

Title: Linear iterative equations of higher orders and random-valued functions

Author(s): Karol Baron

Given a probability space (Ω, \mathcal{A}, P) , a separable metric space X with the σ -algebra \mathcal{B} of all its Borel subsets and a $\mathcal{B} \otimes \mathcal{A}$ -measurable $f : X \times \Omega \to X$ we consider the equation

(E)
$$\varphi(x) = \int_{\Omega} \varphi(f(x,\omega)) P(d\omega)$$

and iterates $f^n, n \in \mathbb{N}$, of f defined on $X \times \Omega^{\mathbb{N}}$ by $f^1(x, \omega) = f(x, \omega_1)$ and $f^{n+1}(x, \omega) = f(f^n(x, \omega), \omega_{n+1})$. Assuming that for every $x \in X$ the sequence $(f^n(x, \cdot))_{n \in \mathbb{N}}$ converges in law and $\pi(x, \cdot)$ denotes the limit distribution we show that for every Borel and bounded $u: X \to \mathbb{R}$ the function $x \mapsto \int_X u(y)\pi(x, dy), x \in X$, is a Borel solution of (E) and we study regularity of these solutions.

Address: Karol Baron Uniwersytet Śląski Instytut Matematyki Bankowa 14 PL–40–007 Katowice Poland