Publ. Math. Debrecen 75/1-2 (2009), 1–9

Linear iterative equations of higher orders and random-valued functions

By KAROL BARON (Katowice)

Dedicated to Professor Zoltán Daróczy on his 70th birthday

Abstract. Given a probability space (Ω, \mathcal{A}, P) , a separable metric space X with the σ -algebra \mathcal{B} of all its Borel subsets and a $\mathcal{B} \otimes \mathcal{A}$ -measurable $f : X \times \Omega \to X$ we consider the equation

(E)
$$\varphi(x) = \int_{\Omega} \varphi(f(x,\omega)) P(d\omega)$$

and iterates $f^n, n \in \mathbb{N}$, of f defined on $X \times \Omega^{\mathbb{N}}$ by $f^1(x, \omega) = f(x, \omega_1)$ and $f^{n+1}(x, \omega) = f(f^n(x, \omega), \omega_{n+1})$. Assuming that for every $x \in X$ the sequence $(f^n(x, \cdot))_{n \in \mathbb{N}}$ converges in law and $\pi(x, \cdot)$ denotes the limit distribution we show that for every Borel and bounded $u: X \to \mathbb{R}$ the function $x \mapsto \int_X u(y)\pi(x, dy), x \in X$, is a Borel solution of (E) and we study regularity of these solutions.

1. Throughout the paper (Ω, \mathcal{A}, P) is a probability space and (X, ϱ) is a separable metric space.

Let \mathcal{B} denote the σ -algebra of all Borel subsets of X. We say that $f: X \times \Omega \to X$ is a *random-valued function* (shortly: an *rv-function*) if it is measurable with respect to the product σ -algebra $\mathcal{B} \otimes \mathcal{A}$. The iterates of such an *rv*-function are

Mathematics Subject Classification: 39B12, 39B22, 39B52.

Key words and phrases: linear iterative equations, Borel and Lipschitzian solutions, randomvalued functions, iterates.

The research was supported by the Silesian University Mathematics Department (Iterative Functional Equations and Real Analysis program).

given by

$$f^{1}(x,\omega_{1},\omega_{2},\dots) = f(x,\omega_{1}),$$

$$f^{n+1}(x,\omega_{1},\omega_{2},\dots) = f(f^{n}(x,\omega_{1},\omega_{2},\dots),\omega_{n+1})$$

for x from X and $(\omega_1, \omega_2, ...)$ from Ω^{∞} defined as $\Omega^{\mathbb{N}}$. Note that $f^n : X \times \Omega^{\infty} \to X$ is an rv-function on the product probability space $(\Omega^{\infty}, \mathcal{A}^{\infty}, P^{\infty})$. More exactly, the *n*-th iterate f^n is $\mathcal{B} \otimes \mathcal{A}_n$ -measurable, where \mathcal{A}_n denotes the σ -algebra of all the sets of the form

$$\{(\omega_1, \omega_2, \dots) \in \Omega^\infty : (\omega_1, \dots, \omega_n) \in A\}$$

with A from the product σ -algebra \mathcal{A}^n . (See [6; Section 1.4], [3], [4].)

Fix an rv-function $f: X \times \Omega \to X$.

According to R. KAPICA [4; Theorem 2] the probability distribution of the limit in measure of $(f^n(x, \cdot))_{n \in \mathbb{N}}$ always produces a bounded solution of the equation

$$\varphi(x) = \int_{\Omega} \varphi(f(x,\omega)) P(d\omega) \tag{1}$$

which in addition is nonconstant provided the limit really depends on x. We generalize this theorem to the weak convergence of distributions and show that a simple additional condition guarantees that both the limit distribution and solutions of (1) generated by this limit are Lipschitzian.

By a distribution (on X) we mean any probability measure defined on \mathcal{B} . Recall that a sequence $(\pi_n)_{n\in\mathbb{N}}$ of distributions converges weakly to a distribution π if

$$\lim_{n \to \infty} \int_X u(x) \pi_n(dx) = \int_X u(x) \pi(dx)$$

for any continuous and bounded function $u : X \to \mathbb{R}$. It is well known (see, [1; Theorem 11.3.3]) that this convergence is metrizable by the (Fortet–Mourier, Lévy–Prohorov, Wasserstein) metric:

$$\|\pi_1 - \pi_2\|_W = \sup\left\{ \left| \int_X u d\pi_1 - \int_X u d\pi_2 \right| : \ u \in \operatorname{Lip}_1(X), \ \|u\|_{\infty} \le 1 \right\},\$$

where

$$\operatorname{Lip}_1(X) = \{ u : X \to \mathbb{R} \mid |u(x) - u(z)| \le \varrho(x, z) \text{ for } x, z \in X \}$$

and $||u||_{\infty} = \sup\{|u(x)|: x \in X\}$ for a bounded $u: X \to \mathbb{R}$.

Linear iterative equations of higher orders and random-valued functions

2. Let $\pi_n(x, \cdot)$ denote the distribution of $f^n(x, \cdot)$, i.e.,

$$\pi_n(x,B) = P^{\infty}(f^n(x,\cdot) \in B)$$
(2)

3

for $n \in \mathbb{N}$, $x \in X$ and $B \in \mathcal{B}$. Clearly, $\pi_1(x, \cdot)$ is the distribution of $f(x, \cdot)$:

$$\pi_1(x,B) = P(f(x,\cdot) \in B) \quad \text{for } x \in X \text{ and } B \in \mathcal{B}.$$
(3)

We start with the following lemma.

Lemma 1. For any $n \in \mathbb{N}$ and $B \in \mathcal{B}$ the function $\pi_n(\cdot, B)$ given by (2) is Borel and

$$\pi_{n+1}(x,B) = \int_{\Omega} \pi_n(f(x,\omega),B)P(d\omega) \quad \text{for } x \in X;$$
(4)

moreover, if $u: X \to \mathbb{R}$ is Borel and bounded, then the function

$$x \mapsto \int_X u(y)\pi_n(x, dy), \quad x \in X,$$
 (5)

is Borel, for every $x \in X$ the function

$$\omega \mapsto \int_X u(y)\pi_n(f(x,\omega), dy), \quad \omega \in \Omega, \tag{6}$$

is \mathcal{A} -measurable and

$$\int_{X} u(y)\pi_{n+1}(x,dy) = \int_{\Omega} \left(\int_{X} u(y)\pi_n(f(x,\omega),dy) \right) P(d\omega).$$
(7)

PROOF. Since

$$C := \{ (x, \omega) \in X \times \Omega^{\infty} : f^n(x, \omega) \in B \} \in \mathcal{B} \otimes \mathcal{A}^{\infty},$$

the function

$$\mapsto P^{\infty}(C_x), \quad x \in X,$$

i.e. $\pi_n(\cdot, B)$, is (see, e.g., [7; Theorem 6.3.1]) Borel. To get (4) note that (by induction)

$$f^{n+1}(x,\omega_1,\omega_2,\dots) = f^n(f(x,\omega_1),\omega_2,\omega_3,\dots)$$

for $x \in X$ and $(\omega_1, \omega_2, \dots) \in \Omega^{\infty}$, and observe that

x

$$\pi_{n+1}(x,B) = P^{\infty}(\{(\omega_1,\omega_2,\dots)\in\Omega^{\infty}: f^n(f(x,\omega_1),\omega_2,\omega_3,\dots)\in B\})$$
$$= P^{\infty}(\{(\omega_1,\omega_2,\dots)\in\Omega^{\infty}:(\omega_2,\omega_3,\dots)\in C_{f(x,\omega_1)}\})$$
$$= \int_{\Omega} P^{\infty}(C_{f(x,\omega_1)})(P(d\omega_1) = \int_{\Omega} \pi_n(f(x,\omega_1),B)P(d\omega_1)$$

for $x \in X$.

If $B \in \mathcal{B}$ and $u = \mathbb{1}_B$, then (5) is the function $\pi_n(\cdot, B)$ – and we already have shown that it is Borel – whereas (6) is the function $\omega \mapsto \pi_n(f(x, \omega), B), \omega \in \Omega$, which is clearly \mathcal{A} -measurable, and (7) reduces to (4) for every $x \in X$. A pass to the general case is standard.

Now we assume the following condition.

(H) For every $x \in X$ the sequence $(\pi_n(x, \cdot))_{n \in \mathbb{N}}$ defined by (2) converges weakly to a distribution $\pi(x, \cdot)$.

The following theorem generalizes [4; Theorem 2].

Theorem 1. If (H) holds, then for every Borel and bounded $u: X \to \mathbb{R}$ the function $\varphi: X \to \mathbb{R}$ given by

$$\varphi(x) = \int_X u(y)\pi(x, dy) \tag{8}$$

is a Borel and bounded solution of (1); in particular, for any $B \in \mathcal{B}$ the function $\pi(\cdot, B)$ is a Borel solution of (1).

PROOF. Assume first that $u: X \to \mathbb{R}$ is continuous and bounded. Since for every $n \in \mathbb{N}$ the function (5) is Borel, so is (see [1; Theorem 4.2.2]) the pointwise limit

$$x \mapsto \int_X u(y)\pi(x, dy), \quad x \in X,$$
(9)

of the sequence built of these functions. Moreover, making use of (7) and applying the Lebesgue dominated theorem we have also

$$\int_{X} u(y)\pi(x,dy) = \int_{\Omega} \left(\int_{X} u(y)\pi(f(x,\omega),dy) \right) P(d\omega) \quad \text{for } x \in X,$$
(10)

which means that $\varphi : X \to \mathbb{R}$ given by (8) solves (1).

Fix now a Borel and bounded function $u_0: X \to \mathbb{R}$, put

$$M = \|u_0\|_{\infty}$$

and consider the family **U** of all Borel functions $u : X \to [-M, M]$ such that the function (9) is Borel and (10) holds. The previous part of the proof shows that any continuous $u : X \to [-M, M]$ is in **U**. Moreover, from the Lebesgue dominated convergence theorem it follows that **U** contains the limit of any pointwise convergent sequence of functions in **U**. Consequently (see [7; Theorem 4.5.2]) every Borel function $u : X \to [-M, M]$ belongs to **U**. In particular, $u_0 \in \mathbf{U}$. This proves the main part of Theorem 1.

To finish the proof observe that if $B \in \mathcal{B}$, then putting $u = \mathbb{1}_B$ in (8) we get $\varphi = \pi(\cdot, B)$.

Linear iterative equations of higher orders and random-valued functions

Remark 1. Assume (H), let $A \in \mathcal{B}$ and

$$P(f(x, \cdot) \in A) = 1 \quad \text{for } x \in A.$$
(11)

5

If $p \in [0, 1]$, $F \subset X$ is closed and

$$P(f(x, \cdot) \in F) \ge p \quad \text{for } x \in A, \tag{12}$$

then

$$\pi(x, F) \ge p \quad \text{for } x \in A. \tag{13}$$

PROOF. By induction, making use of (3) and the recurrence (4), we obtain

 $\pi_n(x, F) \ge p \quad \text{for } x \in A.$

Since F is closed, this jointly with (H) gives (see [1; Theorem 11.1.1])

$$p \le \limsup_{n \to \infty} \pi_n(x, F) \le \pi(x, F)$$

for $x \in A$.

Remark 2. Assume (H) and let a finite $A \subset X$ satisfies (11). If $x_0 \in X$,

$$f(x_0, \cdot) = x_0 \quad \text{a.s.} \tag{14}$$

and

$$P(f(x, \cdot) = x_0) < 1 \quad \text{for } x \in A, \tag{15}$$

then

$$\pi(x, \cdot) \neq \pi(x_0, \cdot) \quad \text{for } x \in A.$$

PROOF. Let $B(x_0, r)$ denote the open ball with center at x_0 and radius r. From (15) it follows that

$$0 < P(f(x, \cdot) \in X \setminus \{x_0\}) = \lim_{n \to \infty} P\left(f(x, \cdot) \in X \setminus B\left(x_0, \frac{1}{n}\right)\right)$$

for $x \in A$. Since A is finite it shows that there is a positive integer n such that (12) holds with

$$F = X \setminus B\left(x_0, \frac{1}{n}\right)$$
 and $p = \min\{P(f(x, \cdot) \in F) : x \in A\} > 0.$

By Remark 1 we have (13). On the other hand, from (3) and (14),

$$\pi_1(x_0, B) = P(x_0 \in B) = \mathbf{1}_B(x_0) = \delta_{x_0}(B)$$

for $B \in \mathcal{B}$ which jointly with (4) and (14) shows that $\pi_n(x_0, \cdot) = \delta_{x_0}$ for $n \in \mathbb{N}$. Consequently also

$$\pi(x_0, \cdot) = \delta_{x_0} \tag{16}$$

and since $x_0 \notin F$ we see that

$$\pi(x_0, F) = 0$$

for $x \in A$.

3. To obtain more information about the limit distribution and solutions of (1) generated by this limit we assume that

$$\int_{\Omega} \varrho(f(x,\omega), f(z,\omega)) P(d\omega) \le \lambda \varrho(x,z) \quad \text{for } x, z \in X.$$
(17)

Theorem 2. Assume (H). If (17) holds with a $\lambda \in (0, \infty)$, then:

- (i) for every Lipschitzian and bounded u : X → ℝ the function φ : X → ℝ given by (8) is of the first Baire class and a bounded solution of (1);
- (ii) if $x, z \in X$ and $\pi(x, \cdot) \neq \pi(z, \cdot)$, then (1) has a bounded solution $\varphi : X \to \mathbb{R}$ of the first Baire class such that $\varphi(x) \neq \varphi(z)$.

PROOF. From (17) it follows by induction that

$$\int_{\Omega^{\infty}} \varrho(f^n(x,\omega), f^n(z,\omega)) P^{\infty}(d\omega) \le \lambda^n \varrho(x,z) \quad \text{for } x, z \in X \text{ and } n \in \mathbb{N}.$$

Hence, if $u:X\to \mathbb{R}$ is bounded and Lipschitzian with a Lipschitz constant L, then

$$\left|\int_{\Omega^{\infty}} u(f^n(x,\omega))P^{\infty}(d\omega) - \int_{\Omega^{\infty}} u(f^n(z,\omega))P^{\infty}(d\omega)\right| \le L\lambda^n \varrho(x,z),$$

i.e., by (2),

$$\left| \int_{X} u(y)\pi_{n}(x,dy) - \int_{X} u(y)\pi_{n}(z,dy) \right| \le L\lambda^{n}\varrho(x,z) \quad \text{for } x,z \in X$$
(18)

and for $n \in \mathbb{N}$. This shows that the function $\varphi : X \to \mathbb{R}$ given by (8) is the pointwise limit of Lipschitzian functions

$$x \mapsto \int_X u(y)\pi_n(x,dy), \quad x \in X,$$

hence of the first Baire class. This and Theorem 1 give (i).

To get (ii) it is enough to observe that if $\pi(x, \cdot) \neq \pi(z, \cdot)$, then (see [1, Proposition 11.3.2]) there exists a bounded $u \in \text{Lip}_1(X)$ such that

$$\int_X u(y)\pi(x,dy) \neq \int_X u(y)\pi(z,dy)$$

and to apply part (i).

Corollary 1. Assume (H) and let X be compact. If (17) holds with a $\lambda \in (0, \infty)$, then for every continuous $u : X \to \mathbb{R}$ the function $\varphi : X \to \mathbb{R}$ given by (8) is of the first Baire class and a bounded solution of (1).

PROOF. Fix a continuous function $u: X \to \mathbb{R}$ and (see [1; Theorem 11.2.4]) let $(u_n)_{n \in \mathbb{N}}$ be a sequence of Lipschitzian mappings of X into \mathbb{R} uniformly convergent to u. Defining $\varphi_n: X \to \mathbb{R}$ by

$$\varphi_n(x) = \int_X u_n(y)\pi(x, dy) \tag{19}$$

 $\overline{7}$

for $n \in \mathbb{N}$ we see that $(\varphi_n)_{n \in \mathbb{N}}$ uniformly converges to the function $\varphi : X \to \mathbb{R}$ given by (8). It follows from Theorem 2(i) that φ_n is of the first Baire class for every $n \in \mathbb{N}$, and so is (see [7; Theorem 3.5.2]) the uniform limit φ . This and Theorem 1 end the proof.

Corollary 2. Assume (H). If (17) holds with a $\lambda \in (0, \infty)$, then for every closed subset F of X the function $\pi(\cdot, F)$ is of the second Baire class and a solution of (1).

PROOF. Fix a closed $F\subset X$ and for every $n\in\mathbb{N}$ define $u_n,\varphi_n:X\to[0,1]$ by

$$u_n(x) = 1 - \min\{1, n\varrho(x, F)\}$$

and (19). Since u_n is Lipschitzian, by Theorem 2(i) the function φ_n is of the first Baire class for $n \in \mathbb{N}$, and since $(u_n)_{n \in \mathbb{N}}$ pointwise converges to $\mathbf{1}_F$, by the Lebesgue dominated theorem $(\varphi_n)_{n \in \mathbb{N}}$ pointwise converges to $\pi(\cdot, F)$.

Assuming (17) with $\lambda = 1$ we can obtain much more.

Theorem 3. Assume (H). If

$$\int_{\Omega} \varrho(f(x,\omega), f(z,\omega)) P(d\omega) \le \varrho(x,z) \quad \text{for } x, z \in X,$$
(20)

then

$$\|\pi(x,\cdot) - \pi(z,\cdot)\|_W \le \varrho(x,z) \quad \text{for } x, z \in X$$
(21)

and

- (i) for every Lipschitzian and bounded u : X → ℝ the function φ : X → ℝ given by (8) is a Lipschitzian and bounded solution of (1);
- (i) if x, z ∈ X and π(x, ·) ≠ π(z, ·), then (1) has a Lipschitzian and bounded solution φ : X → ℝ such that φ(x) ≠ φ(z).

PROOF. If $u \in \text{Lip}_1(X)$ is bounded, then we have (18) with L = 1 and $\lambda = 1$ for every $n \in \mathbb{N}$ and passing to the limit we see that (21) holds.

If $u: X \to \mathbb{R}$ is bounded and Lipschitzian with a Lipschitz constant L, then we have (18) with $\lambda = 1$ and passing to the limit we see that $\varphi: X \to \mathbb{R}$ given by (8) is Lipschitzian with a Lipschitz constant L.

To get (ii) we argue as in the proof of Theorem 2. \Box

Remark 3 (cf. [2; Theorem 5.1]). Assume (H). If $\varphi : X \to \mathbb{R}$ is a continuous and bounded solution of (1), then

$$\varphi(x) = \int_X \varphi(y) \pi(x, dy) \quad \text{for } x \in X;$$
(22)

in particular, if $x, z \in X$ and $\pi(x, \cdot) = \pi(z, \cdot)$, then $\varphi(x) = \varphi(z)$.

PROOF. It follows from (1) and (2) that

$$\varphi(x) = \int_{\Omega^{\infty}} \varphi(f^n(x,\omega)) P^{\infty}(d\omega) = \int_X \varphi(y) \pi_n(x,dy)$$

for $x \in X$ and $n \in \mathbb{N}$. Passing to the limit we obtain (22).

Corollary 3. Assume (H) and (20). If (1) has a nonconstant continuous and bounded solution $\varphi : X \to \mathbb{R}$, then it has also a nonconstant Lipschitzian and bounded solution $\varphi : X \to \mathbb{R}$.

PROOF. It is enough to apply Remark 3 and Theorem 3(ii).

Corollary 4. Assume (H) and (20). If (14) holds for an $x_0 \in X$ and any Lipschitzian and bounded solution $\varphi : X \to \mathbb{R}$ of (1) is a constant function, then for every $x \in X$ the sequence $(f^n(x, \cdot))_{n \in \mathbb{N}}$ converges to x_0 in probability.

PROOF. From (16) and Theorem 3(ii) it follows that

$$\pi(x, \cdot) = \delta_{x_0} \quad \text{for } x \in X.$$

Applying [1; Proposition 11.1.3] we obtain the assertion.

Remark 4. In case of the convergence in probability [5; Theorem 3.4] brings completely different conditions ensuring that for some continuous and bounded $u: X \to \mathbb{R}$ the function $\varphi: X \to \mathbb{R}$ given by (8) is continuous and nonconstant. In view of Theorem 1, as the proof of [5; Theorem 3.4(iii)] shows it remains valid also in case (H) and for Borel and bounded $u: X \to \mathbb{R}$ satisfying (3.14) of [5].

References

- [1] R. M. DUDLEY, Real Analysis and Probability, Cambridge University Press, 2007.
- [2] R. KAPICA, Sequences of iterates of random-valued functions and continuous solutions of a linear functional equation of infinite order, Bull. Polish Acad. Sci. Math. 50 (2002), 447–455.
- [3] R. KAPICA, Convergence of sequences of random-valued vector functions, Colloq. Math. 97 (2003), 1–6.
- [4] R. KAPICA, Sequences of iterates of random-valued vector functions and solutions of related equations, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 213 (2004), 113–118.
- [5] R. KAPICA, Sequences of iterates of random-valued vector functions and continuous solutions of related equations, *Glas. Mat. Ser.* III 42(62) (2007), 389–399.
- [6] M. KUCZMA, B. CHOCZEWSKI and R. GER, Iterative Functional Equations, Combridge University Press, 1990.
- [7] ST. LOJASIEWICZ, An Introduction to the Theory of Real Functions, John Wiley & Sons, 1988.

KAROL BARON UNIWERSYTET ŚLĄSKI INSTYTUT MATEMATYKI BANKOWA 14 PL-40-007 KATOWICE POLAND *E-mail:* baron@us.edu.pl

(Received August 26, 2008; revised March 5, 2009)