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On the Weyl curvature of Deszcz

By BILKIS JAHANARA (Leuven), STEFAN HAESEN (Leuven),

MIROSLAVA PETROVIĆ-TORGAŠEV (Kragujevac)
and LEOPOLD VERSTRAELEN (Leuven)

Abstract. Geometrical characterizations are given for the (0, 6)-tensor R · C and

the (0, 6) Tachibana–Weyl tensor Q(g,C) := −∧g ·C, whereby C denotes the (0, 4) Weyl

conformal curvature tensor of a Riemannian manifold (M, g), R denotes the curvature

operator acting on C as a derivation, and where the natural metrical endomorphism ∧g

also acts as a derivation on C. By comparison of these (0, 6)-tensors R ·C and Q(g,C), a

new scalar valued Riemannian curvature invariant LC(p, π, π) is determined on (M, g),

called the Weyl curvature of Deszcz, which in general depends on two tangent 2-planes

π and π at the same point p, and of which the isotropy determines that M is Weyl

pseudo-symmetric in the sense of Deszcz.

1. Introduction

Recently, the parallel transport of Riemann curvatures and Ricci curvatures

on a (semi-)Riemannian manifold (M, g) around infinitesimal co-ordinate paral-

lelograms was studied in [13] and [14]. There, amongst others, new geometrical

interpretations of the (0, 6) curvature tensor R · R, whereby the first R stands

for the curvature operator acting as a derivation on the second R which stands

for the (0, 4) Riemann–Christoffel curvature tensor, of the (0, 6) Tachibana ten-

sor Q(g, R) := − ∧g ·R, whereby the metrical endomorphism ∧g also acts as a

derivation on the (0, 4) Riemann–Christoffel curvature tensor, as well as of the

(0, 4) curvature tensor R ·S, whereby S denotes the (0, 2) Ricci tensor and of the
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Tachibana-Ricci tensor Q(g, S) := −∧g ·S are given. By comparison of the (0, 6)

tensors R · R and Q(g, R), a new scalar valued Riemannian invariant curvature

function was determined on (M, g), the so-called double sectional curvature or the

sectional curvature of Deszcz LR(p, π, π), which depends on two tangent 2-planes

π and π at any point p of M . The manifolds (M, g) for which the sectional curva-

ture of Deszcz is isotropic, i.e., does not depend on the planes at p, but remains

a scalar valued function which at most depends only on the points of M , are the

manifolds which are pseudo-symmetric in the sense of Deszcz (see e.g. [7], [17]).

And similarly, by comparison of the (0, 4)-tensors R ·S and Q(g, S), another new

scalar valued Riemannian invariant curvature function was determined on (M, g),

the so-called Ricci curvature of Deszcz, LS(p, d, π), which depends on a tangent

direction d and a tangent plane π at any point p of M . The manifolds (M, g) for

which the Ricci curvature of Deszcz is isotropic, i.e., depends at most only on the

points of M , are the manifolds which are Ricci pseudo-symmetric in the sense of

Deszcz (see e.g. [7], [8], [14]).

In the present article, we basically make a similar study concerning the (0, 4)

Weyl conformal curvature tensor C on a manifold (M, g) of dimension n ≥ 4.

New geometrical interpretations of the (0, 6)-tensors R ·C and Q(g, C) := −∧g ·C

are given, in particular thus characterizing the Weyl semi-symmetric spaces (R ·

C = 0) and the conformally flat spaces (C = 0). Then, the conformal sectional

curvature of Deszcz or the Weyl curvature of Deszcz, LC(p, π, π), is defined. This

scalar curvature invariant LC(p, π, π) is isotropic with respect to both planes π

and π at all points p of M if and only if the manifold is Weyl pseudo-symmetric

in the sense of Deszcz (see e.g. [5], [6], [7]). For dimension n = 3, C vanishes

identically and therefore hereafter we always assume n ≥ 4. Further, we recall

that when n ≥ 5, a Riemannian manifold M is pseudo-symmetric if and only if it

is Weyl pseudo-symmetric, but that for n = 4 the class of Weyl pseudo-symmetric

spaces is essentially larger than the class of pseudo-symmetric spaces as shown

in [5].

2. A geometrical interpretation of R · C

In an n-dimensional (n ≥ 4) Riemannian manifold M with metric tensor

g, let ∇ denote the Levi–Civita connection. Then, the (1, 1)-curvature operator

R(X, Y ), the (0, 4) curvature tensor R, the (0, 2) Ricci tensor S and the scalar

curvature τ of (M, g) are respectively given by:

R(X, Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ],
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R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

S(X, Y ) =

n∑

i=1

R(Ei, X, Y, Ei), , τ =

n∑

j=1

S(Ej , Ej), (1)

whereby {E1, E2, . . . , En} denotes any local orthonormal frame field on M , [., .]

denotes the Lie bracket of vector fields and X1, X2, X3, X4, X , Y denote any

tangent vector fields on M . And, for n ≥ 4, the (0, 4) Weyl conformal curvature

tensor C is then given by

C(X1, X2, X3, X4) := R(X1, X2, X3, X4)

+
1

n − 2

{
g(X1, X3)S(X2, X4) + g(X2, X4)S(X1, X3)

− g(X1, X4)S(X2, X3) − g(X2, X3)S(X1, X4)
}

+
τ

(n − 1)(n − 2)

{
g(X1, X4)g(X2, X3) − g(X1, X3)g(X2, X4)

}
. (2)

The (0, 6)-tensor R · C is obtained by the action of the curvature operator R as

a derivation on the (0, 4) Weyl conformal curvature tensor C:

(R · C)(X1, X2, X3, X4; X, Y ) = (R(X, Y ) · C)(X1, X2, X3, X4)

= −C(R(X, Y )X1, X2, X3, X4) − C(X1,R(X, Y )X2, X3, X4)

− C(X1, X2,R(X, Y )X3, X4) − C(X1, X2, X3,R(X, Y )X4). (3)

Now let P be any co-ordinate parallelogram on the manifold M cornered at

the point p for which the co-ordinate values x and y at p change along the sides

by amounts ∆x and ∆y (Figure 1). Let ~x = ∂
∂x

|p and ~y = ∂
∂y

|p be the natural

tangent vectors at p of the x and y co-ordinate lines, respectively.

Then, as is well known and which goes back to Schouten in 1918 [16], after

parallel transport of any vector ~z at p all around an infinitesimal co-ordinate

parallelogram P (Figure 2), the resulting vector ~z⋆ at p is given by

~z ⋆ = ~z + [R(~x, ~y)~z] ∆x∆y + O>2(∆x, ∆y). (4)

For any plane π tangent to M at p the Weyl sectional curvature or, in short,

the Weyl curvature, KC(p, π), is given by

KC(p, π) = C(~v, ~w, ~w,~v), (5)

whereby ~v and ~w is any pair of orthonormal tangent vectors at p spanning π = ~v∧

~w. Since C is a curvature tensor, similarly as shown by Cartan for the Riemann–

Christoffel tensor R and the Riemann sectional curvatures K, the knowledge of the
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Figure 1. A co-ordinate parallelogram

Figure 2. Parallel transport of a vector around a co-ordinate parallelogram

“full” tensor C is equivalent to the knowledge of the Weyl sectional curvatures KC .

Using (2), the Weyl sectional curvature of a plane π = ~v ∧ ~w at p ∈ M can be

expressed in terms of the Riemann sectional curvature K(p, π) = R(~v, ~w, ~w,~v) and

of the Ricci curvatures of the directions d and d corresponding with the vectors

~v and ~w, i.e., Ric(p, d) = S(~v,~v), Ric(p, d) = S(~w, ~w), as follows,

KC(p, π) = K(p, π) −
1

n − 2

{
Ric(p, d) + Ric(p, d)

}
+

τ

(n − 1)(n − 2)
.
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By the metrical character of the Levi–Civita connection ∇, in particular,

any pair of orthonormal vectors ~v and ~w at p after parallel transport around any

co-ordinate parallelogram P yields again a pair of orthonormal vectors ~v⋆ and ~w⋆

at p. These vectors span the plane π⋆ = ~v⋆ ∧ ~w⋆ which is the parallel transported

plane around P of the plane π = ~v ∧ ~w (Figure 3).

Figure 3. Parallel transport of a plane around a co-ordinate parallelogram

Hence, by (3), (4) and (5) and by the fact that C is a curvature tensor, it follows

that

KC(p, π⋆) = C(~v⋆, ~w⋆, ~w⋆, ~v⋆)

= KC(p, π) − [(R · C)(~v, ~w, ~w,~v; ~x, ~y)] ∆x∆y + O>2(∆x, ∆y).

We recall that a Riemannian manifold is said to be Weyl semi-symmetric if

R · C = 0. Then, denoting by ∆⋆
πKC(p, π) = KC(p, π) − KC(p, π⋆) the change

in Weyl sectional curvature KC(p, π) under the parallel transport of the plane π

around an infinitesimal parallelogram P , we can formulate the following.

Theorem 1. In second order approximation, the tensor R·C of a Riemannian

manifold (of dimension ≥ 4) measures the change of the Weyl sectional curvature

KC(p, π) of a plane π = ~v ∧ ~w at any point p under parallel transport around

any infinitesimal co-ordinate parallelogram P cornered at p and tangent to ~x

and ~y, i.e.,

∆⋆
πKC(p, π) ≈ [(R · C)(~v, ~w, ~w,~v; ~x, ~y)] ∆x∆y, (6)
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where π is the tangent plane at p spanned by ~x and ~y.

Corollary 2. A Riemannian manifold (of dimension ≥ 4) is Weyl semi-

symmetric if and only if, up to second order, the Weyl sectional curvature for any

2-plane π at any point p is invariant under the parallel transport of π around any

infinitesimal co-ordinate parallelogram P cornered at p.

The next properties readily follow from the algebraic symmetries of the Weyl

tensor C.

Lemma 3. The tensor R·C has the following algebraic symmetry properties:

(i) (R · C)(X1, X2, X3, X4; X, Y ) = −(R · C)(X2, X1, X3, X4; X, Y )

= −(R · C)(X1, X2, X4, X3; X, Y ) = (R · C)(X3, X4, X1, X2; X, Y )

= −(R · C)(X1, X2, X3, X4, Y, X),

(ii) (R · C)(X1, X2, X3, X4; X, Y ) + (R · C)(X1, X3, X4, X2; X, Y )

+(R · C)(X1, X4, X2, X3; X, Y ) = 0.

3. On the Tachibana–Weyl tensor

The simplest (0, 6)-tensor on a Riemannian manifold which has the same

algebraic symmetry properties as the (0, 6)-tensor R · C may well be the (0, 6)-

tensor Q(g, C) := − ∧g ·C, defined by the action as a derivation on C of the

metrical endomorphism X ∧g Y . This endomorphism is defined by sending a

tangent vector field Z to the tangent vector field given by

(X ∧g Y )Z = g(Y, Z)X − g(X, Z)Y.

Then,

Q(g, C)(X1, X2, X3, X4; X, Y ) := − [(X ∧g Y ) · C] (X1, X2, X3, X4)

= C((X ∧g Y )X1, X2, X3, X4) + C(X1, (X ∧g Y )X2, X3, X4)

+ C(X1, X2, (X ∧g Y )X3, X4) + C(X1, X2, X3, (X ∧g Y )X4).

By analogy with the action of the natural metrical endomorphism as a derivation

on the (0, 4) curvature tensor R, i.e., Q(g, R) := − ∧g ·R, which is called the

Tachibana tensor of the Riemannian manifold (M, g), we will call Q(g, C) :=

− ∧g ·C the Tachibana–Weyl tensor of (M, g).

Concerning the geometrical meaning of this tensor we first state the following.
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Theorem 4. A Riemannian manifold (M, g) of dimension n ≥ 4 is confor-

mally flat if and only if its Tachibana–Weyl tensor vanishes identically.

Proof. By a classical result of Weyl, a Riemannian manifold of dimension

≥ 4 is conformally flat if and only if its conformal curvature tensor C vanishes

identically [18]. And, of course, C ≡ 0 automatically implies that Q(g, C) ≡ 0.

Conversely, if Q(g, C) ≡ 0 we need to show that C ≡ 0. Algebraically,

just like the fact that Q(g, R) ≡ 0 implies that the sectional curvature K of the

Riemannian manifold (M, g) is constant (see e.g. [9]), Q(g, C) ≡ 0 straightfor-

wardly implies that KC is constant. And, since the trace of C is zero, the result

follows. �

A different kind of geometrical meaning of the tensor Q(g, C) corresponds

somewhat to the one given in Theorem 1 for the tensor R ·C. It is related to the

geometrical meaning of the endomorphism ∧g according to which

~̃z = ~z − [(~x ∧g ~y)~z] ∆ϕ + O>1(∆ϕ),

whereby ~̃z is the vector obtained from a tangent vector ~z at p after the rotation

over an angle ∆ϕ of the projection of ~z on π = ~x∧~y, while keeping the component

of ~z perpendicular to π fixed (Figure 4) [13].

Figure 4. A geometrical interpretation of the vector (~x ∧g ~y)~z

Now, consider at p any two orthonormal vectors ~v and ~w and let ~̃v and ~̃w be the

vectors obtained from ~v and ~w after such a rotation over an infinitesimal angle

∆ϕ of the projections of ~v and ~w on π = ~x ∧ ~y. Comparing the Weyl sectional
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curvatures of the planes π = ~v ∧ ~w and π̃ = ~̃v ∧ ~̃w, we find that

KC(p, π̃) = KC(p, π) − [Q(g, C)(~v, ~w, ~w,~v; ~x, ~y)] ∆ϕ + O>1(∆ϕ).

Then, denoting by ∆eπKC(p, π) = KC(p, π) − KC(p, π̃) the change in Weyl sec-

tional curvature KC(p, π) under the above kind of rotations over an infinitesimal

angle ∆ϕ, we can formulate the following.

Theorem 5. In first order approximation, the Tachibana–Weyl tensor

Q(g, C) of a Riemannian manifold (of dimension ≥ 4) measures the change of

the Weyl sectional curvature KC(p, π) of a plane π = ~v ∧ ~w at any point p

under an infinitesimal rotation over an angle ∆ϕ of the projections of ~v and ~w on

π = ~x ∧ ~y, i.e.,

∆eπKC(p, π) ≈ [Q(g, C)(~v, ~w, ~w,~v; ~x, ~y)] ∆ϕ. (7)

4. Definition and properties of the Weyl curvature of Deszcz

Let (M, g) be an n(≥ 4)-dimensional Riemannian manifold which is not con-

formally flat and denote by UC the set of points where the Tachibana–Weyl tensor

Q(g, C) is not identically zero, i.e., UC = {p ∈ M | Q(g, C)p 6= 0}. Then, at a

point p ∈ UC , a plane π = ~v ∧ ~w is said to be Weyl curvature-dependent with

respect to a plane π = ~x ∧ ~y when Q(g, C)(~v, ~w, ~w,~v; ~x, ~y) 6= 0. This definition is

independent of the choice of bases for π and π.

At a point p ∈ UC , let a plane π = ~v ∧ ~w be Weyl curvature-dependent with

respect to a plane π = ~x ∧ ~y. Then, we define the Weyl curvature of Deszcz of

the planes π and π at the point p as the scalar

LC(p, π, π) =
(R · C)(~v, ~w, ~w,~v; ~x, ~y)

Q(g, C)(~v, ~w, ~w,~v; ~x, ~y)
.

This definition is again independent of the choice of bases for the planes π and π.

Theorem 6. At any point p ∈ UC , the tensor R·C of a Riemannian manifold

M is completely determined by the Weyl curvatures of Deszcz LC(p, π, π).

Proof. Assume there exists a (0, 6)-tensor W with the same algebraic sym-

metries as R·C and so that for any two Weyl curvature-dependent planes π = ~v∧ ~w

and π = ~x ∧ ~y at p,

(R · C)(~v, ~w, ~w,~v; ~x, ~y)

Q(g, C)(~v, ~w, ~w,~v; ~x, ~y)
=

W (~v, ~w, ~w,~v; ~x, ~y)

Q(g, C)(~v, ~w, ~w,~v; ~x, ~y)
.
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We have to prove that ∀~x1, ~x2, ~x3, ~x4, ~x5, ~x6 ∈ TpM ,

(R · C)(~x1, ~x2, ~x3, ~x4; ~x5, ~x6) = W (~x1, ~x2, ~x3, ~x4; ~x5, ~x6).

Let T be the (0, 6)-tensor T = R · C − W . Obviously, T has the same algebraic

symmetries as R ·C and W . Further, for every pair of Weyl curvature-dependent

planes π = ~v ∧ ~w and π = ~x ∧ ~y,

T (~v, ~w, ~w,~v; ~x, ~y) = 0. (8)

When two planes π = ~v ∧ ~w and π = ~x ∧ ~y are not Weyl curvature-dependent

there holds that Q(g, C)(~v, ~w, ~w,~v; ~x, ~y) = 0. Using the following argument

from [10] we show that also in this case T (~v, ~w, ~w,~v; ~x, ~y) = 0. Namely, since

Q(g, C)(~v, ~w, ~w,~v; ~x, ~y) is a polynomial in the components of ~v, ~w, ~x and ~y, the zero

set does not contain any open subset (for otherwise Q(g, C)p ≡ 0, which would

be a contradiction with p ∈ UC). We can then choose series of tangent vectors

~vl → ~v, ~wl → ~w, ~xl → ~x and ~yl → ~y such that for any l, ~vl ∧ ~wl is Weyl curvature-

dependent with respect to ~xl∧~yl. We have for every l that T (~vl, ~wl, ~wl, ~vl; ~xl, ~yl)=0

and thus in the limit we find that also T (~v, ~w, ~w,~v; ~x, ~y) = 0. Hence, (8) holds

for all ~v, ~w, ~x, ~y ∈ TpM . Using polarization and the symmetric properties of R ·C

completes the proof. �

Corollary 7. The Weyl semi-symmetric spaces are characterized by the

vanishing of the Weyl curvatures of Deszcz.

A Riemannian manifold M (n ≥ 4) is said to be Weyl pseudo-symmetric at

a point p ∈ UC if there exists a scalar LC(p) such that,

R · C |p= LC(p)Q(g, C) |p .

The manifold (M, g) is called Weyl pseudo-symmetric in the sense of Deszcz if it

is Weyl pseudo-symmetric at every point of UC ⊂ M .

Theorem 8. A Riemannian manifold (M, g) (n ≥ 4) is Weyl pseudo-symmetric

in the sense of Deszcz if and only if at all of its points p ∈ UC all the Weyl curva-

tures of Deszcz are the same, i.e., for all Weyl curvature-dependent planes π and

π at p, LC(p, π, π) = LC(p).

Proof. If R · C |p= LC(p)Q(g, C) |p at p, the statement is obvious. So

assume that LC(p, π, π) = LC(p) for every two Weyl curvature-dependent planes

π and π. Then,

(R · C)(~v, ~w, ~w,~v; ~x, ~y) = LC(p)Q(g, C)(~v, ~w, ~w,~v; ~x, ~y).
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The tensor T = R · C − LC Q(g, C) has the same algebraic symmetries as R · C.

For two Weyl curvature-dependent planes π = ~v ∧ ~w and π = ~x ∧ ~y, there holds

that T (~v, ~w, ~w,~v; ~x, ~y) = 0. If both planes are not Weyl curvature-dependent, an

argument as in the proof of Theorem 6 shows that T (~x1, ~x2, ~x2, ~x1; ~x5, ~x6) = 0,

∀~x1, ~x2, ~x5, ~x6 ∈ TpM , and by polarization it then follows that

T (~x1, ~x2, ~x3, ~x4; ~x5, ~x6) = 0, ∀~x1, ~x2, ~x3, ~x4; ~x5, ~x6 ∈ TpM. �

5. Pseudo-symmetry and the squaroids of Levi–Civita

Next, we give a geometrical interpretation of the Weyl curvature of Deszcz LC

in terms of the squaroids of Levi–Civita (see e.g. [2], [9], [13, 15]). Starting from

any two tangent vectors ~v and ~w at any point p of M , Levi–Civita constructed in

1917 his so-called parallelogramoids as follows. Consider through p the geodesic

α with tangent ~v and let q be the point on this geodesic at an infinitesimal

distance A from p. Denote by ~w⋆ the vector obtained after parallel transport of

~w from p to q along α. Then, through p and q consider the geodesics βp and βq

which are tangent to ~w and ~w⋆, respectively. Fix on them the points p and q at

a same infinitesimal distance B from p and q, respectively. The parallelogramoid

cornered at p with sides tangent to ~v and ~w is then completed by the geodesic α

through p and q. Let A′ be the geodesic distance between p and q. Levi–Civita

showed that, in first order approximation, the sectional curvature K(p, π) of the

plane π = ~v ∧ ~w can be expressed as

K(p, π) ≈
A2 − A′2

A2B2 sin2(θ)
.

whereby θ is the angle between the vectors ~v and ~w.

Let ~v and ~w be orthonormal vectors at any point p ∈ M . Consider the Levi–

Civita squaroid based on ~v and ~w with side ε, i.e., the parallelogramoid for which

A = B = ε (Figure 5). Then, when ε′ is the length of the closing geodesic, the

sectional curvature K(p, π) is given by

K(p, π) ≈
ε2 − ε′2

ε4
.

Consider at p ∈ M an orthonormal basis {~v = ~e1, ~e2, ~e3, . . . , ~en} of TpM and

construct for every plane ~v ∧ ~ej (j 6= 1) the squaroid of Levi–Civita, all with the

same sides ε. Let us denote the lengths of the completing geodesics by ε′j. The
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Figure 5. A squaroid of Levi–Civita

Ricci curvatures Ric(p, d), with d the direction of the vector ~v, can then, up to

first order approximation, be expressed as

Ric(p, d) ≈
∑

j 6=1

ε2 − ε′2j

ε4
.

Now, consider two planes π = ~v ∧ ~w and π = ~x ∧ ~y at a point p of M and

parallely transport the frame {~v = ~e1, ~w = ~e2, ~e3, . . . , ~en} to {~v⋆ = ~e⋆
1, ~w⋆ =

~e⋆
2, ~e

⋆
3, . . . , ~e

⋆
n} around an infinitesimal co-ordinate parallelogram P . We construct

for every plane ~v⋆ ∧~e⋆
j (j 6= 1) and for every plane ~w⋆ ∧~e⋆

k (k 6= 2), the squaroids

of Levi–Civita, all with the same sides ε and denote the lengths of the completing

geodesics by ε⋆′
j and ε⋆′

k , respectively.

Then, according to the formulas for the tensors R · R and R · S which are anal-

ogous to formula (6) for the tensor R · C [13], [14], we find, up to second order

approximation with respect to ∆x and ∆y, that

(R · R)(~v, ~w, ~w,~v; ~x, vecy) ≈
(ε⋆′

2 )2 − (ε′2)
2

ε4

1

∆x∆y
,

and

(R · S)(~v,~v; ~x, ~y) ≈
∑

j 6=1

(ε⋆′
j )2 − (ε′j)

2

ε4

1

∆x∆y
.

Let {~̃v = ~̃e1, ~̃w = ~̃e2, ~̃e3, . . . , ~̃en} be the frame which is obtained after an infinites-

imal rotation as before of the frame {~v = ~e1, ~w = ~e2, ~e3, . . . , ~en} with respect to

the plane π = ~x ∧ ~y, and construct for every plane ~̃v ∧ ~̃ej (j 6= 1) and for every
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plane ~̃w ∧ ~̃ek (k 6= 2) the squaroids of Levi–Civita, all with the same side ε, and

denote the lengths of the completing geodesics by ε̃′j and ε̃′k, respectively.

In this case, according to the formulas for the Tachibana tensors Q(g, R) and

Q(g, S) which are analogous to formula (7) for the Tachibana–Weyl tensor Q(g, C),

we find, up to first order with respect to the angle ∆ϕ of infinitesimal rotation,

that

Q(g, R)(~v, ~w, ~w,~v; ~x, ~y) ≈
(ε̃′2)

2 − (ε′2)
2

ε4

1

∆ϕ
,

and

Q(g, S)(~v,~v; ~x, ~y) ≈
∑

j 6=1

(ε̃′j)
2 − (ε′j)

2

ε4

1

∆ϕ
.

We recall from [13], [14] that a plane π = ~v ∧ ~w is said to be curvature-dependent

with respect to a plane π = ~x ∧ ~y if Q(g, R)(~v, ~w, ~w,~v; ~x, ~y) 6= 0, and that a

direction d spanned by a vector ~v is Ricci curvature-dependent with respect to a

plane π = ~x∧~y if Q(g, S)(~v,~v; ~x, ~y) 6= 0. These definitions are independent of the

choices of bases for the planes π and π and the direction d, respectively.

Then, the sectional curvature of Deszcz LR(p, π, π) of the plane π which is

curvature-dependent with respect to π at p ∈ UR = {x ∈ M | Q(g, R)x 6= 0},

and the Ricci curvature of Deszcz LS(p, d, π) of the direction d which is Ricci

curvature-dependent with respect to the plane π at a point p ∈ US = {x ∈ M |

Q(g, S)x 6= 0}, can respectively be expressed as

LR(p, π, π) ≈
(ε⋆′

2 )2 − (ε′2)
2

(ε̃′2)
2 − (ε′2)

2

∆ϕ

∆x∆y
,

and

LS(p, d, π) ≈

∑
j 6=1

[
(ε⋆′

j )2 − (ε′j)
2
]

∑
k 6=1

[
(ε̃′k)2 − (ε′k)2

] ∆ϕ

∆x∆y
.

Because the tensor R ·C can be written in terms of the tensors R ·R and R ·S as,

(R · C)(X1, X2, X3, X4; X, Y ) = (R · R)(X1, X2, X3, X4; X, Y )

−
1

n − 2
{g(X1, X4)(R · S)(X2, X3; X, Y ) + g(X2, X3)(R · S)(X1, X4; X, Y )

− g(X1, X3)(R · S)(X2, X4; X, Y ) − g(X2, X4)(R · S)(X1, X3; X, Y )},

the Weyl curvature of Deszcz LC(p, π, π) of the plane π which is Weyl curvature-

dependent with respect to the plane π at a point p ∈ UC can be expressed as

LC(p, π, π) ≈

(ε⋆′
2 )2 − (ε′2)

2 − 1
n−2

[∑
j 6=1

(
(ε⋆′

j )2 − (ε′j)
2
)

+
∑

k 6=2

(
(ε⋆′

k )2 − (ε′k)2
)]

(ε̃′2)
2 − (ε′2)

2

∆ϕ

∆x∆y
.
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Thus, calibrating the changes of the Riemann, Ricci and Weyl curvatures under

parallel translation (⋆) around a parallelogram P with infinitesimal parameter

growths ∆x and ∆y by the changes of the same curvatures under rotation (∼)

over an infinitesimal angle ∆ϕ = ∆x∆y with respect to π, we find the following

approximate geometrical expressions in terms of the squaroids of Levi–Civita of

sides ε, for, respectively, the Riemann sectional curvature of Deszcz LR, the Ricci

curvature of Deszcz LS and the Weyl curvature of Deszcz LC .

Theorem 9. Let (M, g) be a Riemannian manifold, p ∈ UR and π ⊂ TpM

curvature-dependent with respect to a tangent plane π ⊂ TpM . Under the above

calibration of infinitesimal parallel translation by associated infinitesimal rotation,

the sectional curvature of Deszcz LR(p, π, π) can be expressed in terms of the

lengths of closing sides in squaroids of Levi–Civita as follows:

LR(p, π, π) ≈
(ε⋆′

2 )2 − (ε′2)
2

(ε̃′2)
2 − (ε′2)

2
.

Theorem 10. Let (M, g) be a Riemannian manifold, p ∈ US and d a tangent

direction which is Ricci curvature-dependent with respect to a tangent plane

π ⊂ TpM . Under the above calibration of infinitesimal parallel translation by

associated infinitesimal rotation, the Ricci curvature of Deszcz LS(p, d, π) can be

expressed in terms of the lengths of closing sides in squaroids of Levi–Civita as

follows:

LS(p, d, π) ≈

∑
j 6=1

[
(ε⋆′

j )2 − (ε′j)
2
]

∑
k 6=1

[
(ε̃′k)2 − (ε′k)2

] .

Theorem 11. Let (M, g) be a Riemannian manifold, p ∈ UR and π ⊂ TpM

Weyl curvature-dependent with respect to a tangent plane π ⊂ TpM . Under the

above calibration of infinitesimal parallel translation by associated infinitesimal

rotation, the Weyl curvature of Deszcz LC(p, π, π) can be expressed in terms of

the lengths of closing sides in squaroids of Levi–Civita as follows:

LC(p, π, π) ≈

(ε⋆′
2 )2 − (ε′2)

2 − 1
n−2

[ ∑
j 6=1

(
(ε⋆′

j )2 − (ε′j)
2
)

+
∑

k 6=2

(
(ε⋆′

k )2 − (ε′k)2
)]

(ε̃′2)
2 − (ε′2)

2
.

Remarks 12. If a manifold (M, g) is pseudo-symmetric, then it is automati-

cally Ricci pseudo-symmetric as well as Weyl pseudo-symmetric, but the converse

statements are not true in general. The warped products of a 1-dimensional man-

ifold and a non pseudo-symmetric Einstein manifold of dimension ≥ 3, are non

pseudo-symmetric, Ricci pseudo-symmetric manifolds. All Cartan hypersurfaces

in the spheres S
n+1 with n = 6, 12 or 24 are non pseudo-symmetric, Ricci pseudo-

symmetric manifolds. The warped products of Riemannian spheres of dimension
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≥ 2 with Einstein spaces of dimension ≥ 4 are non conformally flat, non pseudo-

symmetric, non Einstein, but Ricci pseudo-symmetric manifolds. Examples of non

pseudo-symmetric, non conformally flat, but Weyl pseudo-symmetric Riemann-

ian manifolds were obtained in [5] by applying suitable conformal deformations

on a non semi-symmetric, non conformally flat, but Weyl semi-symmetric, Rie-

mannian 4-dimensional manifold given by Derdziński in [4]. Also, of course,

every conformally flat manifold of dimension ≥ 4 is Weyl pseudo-symmetric, but

there do exist conformally flat manifolds of dimension ≥ 4 which are not pseudo-

symmetric. For more information on various pseudo-symmetries, see e.g. [1], [3],

[5], [7], [11], [12].
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