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Linear iterative equations of higher orders
and random-valued functions

By KAROL BARON (Katowice)
Dedicated to Professor Zoltan Dardczy on his 70th birthday

Abstract. Given a probability space (2,4, P), a separable metric space X with
the o-algebra B of all its Borel subsets and a B ® A-measurable f : X x Q — X we
consider the equation

(B) o(z) = / (2, w)) P(dw)

and iterates f",n € N, of f defined on X x QN by f!(z,w) = f(z,w1) and f*(z,w) =
f(f"(z,w),wnt1). Assuming that for every z € X the sequence (f"(z,-))nen con-
verges in law and 7(x, -) denotes the limit distribution we show that for every Borel and
bounded v : X — R the function z — [, u(y)7(z,dy), x € X, is a Borel solution of (E)
and we study regularity of these solutions.

1. Throughout the paper (2,4, P) is a probability space and (X, o) is a
separable metric space.

Let B denote the o-algebra of all Borel subsets of X. We say that f: X x Q— X
is a random-valued function (shortly: an rv-function) if it is measurable with re-
spect to the product o-algebra B ® A. The iterates of such an rv-function are
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given by

Az w,ws, .. = fz,wr),

fn+1(x7w17w27"') = f(fn(l',L(Jl,(UQ,. ")7wn+1)

for  from X and (wy,ws,...) from Q% defined as Q. Note that f" : X x
0% — X is an rv-function on the product probability space (Q°°, A%, P>).
More exactly, the n-th iterate f™ is B ® A,-measurable, where A,, denotes the
o-algebra of all the sets of the form

{(wi,wa,...) € Q% (w1,...,w,) € A}

with A from the product o-algebra A™. (See [6; Section 1.4], [3], [4].)

Fix an rv-function f: X x Q — X.

According to R. KAPICA [4; Theorem 2] the probability distribution of the
limit in measure of (f™(z,:))nen always produces a bounded solution of the
equation

p(z) = /Q o (f (,)) P(dw) (1)

which in addition is nonconstant provided the limit really depends on x. We
generalize this theorem to the weak convergence of distributions and show that
a simple additional condition guarantees that both the limit distribution and
solutions of (1) generated by this limit are Lipschitzian.

By a distribution (on X) we mean any probability measure defined on B.
Recall that a sequence (7, )nen of distributions converges weakly to a distribution
m if

lim u(z)m, (dx) = / u(z)m(dx)

nTeeJx X
for any continuous and bounded function v : X — R. It is well known (see,
[1; Theorem 11.3.3]) that this convergence is metrizable by the (Fortet—Mourier,
Lévy—Prohorov, Wasserstein) metric:

||7T1—7T2||W:S11p{’/ udm—/ ’U,dﬂ'g
X X

where

: u € Lipy (X), [|ulleo < 1},

Lip;(X) ={u: X - R |Ju(z) — u(2)| < o(z, 2) for z,z € X}

and |[ulleo = sup{|u(z)| : = € X} for a bounded u: X — R.
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2. Let m,(x,-) denote the distribution of f™(x,-), i.e.,
72, B) = P(f"(,) € B) 2)
forn €N, z € X and B € B. Clearly, m(x,-) is the distribution of f(z,-):
m(z,B) = P(f(z,-) € B) forxz € X and B € B. (3)
We start with the following lemma.

Lemma 1. For any n € N and B € B the function m, (-, B) given by (2) is
Borel and

Tnt1(z, B) = /an(f(a:,w),B)P(dw) for z € X; 4)

moreover, if u : X — R is Borel and bounded, then the function

x '—>/ u(y)m,(z,dy), =€ X, (5)
X

is Borel, for every x € X the function

W / w()ma(f(,w), dy), w € 9, (6)
X

is A-measurable and

Jwmadn = [ ([ awmieom)ra. @

PROOF. Since
C:={(z,w) e X x Q% : f"(z,w) € B} € B A®,
the function
x+— P®(Cy), zelX,
ie. m,(-, B), is (see, e.g., [7; Theorem 6.3.1]) Borel. To get (4) note that (by

induction)
f"+1(3:,w1,w2, )= M(f(xwr), wa,ws, )

for x € X and (wy,ws,...) € 2%, and observe that

Tnt1(x, B) = P®({(wi,wa,...) € Q% f"(f(z,w1),ws,ws,...) € B})
= POO({(wl,wg, . ) € 0> (LUQ,LU?,, . ) S Cf(z,wl)})

:/pOO(Cf(m,wl))(P(dwl):/wn(f(x,wl),B)P(dwl)
Q

Q
for x € X.
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If B € Band u = 1p, then (5) is the function 7, (-, B) — and we already have
shown that it is Borel — whereas (6) is the function w — 7, (f(z,w), B),w € Q,
which is clearly A-measurable, and (7) reduces to (4) for every z € X. A pass to
the general case is standard. O

Now we assume the following condition.

(H) For every z € X the sequence (m,(z,))nen defined by (2) converges
weakly to a distribution 7 (z, -).

The following theorem generalizes [4; Theorem 2].

Theorem 1. If (H) holds, then for every Borel and bounded u : X — R the
function ¢ : X — R given by

o) = /X u(y)m (i, dy) (8)

is a Borel and bounded solution of (1); in particular, for any B € B the function
7(-, B) is a Borel solution of (1).

PROOF. Assume first that v : X — R is continuous and bounded. Since for
every n € N the function (5) is Borel, so is (see [1; Theorem 4.2.2]) the pointwise
limit

x »—»/ u(y)m(z,dy), =€ X, 9)
X

of the sequence built of these functions. Moreover, making use of (7) and applying
the Lebesgue dominated theorem we have also

[ty = [ ([ atwran) pa) orzex. o

which means that ¢ : X — R given by (8) solves (1).
Fix now a Borel and bounded function ug : X — R, put

M = |[uo]|o

and consider the family U of all Borel functions v : X — [—M, M| such that
the function (9) is Borel and (10) holds. The previous part of the proof shows
that any continuous u : X — [—M,M] is in U. Moreover, from the Lebesgue
dominated convergence theorem it follows that U contains the limit of any point-
wise convergent sequence of functions in U. Consequently (see [7; Theorem 4.5.2])
every Borel function v : X — [—M, M| belongs to U. In particular, ug € U. This
proves the main part of Theorem 1.

To finish the proof observe that if B € B, then putting v = 15 in (8) we get
o =n(-,B). O
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Remark 1. Assume (H), let A € B and
P(f(z,-)e A)=1 forxe A (11)
If pe [0,1], F C X is closed and

P(f(z,-)e F)>p forze A, (12)
then
w(xz,F) >p forxze A (13)

PROOF. By induction, making use of (3) and the recurrence (4), we obtain
m(z, F) >p forze A.
Since F' is closed, this jointly with (H) gives (see [1; Theorem 11.1.1])

p < limsupm,(x, F) < m(x, F)

for z € A. 0
Remark 2. Assume (H) and let a finite A C X satisfies (11). If 9 € X,

f(zo,) =20 as. (14)

and
P(f(z,-)=x09) <1 forze A, (15)

then
w(x,-) # m(xg,-) forz € A.

PROOF. Let B(zo,r) denote the open ball with center at zy and radius r.
From (15) it follows that

0 <P(f(x,") € X\ {z0}) = lim P (f(x,-) €X\B (wo%>)

for x € A. Since A is finite it shows that there is a positive integer n such that
(12) holds with

F-X\B(xo,%) and p=min{P(f(z,") € F):xz€ A} > 0.

By Remark 1 we have (13). On the other hand, from (3) and (14),

(20, B) = P(z0 € B) = 1p(w0) = 04, (B)
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for B € B which jointly with (4) and (14) shows that 7, (xg,) = dy, for n € N.
Consequently also

m(20,) = Oxg (16)

and since zg € F' we see that

w(zo, F)=0<p<m(x,F)
for x € A. (I

3. To obtain more information about the limit distribution and solutions
of (1) generated by this limit we assume that

/Q o(f(z,w), f(z,w))P(dw) < Xo(x,z) forz,z € X. (17)

Theorem 2. Assume (H). If (17) holds with a A € (0, 00), then:

(i) for every Lipschitzian and bounded u : X — R the function ¢ : X — R given
by (8) is of the first Baire class and a bounded solution of (1);

(i) ifz,z € X and w(x,-) # 7(z,-), then (1) has a bounded solution ¢ : X — R
of the first Baire class such that o(x) # ¢(z).

ProoFr. From (17) it follows by induction that
/ o(fM(z,w), f'(z,w))P™(dw) < N"o(x,z) forz,z€ X and n € N.

Hence, if v : X — R is bounded and Lipschitzian with a Lipschitz constant L,
then

‘ /gw w)) P> (dw) — /goou(f”(z,w))Po"(dw)‘ < L\"o(x, 2),
ie., by (2)
}/X u(y)mn (z, dy) — /Xu(y)ﬂ'n(z,dy)‘ < LX\'o(z,z) forz,ze X (18)

and for n € N. This shows that the function ¢ : X — R given by (8) is the
pointwise limit of Lipschitzian functions

:17|—>/ y)ma(z,dy), =z € X,

hence of the first Baire class. This and Theorem 1 give (i).
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To get (ii) it is enough to observe that if w(z, ) # 7(z, -), then (see [1, Propo-
sition 11.3.2]) there exists a bounded u € Lip; (X) such that

[ wtomtedn) 2 [ utynte.in)

and to apply part (i). O

Corollary 1. Assume (H) and let X be compact. If (17) holds with a
A € (0,00), then for every continuous u : X — R the function ¢ : X — R given
by (8) is of the first Baire class and a bounded solution of (1).

PROOF. Fix a continuous function u : X — R and (see [1; Theorem 11.2.4])
let (un)nen be a sequence of Lipschitzian mappings of X into R uniformly con-
vergent to u. Defining ¢, : X — R by

onlz) = /X tn (), ) (19)

for n € N we see that (¢, )nen uniformly converges to the function ¢ : X — R
given by (8). It follows from Theorem 2(i) that ¢, is of the first Baire class for
every n € N, and so is (see [7; Theorem 3.5.2]) the uniform limit ¢. This and
Theorem 1 end the proof. (I

Corollary 2. Assume (H). If (17) holds with a A € (0,00), then for every
closed subset F' of X the function w(-, F') is of the second Baire class and a solution
of (1).

PRrROOF. Fix a closed F' C X and for every n € N define uy,, ¢, : X — [0,1]
by
up(z) =1 — min{l, no(z, F)}

and (19). Since w, is Lipschitzian, by Theorem 2(i) the function ¢, is of the
first Baire class for n € N, and since (uy)nen pointwise converges to 1 g, by the
Lebesgue dominated theorem (@, ),en pointwise converges to 7(-, F'). O

Assuming (17) with A = 1 we can obtain much more.

Theorem 3. Assume (H). If

/Qg(f(x,w),f(z,w))P(dw) < o(x,z) fora,ze X, (20)

then
|w(z,-) — 7z, )|lw < o(z,2) forz,ze X (21)

and
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(i) for every Lipschitzian and bounded u : X — R the function ¢ : X — R given
by (8) is a Lipschitzian and bounded solution of (1);

(i) if z,z € X and ©(z,-) # 7(z,-), then (1) has a Lipschitzian and bounded
solution ¢ : X — R such that ¢(x) # p(z).

PROOF. If u € Lip; (X) is bounded, then we have (18) with L =1and A =1
for every n € N and passing to the limit we see that (21) holds.

If u: X — R is bounded and Lipschitzian with a Lipschitz constant L, then
we have (18) with A = 1 and passing to the limit we see that ¢ : X — R given
by (8) is Lipschitzian with a Lipschitz constant L.

To get (ii) we argue as in the proof of Theorem 2. O

Remark 3 (cf. [2; Theorem 5.1]). Assume (H). If ¢ : X — R is a continuous
and bounded solution of (1), then

o) = [ plumte.dy) forz € X; 22)
X
in particular, if z,z € X and 7(z,-) = 7(z,-), then ¢(x) = ¢(z).
PROOF. It follows from (1) and (2) that

o) = [ el @a)P=(a) = [ plm(e.dy)
for x € X and n € N. Passing to the limit we obtain (22). (]

Corollary 3. Assume (H) and (20). If (1) has a nonconstant continuous
and bounded solution ¢ : X — R, then it has also a nonconstant Lipschitzian
and bounded solution ¢ : X — R.

PROOF. It is enough to apply Remark 3 and Theorem 3(ii). O

Corollary 4. Assume (H) and (20). If (14) holds for an o € X and any
Lipschitzian and bounded solution ¢ : X — R of (1) is a constant function, then
for every x € X the sequence (f™(z,-))nen converges to xo in probability.

ProoOF. From (16) and Theorem 3(ii) it follows that
w(x,) =0y, forxeX.
Applying [1; Proposition 11.1.3] we obtain the assertion. O

Remark 4. In case of the convergence in probability [5; Theorem 3.4] brings
completely different conditions ensuring that for some continuous and bounded
u: X — R the function ¢ : X — R given by (8) is continuous and nonconstant.
In view of Theorem 1, as the proof of [5; Theorem 3.4(iii)] shows it remains valid
also in case (H) and for Borel and bounded u : X — R satisfying (3.14) of [5].
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