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Linear iterative equations of higher orders
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Dedicated to Professor Zoltán Daróczy on his 70th birthday

Abstract. Given a probability space (Ω,A, P ), a separable metric space X with

the σ-algebra B of all its Borel subsets and a B ⊗ A-measurable f : X × Ω → X we

consider the equation

(E) ϕ(x) =

Z
Ω

ϕ(f(x, ω))P (dω)

and iterates fn, n ∈ N, of f defined on X ×ΩN by f1(x,ω) = f(x, ω1) and fn+1(x, ω) =

f(fn(x, ω), ωn+1). Assuming that for every x ∈ X the sequence (fn(x, ·))n∈N con-

verges in law and π(x, ·) denotes the limit distribution we show that for every Borel and

bounded u : X → R the function x 7→
R

X
u(y)π(x, dy), x ∈ X, is a Borel solution of (E)

and we study regularity of these solutions.

1. Throughout the paper (Ω,A, P ) is a probability space and (X, ̺) is a

separable metric space.

Let B denote the σ-algebra of all Borel subsets of X . We say that f :X×Ω→X

is a random-valued function (shortly: an rv-function) if it is measurable with re-

spect to the product σ-algebra B ⊗ A. The iterates of such an rv-function are
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given by

f1(x, ω1, ω2, . . . ) = f(x, ω1),

fn+1(x, ω1, ω2, . . . ) = f(fn(x, ω1, ω2, . . . ), ωn+1)

for x from X and (ω1, ω2, . . . ) from Ω∞ defined as ΩN. Note that fn : X ×

Ω∞ → X is an rv-function on the product probability space (Ω∞,A∞, P∞).

More exactly, the n-th iterate fn is B ⊗ An-measurable, where An denotes the

σ-algebra of all the sets of the form

{(ω1, ω2, . . . ) ∈ Ω∞ : (ω1, . . . , ωn) ∈ A}

with A from the product σ-algebra An. (See [6; Section 1.4], [3], [4].)

Fix an rv-function f : X × Ω → X .

According to R. Kapica [4; Theorem 2] the probability distribution of the

limit in measure of (fn(x, ·))n∈N always produces a bounded solution of the

equation

ϕ(x) =

∫

Ω

ϕ(f(x, ω))P (dω) (1)

which in addition is nonconstant provided the limit really depends on x. We

generalize this theorem to the weak convergence of distributions and show that

a simple additional condition guarantees that both the limit distribution and

solutions of (1) generated by this limit are Lipschitzian.

By a distribution (on X) we mean any probability measure defined on B.

Recall that a sequence (πn)n∈N of distributions converges weakly to a distribution

π if

lim
n→∞

∫

X

u(x)πn(dx) =

∫

X

u(x)π(dx)

for any continuous and bounded function u : X → R. It is well known (see,

[1; Theorem 11.3.3]) that this convergence is metrizable by the (Fortet–Mourier,

Lévy–Prohorov, Wasserstein) metric:

‖π1 − π2‖W = sup

{∣

∣

∣

∣

∫

X

udπ1 −

∫

X

udπ2

∣

∣

∣

∣

: u ∈ Lip1(X), ‖u‖∞ ≤ 1

}

,

where

Lip1(X) = {u : X → R | |u(x) − u(z)| ≤ ̺(x, z) for x, z ∈ X}

and ‖u‖∞ = sup{|u(x)| : x ∈ X} for a bounded u : X → R.
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2. Let πn(x, ·) denote the distribution of fn(x, ·), i.e.,

πn(x, B) = P∞(fn(x, ·) ∈ B) (2)

for n ∈ N, x ∈ X and B ∈ B. Clearly, π1(x, ·) is the distribution of f(x, ·):

π1(x, B) = P (f(x, ·) ∈ B) for x ∈ X and B ∈ B. (3)

We start with the following lemma.

Lemma 1. For any n ∈ N and B ∈ B the function πn(·, B) given by (2) is

Borel and

πn+1(x, B) =

∫

Ω

πn(f(x, ω), B)P (dω) for x ∈ X ; (4)

moreover, if u : X → R is Borel and bounded, then the function

x 7→

∫

X

u(y)πn(x, dy), x ∈ X, (5)

is Borel, for every x ∈ X the function

ω 7→

∫

X

u(y)πn(f(x, ω), dy), ω ∈ Ω, (6)

is A-measurable and
∫

X

u(y)πn+1(x, dy) =

∫

Ω

(
∫

X

u(y)πn(f(x, ω), dy)

)

P (dω). (7)

Proof. Since

C := {(x, ω) ∈ X × Ω∞ : fn(x, ω) ∈ B} ∈ B ⊗A∞,

the function

x 7→ P∞(Cx), x ∈ X,

i.e. πn(·, B), is (see, e.g., [7; Theorem 6.3.1]) Borel. To get (4) note that (by

induction)

fn+1(x, ω1, ω2, . . . ) = fn(f(x, ω1), ω2, ω3, . . . )

for x ∈ X and (ω1, ω2, . . . ) ∈ Ω∞, and observe that

πn+1(x, B) = P∞({(ω1, ω2, . . . ) ∈ Ω∞ : fn(f(x, ω1), ω2, ω3, . . . ) ∈ B})

= P∞({(ω1, ω2, . . . ) ∈ Ω∞ : (ω2, ω3, . . . ) ∈ Cf(x,ω1)})

=

∫

Ω

P∞(Cf(x,ω1))(P (dω1) =

∫

Ω

πn(f(x, ω1), B)P (dω1)

for x ∈ X .
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If B ∈ B and u = 1B, then (5) is the function πn(·, B) – and we already have

shown that it is Borel – whereas (6) is the function ω 7→ πn(f(x, ω), B), ω ∈ Ω,

which is clearly A-measurable, and (7) reduces to (4) for every x ∈ X . A pass to

the general case is standard. �

Now we assume the following condition.

(H) For every x ∈ X the sequence (πn(x, ·))n∈N defined by (2) converges

weakly to a distribution π(x, ·).

The following theorem generalizes [4; Theorem 2].

Theorem 1. If (H) holds, then for every Borel and bounded u : X → R the

function ϕ : X → R given by

ϕ(x) =

∫

X

u(y)π(x, dy) (8)

is a Borel and bounded solution of (1); in particular, for any B ∈ B the function

π(·, B) is a Borel solution of (1).

Proof. Assume first that u : X → R is continuous and bounded. Since for

every n ∈ N the function (5) is Borel, so is (see [1; Theorem 4.2.2]) the pointwise

limit

x 7→

∫

X

u(y)π(x, dy), x ∈ X, (9)

of the sequence built of these functions. Moreover, making use of (7) and applying

the Lebesgue dominated theorem we have also
∫

X

u(y)π(x, dy) =

∫

Ω

(
∫

X

u(y)π(f(x, ω), dy)

)

P (dω) for x ∈ X, (10)

which means that ϕ : X → R given by (8) solves (1).

Fix now a Borel and bounded function u0 : X → R, put

M = ‖u0‖∞

and consider the family U of all Borel functions u : X → [−M, M ] such that

the function (9) is Borel and (10) holds. The previous part of the proof shows

that any continuous u : X → [−M, M ] is in U. Moreover, from the Lebesgue

dominated convergence theorem it follows that U contains the limit of any point-

wise convergent sequence of functions in U. Consequently (see [7; Theorem 4.5.2])

every Borel function u : X → [−M, M ] belongs to U. In particular, u0 ∈ U. This

proves the main part of Theorem 1.

To finish the proof observe that if B ∈ B, then putting u = 1B in (8) we get

ϕ = π(·, B). �
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Remark 1. Assume (H), let A ∈ B and

P (f(x, ·) ∈ A) = 1 for x ∈ A. (11)

If p ∈ [0, 1], F ⊂ X is closed and

P (f(x, ·) ∈ F ) ≥ p for x ∈ A, (12)

then

π(x, F ) ≥ p for x ∈ A. (13)

Proof. By induction, making use of (3) and the recurrence (4), we obtain

πn(x, F ) ≥ p for x ∈ A.

Since F is closed, this jointly with (H) gives (see [1; Theorem 11.1.1])

p ≤ lim sup
n→∞

πn(x, F ) ≤ π(x, F )

for x ∈ A. �

Remark 2. Assume (H) and let a finite A ⊂ X satisfies (11). If x0 ∈ X ,

f(x0, ·) = x0 a.s. (14)

and

P (f(x, ·) = x0) < 1 for x ∈ A, (15)

then

π(x, ·) 6= π(x0, ·) for x ∈ A.

Proof. Let B(x0, r) denote the open ball with center at x0 and radius r.

From (15) it follows that

0 < P (f(x, ·) ∈ X \ {x0}) = lim
n→∞

P

(

f(x, ·) ∈ X \ B

(

x0,
1

n

))

for x ∈ A. Since A is finite it shows that there is a positive integer n such that

(12) holds with

F = X \ B

(

x0,
1

n

)

and p = min{P (f(x, ·) ∈ F ) : x ∈ A} > 0.

By Remark 1 we have (13). On the other hand, from (3) and (14),

π1(x0, B) = P (x0 ∈ B) = 1B(x0) = δx0
(B)
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for B ∈ B which jointly with (4) and (14) shows that πn(x0, ·) = δx0
for n ∈ N.

Consequently also

π(x0, ·) = δx0
(16)

and since x0 6∈ F we see that

π(x0, F ) = 0 < p ≤ π(x, F )

for x ∈ A. �

3. To obtain more information about the limit distribution and solutions

of (1) generated by this limit we assume that

∫

Ω

̺(f(x, ω), f(z, ω))P (dω) ≤ λ̺(x, z) for x, z ∈ X. (17)

Theorem 2. Assume (H). If (17) holds with a λ ∈ (0,∞), then:

(i) for every Lipschitzian and bounded u : X → R the function ϕ : X → R given

by (8) is of the first Baire class and a bounded solution of (1);

(ii) if x, z ∈ X and π(x, ·) 6= π(z, ·), then (1) has a bounded solution ϕ : X → R

of the first Baire class such that ϕ(x) 6= ϕ(z).

Proof. From (17) it follows by induction that

∫

Ω∞
̺(fn(x, ω), fn(z, ω))P∞(dω) ≤ λn̺(x, z) for x, z ∈ X and n ∈ N.

Hence, if u : X → R is bounded and Lipschitzian with a Lipschitz constant L,

then
∣

∣

∣

∣

∫

Ω∞
u(fn(x, ω))P∞(dω) −

∫

Ω∞
u(fn(z, ω))P∞(dω)

∣

∣

∣

∣

≤ Lλn̺(x, z),

i.e., by (2),

∣

∣

∣

∣

∫

X

u(y)πn(x, dy) −

∫

X

u(y)πn(z, dy)

∣

∣

∣

∣

≤ Lλn̺(x, z) for x, z ∈ X (18)

and for n ∈ N. This shows that the function ϕ : X → R given by (8) is the

pointwise limit of Lipschitzian functions

x 7→

∫

X

u(y)πn(x, dy), x ∈ X,

hence of the first Baire class. This and Theorem 1 give (i).
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To get (ii) it is enough to observe that if π(x, ·) 6= π(z, ·), then (see [1, Propo-

sition 11.3.2]) there exists a bounded u ∈ Lip1(X) such that
∫

X

u(y)π(x, dy) 6=

∫

X

u(y)π(z, dy)

and to apply part (i). �

Corollary 1. Assume (H) and let X be compact. If (17) holds with a

λ ∈ (0,∞), then for every continuous u : X → R the function ϕ : X → R given

by (8) is of the first Baire class and a bounded solution of (1).

Proof. Fix a continuous function u : X → R and (see [1; Theorem 11.2.4])

let (un)n∈N be a sequence of Lipschitzian mappings of X into R uniformly con-

vergent to u. Defining ϕn : X → R by

ϕn(x) =

∫

X

un(y)π(x, dy) (19)

for n ∈ N we see that (ϕn)n∈N uniformly converges to the function ϕ : X → R

given by (8). It follows from Theorem 2(i) that ϕn is of the first Baire class for

every n ∈ N, and so is (see [7; Theorem 3.5.2]) the uniform limit ϕ. This and

Theorem 1 end the proof. �

Corollary 2. Assume (H). If (17) holds with a λ ∈ (0,∞), then for every

closed subset F of X the function π(·, F ) is of the second Baire class and a solution

of (1).

Proof. Fix a closed F ⊂ X and for every n ∈ N define un, ϕn : X → [0, 1]

by

un(x) = 1 − min{1, n̺(x, F )}

and (19). Since un is Lipschitzian, by Theorem 2(i) the function ϕn is of the

first Baire class for n ∈ N, and since (un)n∈N pointwise converges to 1F , by the

Lebesgue dominated theorem (ϕn)n∈N pointwise converges to π(·, F ). �

Assuming (17) with λ = 1 we can obtain much more.

Theorem 3. Assume (H). If
∫

Ω

̺(f(x, ω), f(z, ω))P (dω) ≤ ̺(x, z) for x, z ∈ X, (20)

then

‖π(x, ·) − π(z, ·)‖W ≤ ̺(x, z) for x, z ∈ X (21)

and
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(i) for every Lipschitzian and bounded u : X → R the function ϕ : X → R given

by (8) is a Lipschitzian and bounded solution of (1);

(i) if x, z ∈ X and π(x, ·) 6= π(z, ·), then (1) has a Lipschitzian and bounded

solution ϕ : X → R such that ϕ(x) 6= ϕ(z).

Proof. If u ∈ Lip1(X) is bounded, then we have (18) with L = 1 and λ = 1

for every n ∈ N and passing to the limit we see that (21) holds.

If u : X → R is bounded and Lipschitzian with a Lipschitz constant L, then

we have (18) with λ = 1 and passing to the limit we see that ϕ : X → R given

by (8) is Lipschitzian with a Lipschitz constant L.

To get (ii) we argue as in the proof of Theorem 2. �

Remark 3 (cf. [2; Theorem 5.1]). Assume (H). If ϕ : X → R is a continuous

and bounded solution of (1), then

ϕ(x) =

∫

X

ϕ(y)π(x, dy) for x ∈ X ; (22)

in particular, if x, z ∈ X and π(x, ·) = π(z, ·), then ϕ(x) = ϕ(z).

Proof. It follows from (1) and (2) that

ϕ(x) =

∫

Ω∞
ϕ(fn(x, ω))P∞(dω) =

∫

X

ϕ(y)πn(x, dy)

for x ∈ X and n ∈ N. Passing to the limit we obtain (22). �

Corollary 3. Assume (H) and (20). If (1) has a nonconstant continuous

and bounded solution ϕ : X → R, then it has also a nonconstant Lipschitzian

and bounded solution ϕ : X → R.

Proof. It is enough to apply Remark 3 and Theorem 3(ii). �

Corollary 4. Assume (H) and (20). If (14) holds for an x0 ∈ X and any

Lipschitzian and bounded solution ϕ : X → R of (1) is a constant function, then

for every x ∈ X the sequence (fn(x, ·))n∈N converges to x0 in probability.

Proof. From (16) and Theorem 3(ii) it follows that

π(x, ·) = δx0
for x ∈ X.

Applying [1; Proposition 11.1.3] we obtain the assertion. �

Remark 4. In case of the convergence in probability [5; Theorem 3.4] brings

completely different conditions ensuring that for some continuous and bounded

u : X → R the function ϕ : X → R given by (8) is continuous and nonconstant.

In view of Theorem 1, as the proof of [5; Theorem 3.4(iii)] shows it remains valid

also in case (H) and for Borel and bounded u : X → R satisfying (3.14) of [5].
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