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Bernstein—Doetsch type results for s-convex functions
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Abstract. As a possible generalization of the concept of s-convexity due to BRECK-
NER [2], we introduce the so-called (H, s)-convexity. Besides collecting some facts on
this type of functions, the main goal of this paper is to prove some regularity properties
of (H, s)-convex functions.

1. Introduction

Let D be a convex, open, nonempty subset of a real (complex) linear space X.
BERNSTEIN and DOETSCH [1] (see [11] further references) proved that if a function
f : D — R is locally bounded from above at a point of D, then the Jensen-
convexity of the function yields its local boundedness and continuity as well,
which implies the convexity of the function f. This result has been generalized
by several authors. The first such type results are due to NIKODEM and NG [13]
for the approximately Jensen-convex functions (the so-called e-Jensen-convexity ),
which was extended by PALEs ([14], [15]) to approximately ¢-convex functions.
Further generalizations can be found in papers of MROWIEC [12], HAzY ([6], [7]),
HAzy and PALES ([8], [9]). In the paper of GILANYI, NIKODEM and PALES [5]
there are some Bernstein—Doetsch type results for quasiconvex functions.
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The concept of s-convexity was introduced by BRECKNER [2]. A real valued
function f : D — R is called Breckner s-convez (or shortly s-convez, in notation
fex®),if

FQz+ (1 =Ay) <Nf(z)+ (1 -N)°f(y) (1)

for every x,y € D and A € [0,1], where s €]0,1] is a fixed number (see also [3],
[10], [17]). The case s = 1 means the usual convexity of f.

Let H C [0,1] be a nonempty set. A real valued function f : D — R is
called Breckner (H, s)-convex, (or shortly (H,s)-conver, in notation f € K%;), if
it fulfills (1) for all A € H.

In the special cases when H = {1}, H = {A\} or H = QN [0,1], the cor-
responding Breckner (H, s)-convex functions are said to be Breckner Jensen s-
convex, Breckner (A, s)-convex and Breckner rationally s-convez, respectively (or
shortly Jensen s-convez, (A, s)-convex and rationally s-convez).

In [2] and [3] it was proved a Berstein—Doetsch type result on rationally s-
convex functions, moreover, the s-Holder property of s-convex functions. Pycia
[17] gives a new proof of the latter statement, when f is defined on a nonempty,
convex subset of a finite dimensional vector space. In [10] the authors collect
some properties of s-convex functions defined on the nonnegative reals.

The main goal of this paper is to prove some regularity properties of (H, s)-
convex functions, besides we also collect some facts on such functions.

2. Some elementary properties of s-convex functions

In this section we collect some interesting, easily-proved properties of Breck-
ner s-convex functions.

Proposition 1. If A\,s €]0,1[ and f: D — R is an (), s)-convex function,
then f is nonnegative.

PROOF. Let z be an arbitrary element of D. Using (), s)-convexity of f

fla) = fAz+ (1 =XNz) SN f(2)+ (1= A)°f(z) = (A + (1= A)°) f(z),
which implies
0<(MW+ 1 =X°=1)f().

Since A* 4+ (1 —A)* —1>0 for all \,s€]0,1[, we have that f(x)>0, as desired.
O
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Remark 1. According to the previous proposition, (H, s)-convex functions
are also nonnegative when 0 < s < 1 and H \ {0,1} # 0. This is not true for
s=1.

Proposition 2. Let H C [0,1]. If f,g € X* (or X%;), then f + g, cf (with
¢>0), and max{f, g} are also in X* (resp. K%;).

PrROOF. Easy calculation. [

The next two propositions imply that the set of s-convex functions is strictly
increasing as s tends to zero.

Proposition 3. Let 0 < sp < s1 < 1. If f € X°* (or K3; ), then f is also in
K2 (resp. K33).

PROOF. Assume that f € X*!, and let first A € |0,1[. Then, by Proposi-
tion 1, f(z) and f(y) are nonnegative for all z,y € D. Furthermore, A\%* < \®2
and (1 — M)t < (1 —)\)*2, thus

fOx+ (1 =Ny) <A f(z) + (1= X" fy) < A2 f(z) + (1= 1) f(y).

The above inequalities hold for A € {0, 1}, too, therefore f € K%2. O
Proposition 4. Let 0 < s1 < so < 1. Then there exists a function f such
that f € X' but f ¢ K32.
2 2

PRrROOF. Let the function f :]0,00[ — R be defined by f(z) := z°*. First we
show that f is a Jensen sj-convex function. To this we may assume that z < y
without loss of generality. Then the Jensen s;-convexity of f is equivalent to the

inequality

(u+ 1) <wu +1, we]0,1],
where u = % The above inequality is equivalent to the nonnegativity of the
function

g(u) =log(u®* + 1) — sy log(u+1), wel0,1].

Because of g(0) = 0 and of g being monotone increasing on [0, 1] (first derivative
test), we get the Jensen sj-convexity of f.
Now we prove f ¢ X32. Assume to the contrary that f € X2. Then
2 2

.T+y S1 msl+ysl
( 5 ) < =5 ©y 0ol
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We can assume again that z < y. Divide by y** both sides of the above inequality
and substitute u := % After some rearranging we get

u®t +1

1< om
- (u+ 1)’

uel0,1].
Here the right-hand side tends to 2°17%2 < 1 as w tends to zero, which is a
contradiction. ]

We give a simple characterization of s-convex functions, which is analogous
to the characterization of convex functions.

Theorem 1. Let I C R be a nonempty, open interval. A function f : I — R
is s-convex if and only if

(z=2)"f(y) < (2 =) f(@) + (y —2)°f(2), (2)

foreveryx <y <z, z,y,z € 1.

PROOF. Assume that f is s-convex and let z, y and z be arbitrary elements
of I such that x < y < z. Then

s =1 (e 220 < (22 g+ (122) o,

which is equivalent to (2). One can prove the converse assertion in a similar

manner. O

3. Regularity properties of (A, s)-convex functions

In this section we assume that (X, || - ||) is a real (complex) normed space
instead of a real (complex) linear space. We recall that a function f: D — R is
called locally bounded from above on D if, for each point of p € D, there exist
0 > 0 and a neighborhood U(p,p) := {x € X : ||z — p|| < o} such that f is
bounded from above on U(p, 0).

Theorem 2. Let D C X be convex, open, nonempty and f : D — R. Let
A €]0,1[ be fixed. If f € K3 is locally bounded from above at a point p € D,
then f is locally bounded at every point of D.
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PRrROOF. First we prove that f is locally bounded from above on D. Define
the sequence of sets D,, by

Do = {p}, Dyi1:=AD, + (1= A)D.

Using induction on n, we prove that f is locally upper bounded at each point
of D,,. By assumption, f is locally upper bounded at p € Dy. Assume that f is
locally upper bounded at each point of D,,. For x € D,,;1, there exist ¢y € D,
and yo € D such that x = Axg + (1 — N)yo. By the inductive assumption, there
exist r > 0 and a constant My > 0 such that f(2") < My for |z —2'|| < r. Then,
by the (), s)-convexity of f, for 2’ € Uy := U(xp,r) we have

FO' + (1= Ngo) A F(@) + (1= A)V*F (o) < A Mo + (1 A)*f(yo) = M.
Therefore, for
yeU:=XUp+ (1 —XNyo=U(Azo + (1 — Nyo, Ar) = U(x, Ar),

we get that f(y) < M. Thus f is locally bounded from above on D, 1.
On the other hand, we show that

D= Dan.

From the definition of D,,, it follows by induction that D, = A\"p + (1 — A™)D.
For fixed x € D, define the sequence x,, by

r—\"p
1—an

Ty 1=
Then z,, — x if n — co. As D is open, x,, € D for some n. Therefore
r=Np+(1-X"z, € N'p+(1—-A\")D = D,,.

Thus f is locally bounded from above on D.

Now, we prove that f is locally bounded from below. Let ¢ € D be arbitrary.
Since f is locally bounded from above at the point g, there exist ¢ > 0 and M > 0
such that

sup f < M.
U(g;0)



28 P4l Burai, Attila Hazy and Tibor Juhész

Let x € U(q, Ao) and y := w. Then y is in U(q, 0). By (), s)-convexity,
fla) < (=2 f(@) + X f(y),

which implies

fla) =Xfly) _ flg —AM /
> > = M".
L (T N (IS VE
Therefore f is locally bounded from below at any point of D. O

As an immediate consequence of the previous theorem we obtain:

Corollary 1. Let f: D — R be a Jensen s-convex function. If f is locally
bounded from above at a point of D, then f is locally bounded at every point
of D.

The next theorem essentially weakens the local boundedness assumption if
the underlying space is of finite dimension. It can be derived from Theorem 2
adopting the argument followed in [8] (that is based on STEINHAUS’ and Pic-
CARD’s theorems (cf. [18], [16])).

Theorem 3. Let D be an open convex subset of R™ and let f : D — R
be a (), s)-convex function with a fixed 0 < A < 1. Assume that there exist a
Lebesgue-measurable set of positive measure (or a Baire-measurable set of second
category) S C D and a Lebesgue-measurable (resp. Baire-measurable) function
g:S — R such that f < gon S. Then f is locally bounded on D.

PRrROOF. Let
Sgm i={zx €S |glx) <k}nU0O,m) m,keN.
Then

o0 oo
$=U U Sk
m=1 k=1
therefore, for some k,m, the set Sy, is of positive measure. Therefore, f is
bounded by k on S m, which is a bounded set of positive measure (or a bounded
set of second category).
Taking x,y € Sk,m, we get that

FOz+ 1 =Ny) <Nfl)+ (1 -Nfy) <A+ (1 =Nk <2k

That is, f is bounded on ASk m, + (1 — A)Sk,m, which, by the theorem of STEIN-
HAUS [18] (or the theorem of PICCARD [16]) (cf. [11]), contains an interior point.
Therefore, f is locally bounded from above at a point of D. As an immediate con-
sequence of the previous theorem we obtain that f is locally bounded on D. [
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Remark 2. 1t is a well-known fact that if a Jensen-convex function f is locally
bounded above at a point of its domain (see [1], [11]), then it is continuous on its

domain. This is not true for Jensen s-convex functions. Indeed, let 0 < s < 1 be
fixed and
1L, ifze]2 -1 1\ Q;

fx) = _ ,
x®, ifxe](2°—-1)s,1[NQ,
Then f is Jensen s-convex, bounded and nowhere continuous.
Next theorem gives a sufficient condition for local boundedness to imply
continuity.

Theorem 4. Let the sequence {\,}, oy be such that A\,€]0, 1] and A, tends
to 0 (whenn — oo0). If f: D — R isin Kixntnen and f is locally bounded from
above at a point oy € D, then f is continuous at xg.

PROOF. Since f is locally bounded from above at a point xg € D, there
exists a neighborhood U of g and a constat K > 0 such that f(z) < K for every
x € U. Let € be an arbitrary nonnegative constant. Then there exists nyp € N
such that if n > ng, then

MK A+[(1=X)° —1] f(xo) <k,

whence
(1= A TS R
Let V be a neighborhood of 0 such that xg +V C U, and let U’ = 29 + \,,V. We

prove that
[f(z) = f(zo)l <& (zeU’).
For x € U’ there exist y, z € g + V such that

= Ay + (1 — Ap)zo, To = Az + (1 = Ap)z.

Indeed,
1 1
Czo= —(z—w0) € — MV =V,
pomm ey
and - -
z2—xo = ; “(zo—1x) € %)\HV: (I-A)VCW

According to (A, s)-convexity of f,
@) < XN f(y) + (1= 2An)° f(w0) S ALK + (1= An)* f(z0),
flo) S Af(2) + (1= An)* fla) S ALK + (1= Ap)° f(a).
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We get
f(@) = flmo) S MK +[(1—A)* — 1] fzo) <e (3)
and Flao) = MK
To) — n
flz) > T
which implies
J@) ~ f(wo) = [(1_&) - 1] fo - gk e @

The inequalities (3) and (4) show that |f(z) — f(x0)| < €, that is f is continuous
at xg, which was to be proved. O

Corollary 2. Let H C [0,1] and assume that 0 or 1 is a limit point of H.
If f : D — R is (H,s)-convex and locally bounded at a point of D, then f is
continuous at that point.

PROOF. Since f is (H, s)-convex, it is also (1 — H, s)-convex, so there exists
a sequence in H or in 1 — H, which tends to zero. Now, we can apply the previous
theorem. 0

Theorem 5. Let H C [0,1] and assume that 0 or 1 is a limit point of H.
If f: D — R is (H,s)-convex and locally bounded at a point of D, then f is
continuous on D.

PRrROOF. According to Theorem 2, f is locally bounded at every point of D.
So, we can use the previous corollary to get the continuity of f at every point
of D. ([
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