(B(x, 2r) ∩X1)
µ2(B(x, r) ∩X2)

+
µ2(B(x, 2r) ∩X2)
µ2(B(x, r) ∩X2)

.

The second term on the right hand side of this inequality is bounded because
µ2 is doubling. On the other hand, since B(x, 2r) ∩ X1 6= ∅, then there exists
y ∈ B(x, 2r) ∩X1, such that the ball B(x, 2r) ⊂ B(y, 4r), then

ψx(r) ≤ A2 +
µ1(B(y, 4r) ∩X1)
µ2(B(x, r) ∩X2)

.

Since G → ∞ for r → ∞ uniformly in x and y, there exists M ∈ N so that if
r > M ,we have

µ1(B(y, 4r) ∩X1)
µ2(B(x, r) ∩X2)

≤ 1.

On the other hand, if r ≤ M , since X1 and X2 are separated, 2r > d(x,X1) > c1,
we have that c1

2 ≤ r < M and we can iterate property (P ) to obtain the desired
boundedness of ψx(r). ¤

3. Proof of Theorem 1.2

We start with the proof of Lemmas 1.1 to 1.4.

Proof of Lemma 1.1. We observe that since the space has no atoms, given
the ball B(x, r), with x ∈ X and r < diam(X), then

µα(B(x, r)) :=
∫

B(x,r)

d(x, y)α dµ(y) =
∞∑

j=0

∫

rM−j−1≤d(x,y)<rM−j

d(x, y)αdµ(y),

where M is a constant greater than one that we will fix later. We shall obtain
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upper and lower estimates for the general term of the last series. Notice that in
the integral defining the j − th term of the series we have that d(x, y) ' rM−j ,
then

∫

rM−j−1≤d(x,y)<rM−j

d(x, y)α dµ(y)

' rαM−αj [µ(B(y, rM−j))− µ(B(x, rM−j−1))].

Since (X, d, µ) is a δ-normal space and r < diam(X) we have that

a1(rM−i)δ ≤ µ(B(x, rM−i)) ≤ a2(rM−i)δ

for every i = 0, 1, 2, . . . . By choosing M =
(

2a2
a1

) 1
δ and applying the above

inequalities with i = j and i = j + 1, we have

a1

2
(rM−j)δ ≤

(
a1 − a2

M δ

)
(rM−j)δ ≤ µ(B(x, rM−j))− µ(B(x, rM−j−1))

≤
(
a2 − a1

M δ

)
(rM−j)δ ≤ a2(rM−j)δ.

Hence

µα(Bx, r) ' rα+δ
∞∑

j=0

M−(α+δ)j ' rα+δ

for α > −δ. ¤

Proof of Lemma 1.2. Assume that x ∈ X1. Notice that for each x ∈ X1

and for each sequence x1 = {x1
k : k ∈ N} ⊂ X1, which is the first component of an

admissible pair, since |d(x1
k, x)−d(x1

m, x)| ≤ d(x1
k, x1

m), we have that the sequence
of real numbers {d(x1

k, x) : k ∈ N} converges to a real number d(x). On the other
hand if x2 = {x2

k : k ∈ N}, is the second component of an admissible pair we
have that |d(x2

k, x) − d(x)| ≤ |d(x2
k, x) − d(x1

k, x)| + |d(x1
k, x) − d(x)|, hence we

also have that d(x) = limn→∞ d(x2
k, x). From the remark following the definition

of property C, we have that d(x) is independent of the particular admissible pair
(x1,x2). Notice also that since X1 is open, d(x) > 0 on X1. For x ∈ X2 the
argument is the same. ¤

Proof of Lemma 1.3. Let us first prove that C0 for the system (X1, X2, d)
implies that there exists a constant c > 0 such that for every x ∈ X1 the ball
B(x, cd(x)), has no point in X2. We know from property C0, that for some
constant C > 0 and every x ∈ X1, d(x) ≤ Cd(x,X2). Take c = C−1. If
B(x, cd(x)) ∩X2 6= ∅, for some x ∈ X1, then there would exist y ∈ X2 such that
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d(y, x) < cd(x) for that particular x ∈ X1. Hence d(x, y) < cd(x) ≤ cCd(x, X2) =
d(x,X2), which is impossible since y ∈ X2.

To show the sufficiency of that condition, take C = c−1 and notice that for
every x ∈ X1 the ball B(x, cd(x)) is contained in X1. Which in turn implies that
d(x) ≤ Cd(x,X2) as desired. ¤

Proof of Lemma 1.4. We assume that (X1, X2, d) satisfies C0. From Lem-
ma 1.3, we only need to prove the existence of a constant c′ > 0 such that for
every y ∈ X2 we have that B(y, c′d(y)) ∩ X1 = ∅. Take 0 < c′ < 1 for which

c′
1−c′ < c, where c is the constant for which B(x, cd(x))∩X2 = ∅ for every x ∈ X1.
Assume that for some y ∈ X2, B(y, c′d(y)) ∩X1 6= ∅. Hence, there exists x ∈ X1

such that x ∈ B(y, c′d(y)). Notice that

d(y) ≤ 1
1− c′

d(x).

In fact if (x1,x2) is an admissible pair of sequences, we have d(y, x2
n) ≤ d(y, x) +

d(x, x2
n) ≤ c′d(y) + d(x, x1

n) + d(x1
n, x2

n). Let n → ∞, to obtain the desired
inequality. Hence d(x, y) < c′

1−c′ d(x) < cd(x) or B(x, cd(x)) ∩X2 6= ∅, which is a
contradiction. ¤

Recall that in the introduction we defined the functions di = dχXi , i = 1, 2.
Let us show that the functions dα

i with i = 1, 2, and α > −ni, are locally inte-
grable, and moreover that the measure µα

i (E) =
∫

Xi∩E
di(x)αdµi(x) is doubling

on (Xi, d). These results are contained in the next theorem.

Theorem 3.1. Let (X1, X2, d) be as in Theorem 1.2. Then for every α >

−ni for i = 1, 2, the measure µα
i on the Borel subsets of Xi satisfies the following

estimate for y ∈ Xi and 0 < γ < (A1
A2

)
1

ni

(1) µα
i (B(y, r)) ≥ a1r

α+ni , if di(y) ≤ γr
5 and 0 < r < diam(Xi),

(2) µα
i (B(y, r)) ≥ a1di(y)αrni , if di(y) > γr

5 and 0 < r < diam(Xi),

(3) µα
i (B(y, r)) ≤ a2r

α+ni , if di(y) ≤ 5r,

(4) µα
i (B(y, r)) ≤ a2d

α
i (y)rni , if di(y) > 5r.

The constants a1 and a2 depend only on the geometric constants. As a conse-

quence, each (Xi, d, µα
i ) is a space of homogeneous type.

Proof. To prove the theorem, let us work out the case i = 1. Since
(X1, d, µ1) is a n1 -normal space, with constants A1 and A2, the inequalities
A1r

n1 ≤ µ1(B(x, r)) ≤ A2r
n1 hold for every x ∈ X1 and 0 < r < diam(X1). We
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shall obtain upper and lower estimates for
∫

B(y,r)

d1(x)αdµ1(x) (3.1)

in terms of r > 0 and y ∈ X1. Let us start with the lower estimates in the case in
which d1(y) ≤ γ

5 r, where 0 < γ < (A1
A2

)
1

n1 . Set C(y, r) = B(y, r)\B(y, γr); r > 0,
y ∈ X1. Since d1(y) ≤ γ

5 r, then, for n large enough we have that d(y, x1
n) ≤ γ

4 r,
where (x1,x2) is an admissible pair. Hence for those values of n and x ∈ C(y, r),
we must have the inequalities 2r ≥ d(x, x1

n) ≥ 3γ
4 r. So that 2r ≥ d1(x) ≥ 3γ

4 r.
Hence

∫
B(y,r)

dα
1 dµ1 ≥

∫
C(y,r)

dα
1 dµ1 ≥ crαµ1(C(y, r)) ≥ crα[A1r

n1−A2γ
n1rn1 ] =

c′rα+n1 , which follows from our choice of γ.
Let us now obtain a lower bound for 3.1 when d1(y) > γ

5 r. Notice that, in this
case, d1(x) v d1(y) for every x ∈ B(y, γr

10 ) where the equivalence depends only on
the geometric constants of the space. So that

∫
B(y,r)

dα
1 dµ1 ≥

∫
B(y, γr

10 )
dα
1 dµ1 ≥

cd1(y)αrn1 . Hence our lower estimates for 3.1 with α > −n1, y ∈ X1 and 0 <

r < diam(X1) are given by a constant times

(1) rα+n1 when d1(y) ≤ γr
5 ,

(2) dα
1 rn1 when d1(y) > γr

5 .

Let us now prove (3). It is clear that for n large enough, we have the inequality
d(y, x1

n) ≤ 6r. Hence for these values of n the ball B(y, r) ⊂ B(x1
n, 8r) so that

χB(y,r)(x)dα
1 (x) ≤ lim infn→∞(χB(x1

n,8r)(x)dα(x, x1
n)). Hence applying Fatou’s

Lemma and Lemma 1.1 we have∫

B(y,r)

d1(x)αdµ1(x) ≤ lim inf
∫

B(x1
n,8r)

d(x, x1
n)αdµ1(x) ' rα+n1 .

To prove (4), we notice that if d1(y) > 5r, there exists M ∈ N such that for every
n ≥ M , d(y, x1

n) > 2r, and for these values of n and for every x ∈ B(y, r) we have
d1(x) ' d1(y). Hence

∫
B(y,r)

d1(x)αdµ1(x) ' d1(y)αrn1 . It only remains to prove
that µα

1 is doubling. We shall consider the family of functions ϕy(r) = µα
1 (B(y, r)),

y ∈ X1 and r > 0. Notice that:

(a) 0 < r ≤ d1(y)
5 , from (4) and (2), we have a1d1(y)αrn1 ≤ ϕy(r) ≤ a2d

α
1 (y)rn1 .

(b) d1(y)
5 < r < diam(X1), is valid that a1r

n1+α ≤ ϕy(r) ≤ a2r
n1+α,

In fact, we note that from (3), we obtain that ϕy(r) ≤ a2r
n1+α. To get a

lower estimate, we consider the cases, d1(y)
5 < r ≤ 5d1(y)

γ and 5d1(y)
γ ≤ r <

diam(X1). If X1 is unbounded, for the first case, from (2) and the fact that
r ≈ d1(y) we obtain that a1r

n1+α ≤ ϕy(r) and for the second, from (1),
we obtain the same estimate. If X1 is bounded, the situation is as easy as
before.
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(c) X1 is bounded and r ≥ diam(X1), we have that ϕy(r) = µα1(X1)

Using (a), (b) and (c) the uniform boundedness of

ϕy(2r)
ϕy(r)

(3.2)

as function of r for y ∈ X1, follows immediately. ¤

Before starting with the proof of Theorem 1.2, let us write as a theorem,
with some detail, the behavior of µα1,α2 on balls of (X1 ∪X2, d) as a function of
the center and the radius of the ball, both in the bounded and unbounded cases.
In the next statement we shall use the following notation. Set n(x) and α(x) to
denote the simple functions given by

n(x) =





n1; if x ∈ X1

n2; if x ∈ X2

(3.3)

and

α(x) =





α1; if x ∈ X1

α2; if x ∈ X2.
(3.4)

Theorem 3.2. Assume that (X1, X2, d) satisfies C0. For i = 1, 2 let µi be a

Borel measure on (Xi, d) such that (Xi, d, µi) is a ni-normal space, with 0 < n1 <

n2 < ∞. For α1 > −n1, and α2 > −n2, let µα1,α2 be the measure define by (1.2).
Assume that α1 − α2 = n2 − n1 and set β = α1 + n1 = α2 + n2 = α(x) + n(x).
Then, there exist constants 0 < a < A < ∞ and 1 > c > 0 depending only on αi,

such that given x ∈ X = X1 ∪X2 and r > 0 we have

3.2.1 ad(x)α(x)rn(x) ≤ µα1,α2(B(x, r)) ≤ Ad(x)α(x)rn(x)

for x ∈ X and r < cd(x);

3.2.2 arβ ≤ µα1,α2(B(x, r)) ≤ Arβ

for cd(x) ≤ r ≤ S := diam(X1) + diam(X2);

3.2.3 µα1,α2(B(x, r)) = µα1,α2(X)
for r > S.

Proof. Take c = γ
5C , with γ chosen in such a way that the result of The-

orem 3.1 holds for i = 1 and i = 2 and C is the constant for property C0 for
the system (X1, X2, d), notice that c < 1. Let us start by proving 3.2.1. Take
x ∈ Xi and 0 < r < cd(x) = γd(x)

5C < diam(Xi). From C0, we obtain also that
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r <
γd(x,Xj)

5 , j 6= i. Hence Xj ∩B(x, r) = ∅ and µα1,α2(B(x, r)) = µαi((B(x, r)).
So that from (a) in the proof of Theorem 3.1 we have the desired inequalities;

a1d
α(x)(x)rn(x) ≤ µα1,α2(B(x, r)) ≤ a2d

α(x)(x)rn(x).

Proof of 3.2.3. Notice that from property C of the system (X1, X2, d) we have
that diam(X1 ∪ X2) ≤ diam(X1) + diam(X2). In fact given an admissible pair
(x1,x2) and two points, x ∈ X1 and y ∈ X2, we have that d(x, y) ≤ d(x, x1

n) +
d(x1

n, x2
n) + d(x2

n, y), hence diam(X1 ∪ X2) ≤ diam(X1) + diam(X2) + d(x1
n, x2

n)
for every n ∈ N. So that, if r > diam(X1) + diam(X2) then B(x, r) = X1 ∪X2.

Let us next prove 3.2.2. Since, even when the estimates are not difficult, there
are several different situations for x and r that deserve to be considered in separate
form, we shall introduce some notation. Set m = min{diam(X1), diam(X2)} and
M = max{diam(X1), diam(X2)}. In the general situation that we are considering
any one of the two components of the space X could be bounded or unbounded.
So that regarding the effective variation of r > 0, we have three basic intervals
(or half-lines) given by: J1 = (0, m), J2 = [m,M ], J3 = (M, S], where S =
diam(X1) + diam(X2).
Notice that if m = +∞, J1 is the half line R+ and J2 and J3 are empty. Also,
if m < +∞ and M = +∞, then J2 is the closed half line starting at m and J3

is empty. The only case in which J3 is non-empty is when both components and
hence the whole space X are bounded.
Now, since we are considering case 3.2.2 in the statement of Theorem 3.2, the
given point x ∈ X and the radius r > 0 are related by cd(x) ≤ r ≤ S, we shall
still divide this interval in two subintervals to provide the desired estimates. Set
I1 = [cd(x), 5

γ d(x)] and I2 = [ 5
γ d(x), S]. Of course when S = +∞, I2 becomes the

open half line starting at 5
γ d(x). With these two partitions in mind we consider

the intersection sets Kp,q = Ip ∩ Jq for p = 1, 2 and q = 1, 2, 3.

Estimates for µα1,α2 in K1,1:
Since r ∈ I1, we have that rn(x)+α(x) = rβ ∼= d(x)α(x)rn(x). Let i = 1, 2 be such
that x ∈ Xi. From (a) and (b) in the proof of Theorem 3.1 we obtain that

a1r
n(x)+α(x) ≤ µα1,α2(B(x, r)) =

∫

B(x,r)∩X1

d(y)α1 dµ1(y)

+
∫

B(x,r)∩X2

d(y)α2 dµ2(y)

≤ a2r
n(x)+α(x) +

∫

B(x,r)∩Xj

d(y)αj dµj(y) (3.5)
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for j 6= i. Then we only need to get an upper estimate for
∫

B(x,r)∩Xj

d(y)αj dµj(y)

when B(x, r) ∩ Xj 6= ∅, for j 6= i. We consider an admissible pair (x1,x2).
Since d(x) ≤ r

c , there exists N0 ∈ N, such that, for every n ≥ N0, we have that
d(x, xi

n) ≤ 2r
c , furthermore, there exists N1 ∈ N, such that d(xi

n, xj
n) ≤ r

c for
n ≥ N1. Then for z ∈ B(xj

n, r) we have both: B(x, r) ⊂ B(z, rk), with k = 2 + 3
c

and d(z) ≤ r,. From (b) in the proof of the Theorem 3.1 applied to the ball
B(z, rk), we get

∫

B(x,r)∩Xj

d(y)αj dµj(y) ≤ µαj (B(x, r)) ≤ µαj (B(z, rk)) ≤ Arβ .

Estimates for µα1,α2 in K1,2:
We are assuming K1,2 6= ∅, hence J2 6= ∅. So that m < ∞. Let i ∈ {1, 2}
be such that diam(Xi) = m. We shall use j to denote the only element of
{1, 2} with j 6= i. So diam(Xj) ≥ diam(Xi). Let us first assume that x ∈ Xi.
Since r ∈ I1 we have that cd(x) ≤ r ≤ 5

γ d(x). Since r ∈ J2 we also have that
diam(Xi) = m ≤ r < M = diam(Xj). But, since we are assuming x ∈ Xi, we
have that d(x) ≤ m. Hence r ' m. Hence

µα1,α2(B(x, r)) ' µα1,α2(B(x, m))

which for x ∈ Xi is bounded above and below by constants depending only of α1,
α2 and the geometric constants of the space. Since mβ ' rβ we also have the
desired result 3.2.2. for r ∈ K1,2 and x ∈ Xi.
Let us keep considering r ∈ K1,2; and m = diam(Xi). Assume now that x ∈ Xj .
Since cd(x) ≤ r ≤ 5

γ d(x) and x ∈ Xj , this means that cdj(x) ≤ r ≤ 5
γ diam(Xj).

So that we can apply the argument used in (b) of the proof of Theorem 3.1 to see
that

∫

B(x,r)∩Xj

dj(y)αj dµj(y) ' rβ .

Again, since r ∈ J2 we have that
∫

B(x,r)∩Xi

di(y)αi dµi(y) ≤
∫

Xi

di(y)αi dµi(y) < ∞.

So that µα1,α2(B(x, r)) ' rβ for r ∈ K1,2.
Estimates for µα1,α2 in K1,3:
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Since we are assuming r > M inequalities (3.2.2) are immediate.
Estimates for µα1,α2 in K2,1:
Let us consider x ∈ Xi, notice that from (4) and (2) of Theorem 3.1, we have
that

a1r
n(x)+α(x +

∫

B(x,r)∩Xj

d
αj

j (y) dµj(y) ≤ µα1,α2(B(x, r))

a2r
n(x)+α(x) +

∫

B(x,r)∩Xj

d
αj

j (y) dµj(y).
(3.6)

In order to estimate
∫

B(x,r)∩Xj
d

αj

j (y) dµj(y), we consider a sequence xj
n in Xj

such that xi and xj are the components of an admissible pair. Since d(x) < rγ
5

then exists N ′
0 ∈ N such that for every n ≥ N ′

0 is valid that d(x, xi
n) ≤ rγ

4 and
exists N ′

1 ∈ N such for every n ≥ N ′
1, d(xi

n, xj
n) ≤ rγ

4 . Taking n ≥ max{N ′
0, N

′
1},

we obtain that d(x, xj
n) ≤ rγ

2 , hence B(x, r) ∩ Xj ⊂ B(z, (1 + r γ
2 )) ∩ Xj with

z ∈ B(xj
n, γr

5 ) ∩Xj , and B(z, rγ
5 ) ∩Xj ⊂ B(x, r) ∩Xj , hence

∫

B(z, rγ
5 )∩Xj

d
αj

j (y) dµj(y) ≤
∫

B(x,r)∩Xj

d
αj

j (y) dµj(x)

≤
∫

B(z,r(1+γ 1
2 ))∩Xj

d
αj

j (y) dµj(y).

Since the measure µαj is doubling, there exist constants A1 and A2, such that
from the above inequalities

A1

∫

B(z,r)∩Xj

d
αj

j (y) dµj(y) ≤
∫

B(x,r)∩Xj

d
αj

j (y) dµj(y)

≤ A2

∫

B(z,r)∩Xj

d
αj

j (y) dµj(y).

Since dj(z) ≤ rγ
5 , using (1) and (3) of Theorem 3.1, it follows from 3.6,

µα1,α2(B(x, r)) ≈ rn1+α1 ≈ rβ .

Estimates for µα1,α2 in K2,2:
For this case , the result is obtained directly from 3.6 and Theorem 3.1.
The estimates for µα1,α2 in K2,3, are similar to those in K1,3. ¤

Proof of Theorem 1.2. Let us start by showing that the equation α1 −
α2 = n2 − n1 is necessary for the doubling of µα1,α2 . Assume that µα1,α2 is
doubling. Let us consider the admissible pair (x1,x2). For each j, we take the
balls B(x1

j , rj) where rj = d1(x1
j ). Notice that for every j, the balls B(x1

j , 2rj) ∩
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X2 6= ∅. On the other hand B(x1
j , λrj) ∩ X2 ⊃ B(ξ, rj

C ) ∩ X2 where C is the
constant of property C0, λ = 1+2C

C and ξ ∈ B(x1
j , 2rj) ∩X2. Now

µα1,α2(B(x1
j , 2λrj))

µα1,α2(B(x1
j , rj))

≥
∫

B(ξ,
rj
C )∩X2

dα2
2 (x)dµ2(x)

∫
B(x1

j ,rj)
dα1
1 (x)dµ1(x)

(3.7)

and applying the results obtained for the lowers and the upper estimates in The-
orem 3.1, we obtain that

µα1,α2(B(x1
j , 2λrj))

µα1,α2(B(x1
j , rj))

≥ c1r
α2+n2
j

c2r
α1+n1
j

.

Since µα1,α2 is doubling we have rα2+n2
j ≤ C ′rα1+n1

j , which, for j → ∞, implies
α2 + n2 ≥ α1 + n1. By a symmetric argument starting with (x2

j ) we prove that
the doubling of µα1,α2 implies α2 + n2 ≤ α1 + n1.
The proof of the sufficiency of n1 + n2 = α1 + α2 is based on Theorem 3.2. In
fact, given x ∈ X and r > 0, we may consider the following cases which can be
handled according to the estimates in Theorem 3.2.

(i) 2r < cd(x), follows directly from 3.2.1;

(ii) r < cd(x) ≤ 2r ≤ S, follows from 3.2.1, 3.2.2, and the fact that r ' d(x);

(iii) r < cd(x) and 2r ≥ S, using 3.2.3 we have

µα1,α2(B(x, 2r)) = µα1,α2(X1) + µα1,α2(X2)
and

µα1,α2(B(x, r)) ≥ ad(x)α(x)rn(x) >
arα(x)+n(x)

cα(x)

=
a

cα(x)
rβ ≥ a

2βcα(x)
Sβ ≥ c̄(µα1(X1) + µα2(X2))

for some positive constant which does not depend on r neither on x.

(iv) cd(x) ≤ r < 2r < S, follows directly from 3.2.2

(v) cd(x) ≤ r < S ≤ 2r is similar to (iii),

(vi) if r ≥ S there is nothing to prove since B(x, 2r) = B(x, r) ¤
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