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Bernstein type theorems for minimal surfaces in (α, β)-space

By NINGWEI CUI (Hangzhou) and YI-BING SHEN (Hangzhou)

Abstract. Let Vn+1 be an (n + 1)-dimensional real vector space and F̃ = α̃φ(s),

s = β̃/α̃, be an (α, β)-metric, where α̃ is an Euclidean metric and β̃ is a one form.

Minimal surfaces with respect to the Busemann–Hausdorff measure and the Holmes–

Thompson measure are called BH-minimal and HT-minimal surfaces, respectively. We

give a Bernstein type theorem for minimal graphs in (Vn+1, F̃ ) with n ≤ 7. Let F̃b =

α̃φ(s), s = β̃/α̃, be a Minkowski metric with b := ‖β̃‖α̃. We use a PDE to characterize

the BH-minimal and HT-minimal graph over any hyperplane containing the origin in

(Vn+1, F̃b). Then we prove that this PDE is an elliptic equation of mean curvature type

when b ∈ [0, ε) for some constant ε > 0 and give a Bernstein type theorem for BH-

minimal surface in (V3, F̃b). BH-minimal cones with an isolated singularity at the origin

are also given.

1. Introduction

The classical Bernstein theorem states that any (regular) minimal surface
in R3, which is a graph defined by a C2-function on R2, is a plane. In higher
dimensions, any complete minimal graph in Rn+1 with n ≤ 7 is an affine n-
hyperplane. We want to generalize the Bernstein theorem into Finsler space.
As is well known, various definitions of mean curvature have been introduced in
Finsler geometry because of the uncertainty of the volume form. There are two
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natural volume forms in Finsler geometry, one is the Busemann–Hausdorff vol-
ume form, and another is the Holmes–Thompson volume form. Minimal surfaces
with respect to the Busemann–Hausdorff measure and the Holmes–Thompson
measure will be called BH-minimal and HT-minimal surfaces, respectively. Using
the Busemann–Hausdorff volume form, Z. Shen introduced the notion of mean
curvature for the submanifold in Finsler space and obtained some local and global
results ([8]). A Bernstein theorem was obtained in [12] for BH-minimal surfaces
in Minkowski Randers space (R3, α̃ + β̃) when the norm of the one form β̃ satis-
fies ‖β̃‖α̃ ∈ [0, 1/

√
3). Later, Q. He and Y. B. Shen introduced the notion of

mean curvature by calculating the volume variation with respect to the Holmes–
Thompson volume form ([5]). Then they gave a Bernstein type theorem ([4]) for
hypersurface in Randers space (Rn+1, α̃+β̃) with α̃ an Euclidean metric for n ≤ 7
and proved that the Bernstein theorem holds for the HT-minimal graph in any
3-dimensional Minkowski space R3.

The purpose of this paper is to study the minimal hypersurfaces in an (α, β)-
space (Vn+1, F̃ ), where Vn+1 is an (n + 1)-dimensional real vector space, F̃ =
α̃φ(s), s = β̃/α̃, α̃ is an Euclidean metric and β̃ is a one from.

Set a system of ODE
{

φ(φ− sφ′)n−1 = 1 + p(s) + s2q(s),

φ(φ− sφ′)n−2φ′′ = q(s),
(1)

where p(s) and q(s) are arbitrary odd C∞ functions.

Theorem 1.1. Let F̃ = α̃φ(s), s = β̃/α̃, where α̃ is an Euclidean metric and

β̃ is a one form, φ is given by φ(s) = (1+h(s))−
1
n with h(s) an arbitrary odd C∞

function (or φ satisfies (1)). Then any complete BH-minimal (or HT-minimal)

graph in (n + 1)-space (Vn+1, F̃ ) with n ≤ 7 is an affine hyperplane.

We remark that the only φ satisfying (1) we found is φ = 1 + s (i.e. Randers
metric). In this case, Theorem 1.1 was obtained in [4].

We denote by F̃b = α̃φ(s), s = β̃/α̃, a Minkowski metric with b := ‖β̃‖α̃.
We shall establish the Bernstein type theorem in (V3, F̃b). It was obtained in [4]
that any complete HT-minimal graph in 3-dimensional Minkowski space V3 is a
plane. So, in the following, we only study the BH-minimal surfaces.

Define

σBH(t) := π

[ ∫ π

0

1
φ2(t

1
2 cos θ)

dθ

]−1

(2)

and
Φb(t) := 2σ′BH(t)(b2 − t) + σBH(t). (3)
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Theorem 1.2. Let F̃b = α̃φ(s), s = β̃/α̃, be a Minkowski (α, β)-metric,

where α̃ is an Euclidean metric and β̃ is a one form with length b := ‖β̃‖α̃ ∈ [0, bo)
such that F̃b is positive definite. Let

ε := sup
{

ε′ ∈ [0, bo)
∣∣ Φb(t) 6= 0,

Φ′b(t)
Φb(t)

≥ 0, ∀ t ∈ [0, b2], ∀ b ∈ [0, ε′)
}

. (4)

Then any BH-minimal surface in (V3, F̃b) with b ∈ [0, ε), which is the graph of a

function defined on R2, is a plane.

For Randers metric F̃b = α̃ + β̃, we can compute ε = 1√
3

(See Example 6.1
in Section 6). This is the main result in [12].

This paper is organized as follows. In Section 2, we give the definitions and
notations. In Section 3, we study the Busemann–Hausdorff volume form ([2],
[3]) and the Holmes–Thompson volume form ([2]) of an (α, β)-metric. Then we
give a Bernstein type theorem for minimal graphs in the (α, β)-space (Vn+1, F̃ )
with n ≤ 7. In Section 4, we calculate the mean curvature of a graph over any
hyperplane containing the origin in Minkowski space (Vn+1, F̃b) and use a PDE
to characterize such a BH-minimal or HT-minimal graph. Then we give a local
rigidity theorem which can be viewed as a generalization of the result in [15]. In
Section 5, we prove that the minimal graph equation obtained in Section 4 is an
elliptic equation of mean curvature type when b ∈ [0, ε) for some constant ε > 0.
Then we can obtain a Bernstein type theorem for BH-minimal graphs in (V3, F̃b)
(i.e. Theorem 1.2). In Section 6, we give some examples to show that we can find
the number ε in Theorem 1.2 for a given (α, β)-metric. We also give BH-minimal
cones with an isolated singularity at the origin when b > ε. It is clear that our
result is a generalization of that in [12].

2. Preliminaries

Let M be an n-dimensional smooth manifold and π : TM → M be the
natural projection from the tangent bundle TM . The local coordinate system
(xi) on M and the tangent vector field y = yi ∂

∂xi ∈ TM give a local coordinate
system (xi, yi) on TM . A Finsler metric on M is a function F : TM → [0,∞)
satisfying: (i) F is smooth on TM \{0}; (ii) F (x, λy) = λF (x, y) for (x, y) ∈ TM

and any positive real number λ; (iii) The fundamental form g := gijdxi ⊗ dxj

is positive definite, where gij := 1
2 [F 2]yiyj . A smooth manifold endowed with a

Finsler metric is called a Finsler space. The simplest Finsler space is Minkowski
space, on which the metric function F is independent of x.



386 Ningwei Cui and Yi-Bing Shen

Here and from now on, we shall use the following convention of index ranges:

1 ≤ i, j, · · · ≤ n; 1 ≤ α, β, · · · ≤ n + 1.

Einstein summation convention is also used throughout this paper.
If (M, F ) is a Finsler space, the Busemann–Hausdorff volume form induced

from F is defined by

dV BH
F = σBH

F (x)dx1 ∧ · · · ∧ dxn,

where

σBH
F (x) =

Vol(Bn)
Vol{(yi) ∈ Rn | F (x, yi ∂

∂xi |x) ≤ 1} .

It coincides with the Hausdorff measure of M as a metric space when F is re-
versible. The Holmes–Thompson volume form induced from F is defined by

dV HT
F = σHT

F (x)dx1 ∧ · · · ∧ dxn,

where

σHT
F (x) =

1
Vol(Sn−1)

∫

SxM

√
det(gij(x, y))η̇,

where η̇ is the induced volume form of SxM := {y ∈ TxM |Fx(y) = 1} from the
Riemannian metric ĝ = gij(y)dyi ⊗ dyj on the punctured tangent space TxM \ 0.

Let (M̃n+p, F̃ ) be a Finsler manifold and f : Mn → (M̃n+p, F̃ ) be an iso-
metric immersion. The notion of mean curvature with respect to Busemann–
Hausdorff volume form was introduced by Z. Shen in [8]. Let ft : Mn →
(M̃n+p, F̃ ), t ∈ (−εo, εo) be a variation of f such that ft are isometric immer-
sions with f0 = f and ft = f outside a compact set Ω ⊂ M . ft induce a family
of Finsler metrics Ft = f∗t F̃ on M and a variational vector field X = ∂ft

∂t |t=0

along f . Consider the function V (t) =
∫

M
dV BH

Ft
, we have

V ′(0) =
∫

M

HBH
f (X)dV BH

F ,

where HBH
f is called the BH-mean curvature form of the immersion f and f is

said to be BH-minimal when HBH
f = 0.

From now on, we consider a hypersurface isometrically immersed in (Vn+1, F̃ ).
Let f : (Mn, F ) → (Vn+1, F̃ ) be an isometric immersion. In local coordinates

x̃α = fα(x1, . . . , xn).
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Let zα
i = ∂fα

∂xi and z = (zα
i ) ∈ GL(n, n + 1). For x̃ ∈ Vn+1, define

FBH(x̃, z) :=
Vol(Bn)

Vol{(yi) ∈ Rn | F̃x̃(yizα
i

∂
∂x̃α |x̃) ≤ 1} . (5)

The Busemann–Hausdorff volume form dV BH
F of the induced metric F is given

by
dV BH

F |x = FBH(x̃, z)dx1 ∧ · · · ∧ dxn, (6)

where x̃ = f(x) and z = (zα
i ). The BH-mean curvature form of f is HBH

f =
HBH

α dx̃α, where ([8])

HBH
α =

1
FBH

{
−∂FBH

∂x̃α
+

∂2FBH

∂zα
i ∂zβ

j

∂2fβ

∂xi∂xj
+

∂2FBH

∂x̃β∂zα
i

∂fβ

∂xi

}
. (7)

Note that when (Vn+1, F̃ ) is a Minkowski space, FBH(x̃, z) is independent of x̃

from (5). In this case, (7) reduces to

HBH
α =

1
FBH

{
∂2FBH

∂zα
i ∂zβ

j

∂2fβ

∂xi∂xj

}
. (8)

It was pointed out in [14] that Z. Shen’s method is also valid for Holmes–
Thompson volume form. The mean curvature form HHT

f and the minimal surface
with respect to this volume form will be called HT-mean curvature form and HT-
minimal surface respectively. The corresponding quantities will be marked with
HT such as FHT , etc.

In Finsler geometry, (α, β)-metric is an important class of Finsler metrics
which are defined by a Riemannian metric α =

√
aijyiyj and a one form β = biy

i.
They are expressed in the form

F = αφ(s), s = β/α,

where φ(s) is a positive C∞ function on (−bo, bo). It can be proved ([9]) that F

is a positive definite Finsler metric for any α and β with ‖βx‖α < bo if and only
if φ satisfies

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, (|s| ≤ b < bo). (9)

We note that (α, β)-metric contains many important Finsler metrics. If φ = 1+s,
the Finsler metric F = α + β is Randers metric. If φ = 1

1−s , F = α2

α−β is

Matsumoto metric which was first introduced in [6]. If φ = (1 + s)2, F = (α+β)2

α

is called two order metric.
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3. Bernstein type theorem in high dimensions

For an (α, β)-metric F = αφ(β/α), the Busemann–Hausdorff volume form
was calculated in [3] and the Holmes–Thompson volume form together with
Busemann–Hausdorff volume form were calculated in [2] independently. Define

σBH(t) :=
√

πΓ(n−1
2 )

Γ(n
2 )

[∫ π

0

sinn−2 θ

φn(t
1
2 cos θ)

dθ

]−1

. (10)

(10) reduces to (2) when n = 2. Thanks to the computation in [2], we define

σHT (t) :=
Γ(n

2 )√
πΓ(n−1

2 )

∫ π

0

H(t
1
2 cos θ) sinn−2 θdθ, (11)

where
H(s) := φ(φ− sφ′)n−2[φ− sφ′ + (t− s2)φ′′]

and Γ(t) =
∫ +∞
0

xt−1e−xdx is the Euler function.

Lemma 3.1 ([2], [3]). For an (α, β)-metric F = αφ(s), s = β/α, the

Busemann–Hausdorff volume form and the Holmes–Thompson volume form of F

are given by dV BH
F = σBH(‖β‖2α)dVα and dV HT

F = σHT (‖β‖2α)dVα respectively.

Proposition 3.2. Let F = αφ(s), s = β/α, be an (α, β)-metric. If φ is

given by φ(s) = (1 + h(s))−
1
n with h(s) an arbitrary odd C∞ function, then

dV BH
F = dVα. If φ satisfies (1), then dV HT

F = dVα.

Proof. Note that
∫ π

0
h(t

1
2 cos θ)sinn−2 θdθ = 0 for any odd function h(s)

and ∫ π

0

sinn−2 θdθ =
√

πΓ(n−1
2 )

Γ(n
2 )

.

Plugging φ(s) = (1+h(s))−
1
n into (10) yields σBH(t) = 1. Similarly, if φ satisfies

(1), then σHT (t) = 1. ¤

Now we consider an isometric immersion f : (Mn, F ) → (M̃n+1, F̃ ), where
F̃ = α̃φ(s), s = β̃/α̃ with Riemannian metric α̃ =

√
ãαβdx̃αdx̃β and one form

β̃ = b̃αdx̃α. Then the induced metric F is also an (α, β)-metric of the same type
F = αφ(β/α) with Riemannian metric α =

√
aijyiyj and one form β = bi(x)yi,

where
aij(x) = zα

i zβ
j ãαβ , bi(x) = b̃αzα

i , zα
i =

∂fα

∂xi
. (12)

If φ is given in Proposition 3.2, then the Busemann–Hausdorff volume form (or
Holmes–Thompson volume form) of (M, F ) is that of the Riemannian manifold
(M, α).

From the formula of mean curvature (7), we have immediately
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Proposition 3.3. Let F̃ = α̃φ(s), s = β̃/α̃, be an (α, β)-metric, where φ

is given by φ(s) = (1 + h(s))−
1
n with h(s) an arbitrary odd C∞ function (or φ

satisfies (1)), then the BH-mean curvature form (or HT-mean curvature form) H
of the submanifold (M,F ) isometrically immersed in (M̃, F̃ ) is just that of the

submanifold (M, α) isometrically immersed in the Riemannian manifold (M̃, α̃).

Let M̃n+1 be a real vector space Vn+1, α̃ be an Euclidean metric. By Bern-
stein theorem on minimal graphs in the Euclidean space ([10]), we have immedi-
ately

Theorem 3.4. Let F̃ = α̃φ(s), s = β̃/α̃, where α̃ is an Euclidean metric and

β̃ is a one form, φ is given by φ(s) = (1+h(s))−
1
n with h(s) an arbitrary odd C∞

function (or φ satisfies (1)). Then any complete BH-minimal (or HT-minimal)

graph in (n + 1)-space (Vn+1, F̃ ) with n ≤ 7 is an affine hyperplane.

Theorem 3.5. Let F̃ = α̃φ(s), s = β̃/α̃, where α̃ is an Euclidean metric

and β̃ is a one form, φ is given by φ(s) = (1+h(s))−
1
2 with h(s) an arbitrary odd

C∞ function (or φ satisfies (1) for n = 2). Then any complete stable BH-minimal

(or HT-minimal) surface in 3-space (V3, F̃ ) is a plane.

4. Minimal graph over any hyperplane in (Vn+1, F̃b)

In this section, we study the BH-minimal and HT-minimal graph over any
hyperplane containing the origin in Minkowski (α, β)-space (Vn+1, F̃b) with F̃b =
α̃φ(β̃/α̃), where α̃ is an Euclidean metric and β̃ is a one form of constant length
b = ‖β̃‖α̃ with respect to α̃.

Given a hyperplane P containing the origin, we can use an α̃-orthonormal
basis {e1, e2, . . . , en+1} such that P = span{e1, e2, . . . , en}. This basis gives a
coordinate system {x̃1, x̃2, . . . , x̃n+1} for Vn+1. Note that β̃ is a constant one
form. We denote by θα := ∠α̃(β̃], eα) the angle of β̃] and eα with respect to
the Euclidean metric α̃ and λα := cos θα, where β̃] is the dual vector of β̃ with
respect to α̃. Then F̃b can be expressed by

F̃b =
√

δαβdx̃αdx̃βφ

(
bλαdx̃α

√
δαβdx̃αdx̃β

)
.

For an isometric immersion f : (M, F ) → (Vn+1, F̃b) locally given by

x̃α = fα(x1, . . . , xn),
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the induced metric F = f∗F̃b has the form F = αφ(β/α) with Riemannian metric
α =

√
aijyiyj and one form β = biy

i, where

aij(x) = zα
i zβ

j δαβ , bi = bλαzα
i , zα

i =
∂fα

∂xi
. (13)

Note that (Vn+1, F̃b) is a Minkowski space, then (8) holds. By Lemma 3.1 and
(6), F(z) is given by

F(z) = σ(‖β‖2)
√

det(aij). (14)

Here and from now on, F(z) will denote FBH(z) or FHT (z), σ(t) will be given
by (10) or (11). We denote by ‖β‖2 = b2aijλαλβzα

i zβ
j the square length of β with

respect to α.

Theorem 4.1. Let f : (M, F ) → (Vn+1, F̃b) be an isometric immersion

locally given by

x̃α = fα(x1, . . . , xn).

Then the BH-mean curvature form (or HT-mean curvature form) Hf = Hγdx̃γ

is given by

Hγ =
1

σ(‖β‖2)
{

aij
[
2b2λαλβσ′(‖β‖2)(δαη −Bαη)(δβγ −Bβγ)

+ σ(‖β‖2)(δγη −Bγη)
]

+ 2b2λδλτAiδAjτ
[
2b2λαλβσ′′(‖β‖2)(δαη −Bαη)(δβγ −Bβγ)

− σ′(‖β‖2)(δγη −Bγη)
]} ∂2fη

∂xi∂xj
, (15)

where Aiα := aijzα
j , Bαβ := aijzα

i zβ
j , ‖β‖2 = b2λαλβBαβ , λα = cos ∠α̃(β̃], eα)

and σ(t) is given by (10) or (11).

Proof. We denote

Aiα := aijzα
j , Bαβ := aijzα

i zβ
j . (16)

Then the square length of β with respect to α can be expressed by

‖β‖2 = b2λαλβBαβ . (17)

By (13) and 16) we can compute

∂

∂zγ
i

akl = −(akiAlγ + aliAkγ), (18)
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∂

∂zγ
i

Bαβ = Aiα(δβγ −Bβγ) + Aiβ(δαγ −Bαγ). (19)

Differentiating (17) we have

∂

∂zγ
i

‖β‖2 = 2b2λαλβAiα(δβγ −Bβγ). (20)

It is easy to show
∂

∂zγ
i

√
det(aij) =

√
det(aij)Aiγ . (21)

Since F(z) = σ(‖β‖2)√det(aij), from (20) and (21) we get

∂

∂zγ
i

F =
{

2b2λαλβσ′(‖β‖2)Aiα(δβγ −Bβγ) + σ(‖β‖2)Aiγ
}√

det(aij). (22)

By (18), we can compute easily

∂

∂zη
j

Aiα = aij(δαη −Bαη)−AjαAiη. (23)

Differentiating (22), using (19) (20) (21) (23) and by a direct computation, we
get

∂2F
∂zγ

i ∂zη
j

=
{

σ(‖β‖2)(AiγAjη −AjγAiη)

+ 2b2λαλβσ′(‖β‖2)(δβγ −Bβγ)(AiαAjη −AjαAiη)

+ 2b2λαλβσ′(‖β‖2)(δβη −Bβη)(AjαAiγ −AiαAjγ)

+ aij
[
2b2λαλβσ′(‖β‖2)(δαη−Bαη)(δβγ−Bβγ) + σ(‖β‖2)(δγη−Bγη)

]

+ 2b2λδλτAiδAjτ
[
2b2λαλβσ′′(‖β‖2)(δαη −Bαη)(δβγ −Bβγ)

− σ′(‖β‖2)(δγη −Bγη)
]}√

det(aij). (24)

From (8) and (14) we can obtain (15) immediately. ¤

In the following, we will use Theorem 4.1 to study the graph over a connected
domain Ω in the hyperplane P. In this case, we shall denote the coordinates for
Vn+1 by {x1, x2, . . . , xn+1} rather than {x̃1, x̃2, . . . , x̃n+1}. Define a function for
0 ≤ t ≤ b2 by

Φb(t) := 2σ′(t)(b2 − t) + σ(t), (25)

where σ(t) is given by (10) or (11).
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Theorem 4.2. Let f : Ω → (Vn+1, F̃b) be a graph over a connected domain

Ω in a hyperplane P which is given by

f(x1, . . . , xn) = (x1, . . . , xn, u(x1, . . . , xn)). (26)

Then the BH-mean curvature form (or HT-mean curvature form) is given by

Hf = Hn+1

(
−

∑

k

ukdxk + dxn+1
)
, (27)

where

Hn+1 =
1

σ(‖β‖2)W 2

∑

ij

{
Φb(‖β‖2)

(
δij − uiuj

W 2

)

+ 2b2Φ′b(‖β‖2)
(
λi + ω

ui

W 2

)(
λj + ω

uj

W 2

)}
uij . (28)

Thus f is BH-minimal (or HT-minimal) if and only if

∑

ij

{
Φb(‖β‖2)

(
δij − uiuj

W 2

)

+ 2b2Φ′b(‖β‖2)
(
λi + ω

ui

W 2

)(
λj + ω

uj

W 2

)}
uij = 0, (29)

where ui := ∂u
∂xi , uij := ∂2u

∂xixj , W 2 := 1 +
∑

i u2
i , ω := λn+1 −

∑
k λkuk, ‖β‖2 =

b2
(
1− ω2

W 2

)
, λα = cos ∠α̃(β̃], eα), Φb(t) is defined by (25).

Proof. Since f is a graph given by (26), we get zk
i = δk

i , zn+1
i = ui. From

(13) and (16), we can compute

aij = δij + uiuj , aij = δij − uiuj

W 2
, Aiα = Biα (30)

and
Bij = aij , Bi,n+1 =

ui

W 2
, Bn+1,n+1 = 1− 1

W 2
, (31)

where W 2 := 1 +
∑

i u2
i . Let ω := λn+1 −

∑
k λkuk. We can compute directly

λα(δα,n+1 −Bα,n+1) =
ω

W 2
, λβ(δkβ −Bkβ) = −ω

uk

W 2
,

λδA
iδ = λi + ω

ui

W 2
. (32)

Plugging (30)–(32) into (15), we obtain

Hn+1 =
1

σ(‖β‖2)W 2

∑

ij

{[
2b2σ′(‖β‖2) ω2

W 2
+ σ(‖β‖2)

] (
δij − uiuj

W 2

)
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+ 2b2
[
2b2σ′′(‖β‖2) ω2

W 2
− σ′(‖β‖2)

] (
λi + ω

ui

W 2

)(
λj + ω

uj

W 2

) }
uij (33)

and
Hk = −ukHn+1. (34)

From (17) (30) (31) and (32) we get

‖β‖2 = b2(1− ω2

W 2
). (35)

By (35) and the definition of Φb(t) in (25), we obtain (27) and (28) from (33) and
(34) immediately. ¤

If the graph is defined over a hyperplane P which is perpendicular to β̃], then
β̃] is in the direction of xn+1-axis. In this case, λ1 = λ2 = · · · = λn = 0, λn+1 = 1.
Theorem 4.2 reduces to

Theorem 4.3. Let f : Ω → (Vn+1, F̃b) be a graph over a connected domain

Ω in the hyperplane P which is perpendicular to β̃] and given by (26). Then the

BH-mean curvature form (or HT-mean curvature form) is given by

Hf = Hn+1

(
−

∑

k

ukdxk + dxn+1
)
,

where

Hn+1 =
1

σ(‖β‖2)W 2

∑

ij

{
Φb(‖β‖2)

(
δij − uiuj

W 2

)
+ 2b2Φ′b(‖β‖2)

uiuj

W 4

}
uij .

Thus f is BH-minimal (or HT-minimal) if and only if

∑

ij

{
Φb(‖β‖2)

(
δij − uiuj

W 2

)
+ 2b2Φ′b(‖β‖2)

uiuj

W 4

}
uij = 0, (36)

where ui = ∂u
∂xi , uij = ∂2u

∂xixj ,W 2 = 1+
∑

i u2
i , ‖β‖2 = b2(1− 1

W 2 ), Φb(t) is defined

by (25).

Remark 4.4. The equations (29) and (36) for a BH-minimal graph in Randers
space have been obtained in [12] for n = 2(see [12], p. 298, Theorem 4 and p. 296,
Theorem 3).

Remark 4.5. The BH-minimal and HT-minimal graphs in Randers space were
simultaneously studied in [15] for dimension n (see [15], p. 380, Proposition 3.1
and 3.2, p. 381, Proposition 3.5). The equations (29) and (36) can be viewed as
the generalization of corresponding formulas in [15].
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An interesting problem is to study surfaces which are both BH-minimal and
HT-minimal in 3-dimensional Minkowski space. In [15], the author obtained a
local rigidity theorem for surfaces which are both BH-minimal and HT-minimal in
Minkowski Randers space (V3, α̃+ β̃) with β̃] in the direction of x3-axis. We shall
point out that this result is also valid in Minkowski (α, β)-space (V3, F̃b) with β̃]

in the direction of x3-axis. Obviously, the plane and helicoid generated by lines
screwing about x3-axis are both BH-minimal and HT-minimal. Conversely, we
note that a surface can be locally viewed as a graph over a connected domain in
certain plane P. Without loss of generality, we can assume that P = {x3 = 0}
and P = {x1 = 0}. We assume that Φ′b(t)

Φb(t)
is different for σ = σBH and σ = σHT .

If P = {x3 = 0}, from (36) we get a system of PDE:

{
u11 + u22 = 0,

u2
1u11 + u2

2u22 + 2u1u2u12 = 0.
(37)

If P = {x1 = 0}, this is equivalent to the case that λ1 = 1 and λ2 = λ3 = 0 in
Theorem 4.2. In this case, from (29) one can get a system of PDE:





∑

ij

(
δij − uiuj

W 2

)
uij = 0,

u11 +
u2

1

W 4

∑

ij

uiujuij − 2
W 2

∑

j

u1uju1j = 0.
(38)

Here, 1 ≤ i, j ≤ 2. Note that (37) and (38) have been explicitly solved in [15]
(see [15], p. 382, Theorem 4.1 and p. 383, Theorem 4.2). We get immediately

Corollary 4.6. Let (V3, F̃b = α̃φ(β̃/α̃)) be a Minkowski (α, β)-space with

β̃] in the direction of x3-axis. Then the helicoid generated by lines screwing about

x3-axis is both BH-minimal and HT-minimal. Moreover, if
Φ′b(t)
Φb(t)

is different for

σ = σBH and σ = σHT , then any local surface which is both BH-minimal and

HT-minimal must be either a piece of palne or a piece of helicoid generated by

lines screwing about x3-axis.

5. Bernstein type theorem in (V3, F̃b)

Lemma 5.1. Φb(t) defined by (25) is smooth for t ∈ [0, b2].
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Proof. We prove this lemma for σBH(t) which is defined by (10). Since
φ(s) is a positive smooth function on (−bo, bo), we only need to show that σBH(t)
is smooth at t = 0. Denote φ̃(s) := φ−n(s) and by Taylor expansion

φ̃(s) = a0 + a1s + a2s
2 + · · ·+ aksk + o(sk) (39)

holds for arbitrary large order k. Plugging (39) into (10), we get

σBH(t) =
√

πΓ(n−1
2 )

Γ(n
2 )

[
ã0 + ã2t + · · ·+ ã2ktk + o(tk)

]−1

.

Since a0 = φ−n(0) 6= 0, then ã0 6= 0, we can see that σBH(t) is smooth at t = 0.
Similarly, we can prove this lemma for (11). ¤

Theorem 5.2. Let F̃b = α̃φ(s), s = β̃/α̃, be a Minkowski metric, where α̃

is an Euclidean metric and β̃ is a one form with length b := ‖β̃‖α̃ ∈ [0, bo) such

that F̃b is positive definite. Define Φb(t) by (25) and let

ε := sup
{

ε′ ∈ [0, bo) | Φb(t) 6= 0,
Φ′b(t)
Φb(t)

≥ 0, ∀ t ∈ [0, b2], ∀ b ∈ [0, ε′)
}

. (40)

If b ∈ [0, ε), then the minimal equation (29) is an elliptic equation of mean

curvature type.

Proof. By (40), Φb(t) 6= 0 for any t ∈ [0, b2] when b ∈ [0, ε), then the
minimal equation (29) can be written as

∑

ij

Eij(x, u,∇u)uij = 0, (41)

where

Eij(x, u,∇u) :=
(
δij − uiuj

W 2

)
+ 2b2 Φ′b

Φb
(‖β‖2)

(
λi + ω

ui

W 2

)(
λj + ω

uj

W 2

)
.

To prove that (41) is of mean curvature type, we need to show
(
δij − pipj

W 2

)
ξiξj ≤ Eij(x, z, p)ξiξj ≤ (1 + C)

(
δij − pipj

W 2

)
ξiξj (42)

for any p and ξ with some constant C > 0, where (x, z, p) ∈ U × R× Rn, W 2 =
1 + |p|2 and ξ := (ξ1, . . . , ξn) ∈ Rn.

By (40), we have Φ′b(t)
Φb(t)

≥ 0 for t ∈ [0, b2] when b ∈ [0, ε), then the LHS of
(42) holds. To prove the RHS of (42), we are aimed to show

Φ′b
Φb

(‖β‖2)
(
〈λ, ξ〉+ ω

〈p, ξ〉
W 2

)2

≤ C

(
|ξ|2 − 〈p, ξ〉2

W 2

)
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for any p and ξ with some constant C > 0, where λ := (λ1, . . . , λn) ∈ Rn,
ω = λn+1 − 〈λ, p〉.

Since ‖β‖2 = b2(1− ω2

W 2 ) ∈ [0, b2], we can see that Φ′b
Φb

(‖β‖2) is bounded from
Lemma 5.1. It suffices to show

(
〈λ, ξ〉+ ω

〈p, ξ〉
W 2

)2

≤ C

(
|ξ|2 − 〈p, ξ〉2

W 2

)
.

If ξ = 0, this is obvious. If ξ 6= 0, we denote ∠α̃(λ, ξ) = γ and ∠α̃(p, ξ) = ϑ, then

(
〈λ, ξ〉+ ω 〈p,ξ〉

W 2

)2

|ξ|2 − 〈p,ξ〉2
W 2

=

(
W 2|λ| cos γ + ω|p| cos ϑ

)2

W 2(1 + |p|2 sin2 ϑ)
. (43)

Case(i): If sin ϑ 6= 0, for the RHS of (43), the degree of |p| in the numerator
is less than or equal to 4, while the degree of |p| in the denominator is equal to 4,
then the RHS of (43) is bounded when |p| → ∞.

Case(ii): If sin ϑ = 0, then p is parallel to ξ. It has two possibilities. If p and
ξ are in the same direction, then cos ϑ = 1 and ω = λn+1 − |λ| · |p| cos γ. If p and
ξ are in the opposite direction, then cos ϑ = −1 and ω = λn+1 + |λ| · |p| cos γ. By
a direct computation, the RHS of (43) becomes

(
W 2|λ| cos γ + ω|p| cos ϑ

)2

W 2(1 + |p|2 sin2 ϑ)
=

(
|λ| cos γ + λn+1|p| cosϑ

)2

1 + |p|2 . (44)

Noticing the degree of |p| in the numerator and denominator, the RHS of (44) is
bounded when |p| → ∞. This completes the proof of (42).

From the LHS of (42), we have

Eij(x, z, p)ξiξj ≥ |ξ|2 − 〈p, ξ〉2
W 2

=
|ξ|2
W 2

(
1 + |p|2 sin2 ϑ

)
> 0

for any ξ 6= 0. Thus (41) is elliptic. We complete the proof. ¤

Theorem 5.3. Let f : P → (Vn+1, F̃b) be a graph over the hyperplane P

which is perpendicular to β̃] and given by (26). Define Φb(t) by (25). If there

exists to ∈ (0, b2) such that Φb(to) = 0, then

u(x1, . . . , xn) =
√

to
b2 − to

√
(x1)2 + · · ·+ (xn)2

is a BH-minimal (or HT-minimal) graph with an isolated singularity at the origin.
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Proof. Form Theorem 4.3, the minimal equation is given by (36). For any
cone

u(x1, . . . , xn) = k
√

(x1)2 + · · ·+ (xn)2

with constant k, a direct computation shows that
∑

ij

uiujuij = 0.

Note that W 2 = 1 + k2, (36) becomes

Φb

(
b2 k2

1 + k2

)
= 0.

We have to = b2 k2

1+k2 , then k =
√

to

b2−to
. We complete the proof. ¤

We now use Theorem 5.2 to establish the Bernstein type theorem in (V3, F̃b).
It was proved in [4] that any complete HT-minimal graph in the 3-dimensional
Minkowski space (V3, F̃ ) with any Minkowski metric F̃ is a plane. So we only
consider BH-minimal surfaces. From Theorem 5.2 and using the theory in [11]
we get

Theorem 5.4. Let F̃b = α̃φ(s), s = β̃/α̃, be a Minkowski (α, β)-metric,

where α̃ is an Euclidean metric and β̃ is a one form with length b := ‖β̃‖α̃ ∈ [0, bo)
such that F̃b is positive definite. Define Φb(t) by (3) and let

ε := sup
{

ε′ ∈ [0, bo) | Φb(t) 6= 0,
Φ′b(t)
Φb(t)

≥ 0, ∀ t ∈ [0, b2], ∀ b ∈ [0, ε′)
}

.

Then any BH-minimal surface in (V3, F̃b) with b ∈ [0, ε), which is the graph of a

function defined on R2, is a plane.

6. Examples

In this section, we study BH-minimal surfaces in (V3, F̃b) for some (α, β)-
metrics including Randers metric, Matsumoto metric and the two order metric.

Example 6.1 ([12], Randers metric). Let f :R2→(
V3, F̃b=

√∑3
α=1(yα)2+by3

)

be a graph over the x1x2-plane which is given by f(x1, x2) = (x1, x2, u(x1, x2)).
By (2), we have σBH(t) = (1− t)

3
2 . Then from (3) we get

Φb(t) = (1− t)
1
2 (1− 3b2 + 2t), Φ′b(t) =

3[1− t + (b2 − t)]
2(1− t)

1
2

.
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It can be proved from (9) that F̃b is positive definite if and only if b ∈ [0, 1)
(cf. [9]). We can see that Φ′b(t) ≥ 0 for any t ∈ [0, b2].

(i) If 0 ≤ b < 1√
3
, then Φ′b(t)

Φb(t)
≥ 0 for ∀ t ∈ [0, b2]. We conclude from

Theorem 1.2 that any BH-minimal surface in such a Minkowski Randers space
with 0 ≤ b < 1√

3
, which is the graph of a function defined on R2, is a plane.

(ii) If 1√
3

< b < 1, we have Φb(to) = 0 for to = 3b2−1
2 . By Theorem 5.3, the

cone

u(x1, x2) =

√
3b2 − 1
1− b2

√
(x1)2 + (x2)2

over Ω = {x3 = 0} \ {0} is a BH-minimal surface. In particular, when b = 1√
2
,

the cone u(x1, x2) =
√

(x1)2 + (x2)2 is a BH-minimal graph. It is a BH-minimal
graph with an isolated singularity at the origin.

Example 6.2 (Matsumoto metric). Let f : R2 → (
V3, F̃b = α̃2

α̃−β̃

)
be a graph

with α̃ =
√∑3

α=1(yα)2 and β̃ = by3 over the x1x2-plane. For Matsumoto metric,
by (2), we have σBH(t) = (2 + t)−1. Then from (3) we get

Φb(t) =
2(1− b2) + 3t

(2 + t)2
, Φ′b(t) =

2 + b2 + 3(b2 − t)
(2 + t)3

.

It can be proved from (9) that F̃b is positive definite if and only if b ∈ [0, 1
2 ). We

can see Φ′b(t)
Φb(t)

> 0 for ∀ t ∈ [0, b2]. Then we conclude from Theorem 1.2 that any
BH-minimal surface in such a Minkowski Matsumoto space, which is the graph
of a function defined on R2, is a plane.

Example 6.3 (Two order metric). Let f : R2 → (
V3, F̃b = (α̃+β̃)2

α̃

)
be a

graph with α̃ =
√∑3

α=1(yα)2 and β̃ = by3 over the x1x2-plane, which is given

by f(x1, x2) = (x1, x2, u(x1, x2)). By (2), we have σBH(t) = 2(1−t)
7
2

2+3t . Then from
(3) we get

Φb(t) =
2(1− t)

5
2 [2(1− 10b2) + 3t(7− 5b2 + 4t)]

(2 + 3t)2
,

Φ′b(t) =
5(1− t)

3
2 [(76 + 72t + 27t2)(b2 − t) + (1− t)(4 + 3t)(2 + 3t)]

(2 + 3t)3
.

It can be proved from (9) that F̃b is positive definite if and only if b ∈ [0, 1)(cf. [9]).
We can see that Φ′b(t) ≥ 0 for any t ∈ [0, b2].

(i) If 0 ≤ b < 1√
10

, then Φ′b(t)
Φb(t)

≥ 0 for ∀ t ∈ [0, b2]. We conclude from

Theorem 1.2 that any BH-minimal surface in such a Minkowski space
(
V3, F̃b =
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(α̃+β̃)2

α̃

)
with 0 ≤ b < 1√

10
, which is the graph of a function defined on R2, is a

plane.
(ii) If 1√

10
< b < 1, then Φb(to) = 0 for

to =
1
24

[
15b2 − 21 +

√
15(15b4 + 22b2 + 23)

]
.

By Theorem 5.3, the cone

u(x1, x2) =

√
15b2 − 21 +

√
15(15b4 + 22b2 + 23)

9b2 + 21−
√

15(15b4 + 22b2 + 23)

√
(x1)2 + (x2)2

defined over Ω = {x3 = 0} \ {0} is a BH-minimal surface. In particular, when
b2 =

√
505−19

18 , the cone u(x1, x2) =
√

(x1)2 + (x2)2 is a BH-minimal surface. It
is a BH-minimal graph with an isolated singularity at the origin.
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