
Publ. Math. Debrecen

74/3-4 (2009), 405–416

Riemannian metrics having common geodesics

with Berwald metrics

By VLADIMIR S. MATVEEV (Jena)

Abstract. In Theorem 1, we generalize some results of Szabó [Sz1], [Sz2] for

Berwald metrics that are not necessarily strictly convex: we show that for every Berwald

metric F there always exists a Riemannian metric affine equivalent to F . As an appli-

cation we show (Corollary 3) that every Berwald projectively flat metric is a Minkowski

metric; this statement is a “Berwald” version of Hilbert’s 4th problem.

Further, we investigate geodesic equivalence of Berwald metrics. Theorem 2 gives a

system of PDE that has a (nontrivial) solution if and only if the given essentially Berwald

metric admits a Riemannian metric that is (nontrivially) geodesically equivalent to it.

The system of PDE is linear and of Cauchy–Frobenius type, i.e., the derivatives of

unknown functions are explicit expressions of the unknown functions. As an application

(Corollary 2), we obtain that geodesic equivalence of an essentially Berwald metric and

a Riemannian metric is always affine equivalence provided both metrics are complete.

1. Definitions and results

A Finsler metric on a smooth manifold M is a function F : TM → R≥0 such

that:

(1) It is smooth on TM \ TM0, where TM0 denotes the zero section of TM .

(2) For every x ∈ M , the restriction F|TxM is a norm on TxM , i.e., for every

ξ, η ∈ TxM and for every nonnegative λ ∈ R we have
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(a) F (λ · ξ) = λ · F (ξ),

(b) F (ξ + η) ≤ F (ξ) + F (η),

(c) F (ξ) = 0 =⇒ ξ = 0.

We always assume that n := dim(M) ≥ 2. We do not require that (the restriction

of) the function F is strictly convex. In this point our definition is more general

than the usual definition. In addition we do not assume that the metric is re-

versible, i.e., we do not assume that F (−ξ) = F (ξ). Some standard references for

Finsler geometry are [Al2], [BCS], [BBI], [Sh1].

Example 1 (Riemannian metric). For every Riemannian metric g on M , the

function F (x, ξ) :=
√

g(x)(ξ, ξ) is a Finsler metric.

A Finsler metric is Berwald, if there exists a symmetric affine connection

Γ such that the parallel transport with respect to this connection preserves the

function F . In this case, we call the connection Γ the associated connection.

Riemannian metrics are always Berwald. For them, the associated connec-

tion coincides with the Levi–Civita connection. We say that a Finsler metric is

essentially Berwald, if it is Berwald, but not Riemannian. The simplest examples

of essentially Berwald metrics are Minkowski metrics.

Example 2 (Minkowski metric). Consider a smooth norm on R
n, i.e., a

smooth function p : R
n → R≥0 satisfying 2a, 2b, 2c. We canonically identify TR

n

with R
n × R

n with coordinates (x1, . . . , xn
︸ ︷︷ ︸

x∈Rn

, ξ1, . . . , ξn

︸ ︷︷ ︸

ξ∈TxRn

). Then, F (x, ξ) := p(ξ)

is a Finsler metric. We see that the metric is translation invariant. Hence, the

standard flat connection preserves it, i.e., it is a Berwald metric. If the norm p

does not satisfy the parallelogram equality, the Minkowski metric is essentially

Berwald.

Let F1, F2 be Finsler metrics on the same manifold. We say that F1 is

geodesically equivalent (or projectively equivalent) to F2, if every F1-geodesic,

considered as unparametrized curve, is also an F2-geodesic. We say that they are

affine equivalent, if every F1-geodesic, considered as parametrized curve, is also

an F2-geodesic. Of course, in the definition we can replace any of the Finsler

metrics by a Riemannian or pseudo-Riemannian one, or by an affine connection.

Remark 1. Geodesic equivalence (or affine equivalence) of Finsler metrics is

not a priori a symmetric relation, as Example 3 below shows. The reason is that

for certain Finsler metrics the uniqueness theorem for the geodesics does not hold:

two different geodesics can have the same velocity vector, as in Example 3 below.
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Then, even under the assumption that all F1-geodesics are F2-geodesics, there

may exist F2-geodesics that are not F1-geodesics.

This phenomenon evidently does not happen, if the metrics are strictly con-

vex (and of course in the Riemannian case); for such metrics, F1 is geodesically

equivalent to F2 if and only if F2 is geodesically equivalent to F1. We will show

in the beginning of Section 2.2.2 that under the assumption that the metric F is

Berwald, if g is geodesically (or affine) equivalent to F , then g is geodesically (or

affine, resp.) equivalent to the connection Γ associated to F .

p o s s i b l e  g e o d e s i c s

Figure 1. The unit sphere in the norm p and possible geodesics of the

corresponding Minkowski metric

Example 3. Consider the Minkowski metric F (x, ξ) = p(ξ) such that the unit

sphere S1 := {ξ ∈ R
n | p(ξ) = 1} is as on Figure 1: the important feature of the

picture is that the part of the unit sphere lying in the marked sector is a straight

line segment. Then every curve such that its velocity vectors are in the sector is

a geodesic. Beside such curves, the straight lines are also geodesics. We see that

the standard flat metric is geodesically and affine equivalent to F , but the metric

F is neither geodesically nor affine equivalent to the standard flat metric.

Geodesic equivalence of metrics is a classical subject. The first non-trivial

examples of geodesically equivalent Riemannian metrics were discovered by La-

grange [La]. Geodesically equivalent Riemannian metrics were studied by Bel-

trami [Bel], Levi–Civita [LC], Painlevé [Pa] and other classics. One can find

more historical details in the surveys [Am], [Mi2] and in the introduction to the

papers [Ma1], [Ma4]. Geodesic equivalence of Riemannian and Finsler metrics is

discussed in particular in Hilbert’s 4th problem, see [Al1], [Po]. Recent results on

geodesic equivalence of Riemannian and Finsler metrics include [MBB], [Sh2].

Our main results are

Theorem 1. Let F be a Berwald metric. Then there exists a Riemannian

metric which is affine equivalent to F .

For strictly convex Finsler metrics, Theorem 1 is due to [Sz1]. Later, other

proofs were suggested in [Sz2], [To]. Our proof is similar to the proof in [Sz2]; the

modification is based on the construction from [MRTZ].



408 Vladimir S. Matveev

Theorem 2. Let F be an essentially Berwald metric on a connected man-

ifold, and let Γ be its associated connection. Suppose a Riemannian or pseudo-

Riemannian metric g is geodesically equivalent to F , but is not affine equivalent

to F . Then there exists a constant µ, a symmetric (2, 0)-tensor aij , and a nonzero

vector field λi such that the following equations are fulfilled, where “ ,” denotes

the covariant derivative with respect to Γ:

aij
,k = λiδj

k + λjδi
k (1)

λi
,j = µ δi

j (2)

We see that equations (1), (2) are of Cauchy–Frobenius type, i.e., the deriva-

tives of the unknown functions aij , λi are explicitly expressed as functions of the

unknown functions and known data (connection Γ).

Remark 2. If a Riemannian metric g is affine equivalent to F , equations (1),

(2) also have a nontrivial solution, namely aij = gij , λi ≡ 0, µ = 0.

Remark 3. The converse of Theorem 2 is also true: the existence of a nonde-

generate aij and of a nonzero λi satisfying equations (1), (2) for a certain constant

µ implies the existence of a Riemannian or a pseudo-Riemanninan metric geodes-

ically equivalent to F , but not affine equivalent to g.

Recently, a system of Cauchy–Frobenius type for metrics geodesically equiv-

alent to Berwald Finsler metrics was obtained [MBB, Theorem 2]. Our system is

much easier than one in [MBB]: first of all, it is linear in the unknown functions,

second, it contains less equations, and, third, the equations are much simpler than

those of [MBB] and, in particular, contain no curvature terms. One cannot obtain

our equations from the equations of [MBB] by a change of unknown functions.

In order to obtain our equations from those of [MBB], one should prolong the

equations of [MBB] two times, and use the result of the prolongation to simplify

the system.

Corollary 1. Let F be an essentially Berwald metric on a connected closed

(= compact without boundary) manifold. Then every Riemannian or pseudo-

Riemannian metric geodesically equivalent to F is affine equivalent to F .

Corollary 2. Let F be a complete essentially Berwald metric on a connected

manifold. Then every complete Riemannian or pseudo-Riemannian metric geo-

desically equivalent to F is affine equivalent to F .

The assumptions in Theorem 2 and Corollaries are important: it is possible

to construct counterexamples if the Berwald metric is not essentially Berwald

(i.e., is a Riemannian metric), or if one of the metrics is not complete.



Riemannian metrics having common geodesics with Berwald metrics 409

Corollary 3 (Hilbert’s 4th problem for Berwald metrics). Suppose an es-

sentially Berwald metric F on a connected manifold is projectively flat, that is,

there exists a flat Riemannian metric geodesically equivalent to F . Then F is

isometric to a Minkowski metric.

2. Proofs

2.1. Averaged metric and proof of Theorem 1. Given a Finsler Berwald

metric F , we construct a Riemannian metric g = gF such that the associated

connection Γ of F is the Levi–Civita connection of g implying that the metric g

is affine equivalent to F . As we mentioned in the introduction, the construction

is due to [MRTZ], and is similar to one from [Sz2].

Given a smooth norm p on R
n≥2, we canonically construct a positive definite

symmetric bilinear form g : R
n ×R

n → R. For the Finsler metric F , the role of p

will be played by the restriction of F to TxM . We will see that the constructed

g smoothly depends on x, and hence it is a Riemannian metric.

Consider the sphere S1 = {ξ ∈ R
n | p(ξ) = 1}. Consider the (unique) volume

form Ω on R
n such that the volume of the 1-ball B1 = {ξ ∈ R

n | p(ξ) ≤ 1} is

equal to 1.

Denote by ω the volume form on S1 whose value on the vectors η1, . . . , ηn−1

tangent to S1 at the point ξ ∈ S1 is given by ω(η1, . . . , ηn−1) := Ω(ξ, η1, η2, . . . ,

ηn−1).

Now, for every point ξ ∈ S1, consider the symmetric bilinear form b(ξ) :

R
n × R

n → R, b(ξ)(η, ν) = D2
(ξ)p

2(η, ν). In this formula, D2
(ξ)p

2 is the second

differential at the point ξ of the function p2 on R
n. The analytic expression for

b(ξ) in the coordinates (ξ1, . . . , ξn) is

b(ξ)(η, ν) =
∑

i,j

∂2p2(ξ)

∂ξi∂ξj
ηiνj . (3)

Since the norm p is convex, the bilinear form is nonnegative definite. Clearly, for

every ξ ∈ S1, we have

b(ξ)(ξ, ξ) > 0 (4)

(this is actually the reason why we take p2 and not p in the definition of b).

Now consider the following symmetric bilinear 2-form g on R
n: for η, ν ∈ R

n,

we put

g(η, ν) =

∫

S1

b(ξ)(η, ν)ω. (5)
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We assume that the orientation of S1 is chosen in such a way that
∫

S1

ω > 0.

Because of (4), g is positive definite.

Now let us extend this construction to every tangent space TxM of the man-

ifold, then F|TxM plays the role of p. Since the construction depends smoothly on

the point x ∈ M , we have that g := gF is a Riemannian metric on M . We show

that if the metric F is Berwald with the associated connection Γ, then Γ is the

Levi–Civita connection of g.

Indeed, consider a smooth curve γ connecting the points γ(0), γ(1) ∈ M . Let

τ : Tγ(0)M → Tγ(1)M

be the parallel transport of the vectors along the curve with respect to the con-

nection Γ. τ is a linear map. Since the metric is Berwald, τ preserves the function

F and, in particular, the one-sphere S1. Since the forms Ω, ω were constructed

by using the sphere S1 and the linear structure of the space only, τ preserves

the form ω. Since the function F is preserved as well, everything in formula (5)

is preserved by the parallel transport which implies τ∗g = g. Then gij,k = 0,

therefore every (parametrized) geodesic of g is a geodesic of F . Theorem 1 is

proved.

2.2. Proof of Theorem 2 and Corollaries 1, 2, 3. Within the whole section

we assume that our underlying manifold is connected, orientable (otherwise we

pass to an orientable cover), and has dimension at least two.

2.2.1. Holonomy group of a Berwald metric F .

Lemma 1. Let F be an essentially Berwald metric on a connected mani-

fold M , and let g be a Riemannian metric affine equivalent to F (the existence

of such metric is guaranteed by Theorem 1). Then, the metric g is symmetric

of rank ≥ 2, or there exists one more Riemannian metric h such that it is not

proportional to g, but is affine equivalent to g.

Proof. We essentially repeat the argumentation of [Sz1, Sz2]. Take a fixed

point q ∈ M . For every (smooth) loop γ(t), t ∈ [0, 1] with the origin in q (i.e.,

γ(0) = γ(1) = q), we consider the parallel transport τγ : TqM → TqM along the

curve. It is well known (see for example, [Ber, Sim]), that the set

Hq := {τγ | γ : [0, 1] → M is a smooth loop, γ(0) = γ(1) = q}

is a subgroup of the group of the orthogonal transformations of TqM . Moreover,

it is also known that at least one of the following conditions holds:



Riemannian metrics having common geodesics with Berwald metrics 411

(1) Hq acts transitively on the unit sphere S1 := {ξ ∈ TqM | g(ξ, ξ) = 1},

(2) the metric g is symmetric of rank ≥ 2,

(3) there exists one more Riemannian metric h such that it is nonproportional

to g, but is affine equivalent to g.

In the first case, since the holonomy group preserves both g and F , the ratio

F (ξ)2/g(ξ, ξ) is the same for all ξ ∈ TqM , ξ 6= 0, implying that the metric g is

Riemannian. Lemma 1 is proved. �

2.2.2. Metrics with degree of mobility ≥ 3. If the dimension of the manifold

is 2, an essentially Berwald metric is a Minkowski metric, and Theorem 2 and

Corollaries 1, 2, 3 are evident. Below, we assume that the dimension of the

manifold is ≥ 3. Suppose the (Riemannian or pseudo-Riemannian) metric ḡ is

geodesically equivalent to F , but is not affine equivalent to F . Then the metric ḡ is

geodesically equivalent to the averaged metric g = gF , but is not affine equivalent

to g. If the uniqueness theorem for geodesics holds, the latter statement is trivial;

for generic Finsler metrics, it probably requires additional explanation.

In order to explain why the metric ḡ is geodesically equivalent to the averaged

metric g = gF , let us consider the set

N := {(x, ξ) ∈ TM \ TM0 | D2F 2
|TqM nondegenerate}.

This set is evidently open. As from the following standard (see for example

[Ku]) argument from differential geometry it turns out, its intersection with every

TqM \ TM0 is not empty.

We need to show that for a smooth norm p := F|TqM on R
n = TqM there

exists a point such that D2p2 is nondegenerate at this point. We fix an Euclidean

metric in R
n and consider the sphere in R

n (with respect to the chosen Euclidean

metric in TqM) of large radius such that the Finsler sphere S1 := {ξ ∈ TqM |

F (ξ) = 1} lies inside, see the left-hand side of Figure 2. Then, we make the

radius smaller until the first point of the intersection of the sphere with S1, see

the right-hand side of Figure 2. Clearly, at the point of the intersection, the second

differential of p2 is nondegenerate as we claimed.

It is well known that for (x, ξ) ∈ N the uniqueness theorem of geodesics

holds: locally, there exists a unique F -geodesic γ such that γ(0) = x and γ̇(0) = ξ.

Moreover, the geodesic γ is also the geodesic of the associated connection Γ. Then,

every ḡ-geodesic such that (γ(0), γ̇(0)) ∈ N is also a Γ-geodesic. Since the set

N ∩ TqM is open for every q, the connection Γ̄ of ḡ satisfies the Levi–Civita

condition

Γi
jk − Γ̄i

jk − 1
n+1

(
δi
k

(
Γα

jα − Γ̄α
jα

)
+ δi

j

(
Γα

kα − Γ̄α
kα

))
= 0
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Figure 2. For a smooth norm p, there always exists a point such that

the second differential of p2 is nondegenerate

at every point (in the proof from [LC] it is sufficient to assume that only the

geodesics whose velocity vectors are from certain open set N ⊆ TM ; N∩TqM 6= ∅

are common for both metrics) implying that Γ and ḡ are geodesically equivalent,

and hence g and ḡ are also geodesically equivalent.

Thus, the metric ḡ is geodesically equivalent to the averaged metric g as well,

but not affine equivalent to g. By Lemma 1, the metric g is symmetric, or there

exists a Riemannian metric h affine equivalent to g but not proportional to g. We

show that if the metric g is symmetric, the assumptions of Theorem 1 imply that

it is flat from which it follows that there exists a metric h = hij affine equivalent

to g but not proportional to g at least on the universal cover of M , which is

sufficient for our goals.

By a result of Sinjukov [Si1], every symmetric metric geodesically equivalent

to g is affine equivalent to g, unless the metric has constant curvature. In the

latter case, the metric must be flat, otherwise the holonomy group discussed in

the previous section acts transitively on the unit sphere, and the Finsler metric

F is actually Riemannian.

Thus, at least on the universal cover of the manifold there exists a Riemann-

ian metric h affine equivalent to g but not proportional to g.

We consider the symmetric (1, 1)-tensor aij :=
∣
∣det(ḡ)
det(g)

∣
∣
1/(n+1)

ḡαβgαigβj, where

ḡij is the tensor, dual to ḡij so that ḡiαḡαj = δj
i , the function λ := 1

2aαβgαβ , and

its differential λi := (dλ)i := λ,i. By the result of Sinjukov [Si2], see also [BM]

and [EM], if the metric ḡ is geodesically equivalent to g, the tensor aij and the

(0, 1)-tensor λi satisfy the equation

aij,k = λigjk + λjgik. (6)

Moreover, if the metrics g and ḡ are not affine equivalent, λi is not identically

zero.
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Recall that the degree of mobility of the metric g is the dimension of the

space of solutions of equation (6) considered as equation on the unknown aij and

λi. In our case, the degree of mobility is at least 3. Indeed, āij := gij , λ̄i := 0

and âij := hij , λ̂i := 0 are also solutions, but by the assumptions they are linearly

independent of the solution aij , λi.

Metrics with degree of mobility ≥ 3 on manifolds of dimensions ≥ 3 were

studied, in particular, in [KM], see also references therein. The last part of the

present paper will essentially use the results of [KM], so we recommend the reader

to have [KM] at hand.

By results of [KM, Lemma 3], under the above assumptions, for every solution

aij , λi of equation (6), in a neighbourhood of almost every point there exists a

constant B and a function µ such that the following equations hold:

λi,j = µ gij + Baij (7)

µ,i = 2Bλi. (8)

Indeed, equation (7) is equation (30) of [KM], and equation (8) is in [KM,

Remark 8] (where the function µ is denoted by ρ).

Our next goal is to show that in our case B = 0 (and, therefore, equations

(7) are fulfilled at every point of the manifold, and the function µ is actually a

constant by (8)). This will also imply that (6), (7) coincide with (1), (2) after

raising indices with the help of g.

In order to do this, let us consider the solution Aij := aij +hij , Λi := λi+0 =

λi, which is the sum of the solutions aij , λi and hij , 0. The data Aij , λi satisfy

equation (6). As we explained above, they therefore also satisfy equation (7) in

a neighbourhood of almost every point, i.e., in a neighbourhood of almost every

point there exist a function µ̃ and a constant B̃ such that

λi,j = µ̃gij + B̃(aij + hij). (9)

Subtracting equation (7) from (9), we obtain

(µ − µ̃)gij = (B̃ − B)aij + B̃hij . (10)

We see that the right-hand side of equation (10) is a linear combination of two

solution aij and hij and is therefore also a solution of (6) (with an appropriate λi).

As it was proved in [BKM, Lemma 1] (the result is essentially due to Weyl [We]),

the function µ− µ̃ must be a constant. Since g, a, and h are linearly independent,

all coefficients in the linear combination (10) are zero implying B = 0.

Thus, equations (6), (7) coincide with equations (1), (2) after raising the

indexes. Theorem 2 is proved.
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Proof of Corollaries 1, 2. As we explained above, we can assume that

the dimension of the manifold is ≥ 3 and the degree of mobility is ≥ 3. Under

these assumptions, Corollary 1 follows from [KM, Theorem 2] (if g is Riemannian,

the result is due to [Ma4, Theorem 16]; in view of Theorem 2, the result follows

from [Mi1, Theorem 5]), and Corollary 1 follows from [Ma3, Theorem 2] (if g is

Riemannian, the result is due to [KM, Theorem 1]). �

Proof of Corollary 3. Suppose that a flat Riemannian metric ḡ is geo-

desically equivalent to an essentially Berwald metric F . Consider the averaged

metric g = gF constructed in Section 2.1. It is affine equivalent to F , and, there-

fore, as we explained in Section 2.2.2, is geodesically equivalent to ḡ. �

By the classical Beltrami Theorem (see for example [Ma2], or the original

papers [Bel] and [Sc]), the metric g has constant curvature. If the curvature of g

is not zero, the holonony group of g acts transitively on the unit sphere implying

the metric F is actually Riemannian. Thus, the metric g is flat. Then, there

exists a coordinate system such that Γ ≡ 0. In this coordinate system, parallel

transport along a curve does not depend on the curve and is the usual parallel

transation x 7→ x + T . Since the parallel transport preserves F , we have that F

is translation-invariant implying it is Minkowski metric as we claimed.
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Krümmumgsmaasses mit den projektiven Räumen, Math. Ann. 27 (1886), 537–567.

[Sim] J. Simons, On transitivity of holonomy systems, Annals of Math. 76 (1962), 213–234.

[Si1] N. S. Sinjukov, On geodesic mappings of Riemannian spaces onto symmetric Riemannian
spaces, Dokl. Akad. Nauk SSSR (N.S.) 98 (1954), 21–23 (in Russian).

[Si2] N. S. Sinjukov, Geodesic Mappings of Riemannian Spaces, “Nauka”, Moscow, 1979 (in
Russian).
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[Sz2] Z. I. Szabó, Berwald metrics constructed by Chevalley’s polynomials,
arXiv:math/0601522.

[To] R. G. Torrome, Average Riemannian structures associated with a Finsler structure,
arXiv:math/0501058v5.

[We] H. Weyl, Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen
Auffassung, Nachrichten von der K. Gesellschaft der Wissenschaften zu Göttingen, Math-
ematisch-Physikalische Klasse, 1921; “Selecta Hermann Weyl”, Birkhäuser Verlag, Basel
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