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On a functional equation with a symmetric component

By JUDITA DASCAL (Debrecen)

Dedicated to Professor Zoltdn Dardczy on the occasion of his seventieth birthday

Abstract. Let I C R be a nonvoid open interval and r # 0,1, ¢ € (0, 1), such that
r#q,r# % and q # % In this paper we give all the functions f,g: I — Ry such that

e ; ) (1 - 9)g(y) — (1~ r)ag(x)] = f_‘;q (1= ) f(@)g(y) — af ()g(@)]

for all z,y € I.

1. Introduction

Let J C R be a nonvoid open interval and denote the class of continuous
and strictly monotone real valued functions defined on the interval J by CM(J).
A function M : J? — J is called a weighted quasi-arithmetic mean on J if there
exist 0 < p < 1 and ¢ € CM(J) such that

M(z,y) = ¢ H(po(x) + (1 — p)o(y)) =: Ap(x, y; p).

for all x,y € J. The number p is said to be the weight and the function ¢ is
called the generating function of the weighted quasi-arithmetic mean M.
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Now we can formulate the general problem as follows: determine all M, N :
J? — J weighted quasi-arithmetic means and the constants & # 0,1 and r # 0, 1,
such that
uM(u,v) + (1 — p)N(u,v) =ru+ (1 —r)v
holds for all u,v € J. In detail this equation means the following: determine all
the functions ¢, 9 € CM(J) and the constants r # 0,1, (p,q) € (0,1)%, u # 0,1
such that

e~ (po(u) + (L= p)e(v) + (1 — wyp~ (g (u) + (1 — Q(v)) = ru+ (1 —r)v

holds for all u,v € J.

If we suppose that ¢,1 € CM(J) are differentiable on J and ¢'(u) > 0,
Y (u) > 0 for all u € J, then with the notations f := ¢’ 0=t g =1 0p~L,
I := (J) for the unknown functions f,¢g : I — Ry and p(u) = x and ¢(v) =y
(x,y €

fpx 4+ (1 =p)y)lr(l —q)g(y) — (1 —r)qg(z)]
=plp(l = q)f(z)g(y) — (1 —plaf(y)g(x)] (1)

for all 2,y € I. The functional equation (1) depends on the parameters r # 0, 1,
(p,q) € (0,1)? and p # 0,1 for which, if z = y in (1), by f(z) > 0, g(z) > 0 we
have

I), from the above equation we have

pp—q)=r—-4q. (2)
The functional equation (1) was studied in the following special cases:
(i) p=qg=r=p=1/2, by J. MATKOWSKI [11], then by Z. DAROCZY and
Zs. PALES [5] under much weaker conditions.
(ii) p=q, (p,q,7) € (0,1)3 (then by (2) 7 = ¢) by Z. DAROCZY and Zs. PALES
in [6], [5].
(iii) u = r, (p,q,7) € (0,1)® J. JARCZYK and J. MATKOWSKI in [8], and
J. JArRczYK [7], P. BURAI [1].
(iv) p=rand p=1/2,q#1/2, (¢,r) € (0,1)® by Z. DAROCZY in [3] without
any conditions.
(v) p=1/2,q¢# 1/2 and g, € (0,1)*, r # ¢q, r # 1/2 and p = 2;1—53) by
Z. DAROCZY and J. DASCAL in [4].
In this paper we study the functional equation (1) in the case p = 1/2 and
p # q. Hence, by (2) we have r # ¢ and r # 1 and

T—q_2 r—q
34 1—2g

/’l‘:
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This means we have to determine all the functions f, g : I — R4 (I C R nonvoid
open interval) and the constants r # 0,1, ¢ € (0, 1), such that

/ ("” i y) (1 — q)gly) — (1 — P)ag(a)]

2
— T 0= of @) —af gl O

holds for all z,y € I.

2. Main result

Theorem 1. Let I C R be a nonvoid open interval and r # 0,1, ¢ € (0,1),
such that r # q, r # % and q # % If the functions f,g : I — R, are solutions of
the functional equation (3) then the following cases are possible:

(1) If r # ﬁ andr # 2(1%1 then there exist constants a,b € R such that
f(x)=a and g(x)=0b forallzel;

(2) If r = ﬁ then there exists an additive function A : R — R and

positive real numbers ¢y, co such that
g(x) = 1@ and  f(z) = c2*A@  forallx € I

(3) If r = 515 then there exist real numbers dy, dz, d3 such that

1 1
=—>0 d =dg—— >0 forall I.
i d >0 and f(z) R > orallz,y €

g(x)
Conversely, the functions given in the above cases are solutions of equation (3).

To prove Theorem 1 we need the following lemmas.

Lemma 1. Let I C R be a nonvoid open interval and r # 0,1, 0 < ¢ < 1,
r #q,r,q# 1/2. If the functions f,g : I — R, satisfy the functional equation
(3) then

£ (55Y) o) + 9000 = [ @)at0) + £0)o(o) 0

holds for all x,y € I.
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Lemma 2. Let I C R be a nonvoid open interval and r # 0,1, 0 < ¢ < 1,
r #q,r,q # 1/2. If the functions f,g : I — R, satisfy the functional equation
(3) then

F@)g){qa(1 — )1 —2r)g(y) — [r(1 — 2¢) — ¢*(1 — 2r)]g(x)}
= f(W)g(x){q(1 — )1 —2r)g(z) — [r(1 — 2¢q) — ¢°(1 — 2r)]g(y)} (5)

holds for all x,y € I.

These lemmas are proved in [4].
Proof of Theorem 1:
The proof of cases (1) and (2) is the same as the proof of Theorem 1 from [4].

In case (3), when r = 52, by Lemma 2 the equation (5) becomes

f(x)g(y) qil__QZ) l9(x) + 9(v)] = fF(W)g(x) qil__QZ) l9(x) + g(v)]-
for all z,y € I. Hence f(x)g(y) = f(y)g(x), thus
f(z) = dsg(x) for some ds >0 and for all x € I. (6)

Replacing this form of f in (4) we have

<x + y> 2
g = 1 1 ?

2 7@ * 5w
consequently, by [9], [10] there exist an additive function B : R — R and a real
number dy such that ﬁ = B(z)+ds > 0, thus g(z) = m >0foralael,
that is, there exists d; € R such that B(z) = dy« for all x € I, thus g(x)
for all € I. Finally, (6) completes the proof of case (3).

— 1
T diz+ds

3. Application

Returning to the generalized problem we need the following definitions.

Definition 1. Let ¢,1 € CM(J). If there exist a # 0 and b such that
Y(x)=ap(z)+b ifxed

then we say that ¢ is equivalent to ¢ on J and denote it by ¢(x) ~ ¢ (z) if z € J
or in short ¢ ~ 1 on J.



On a functional equation with a symmetric component 37

It is well-known that if 0 < p < 1 and ¢,¢ € CM(J), then A, (z,y;p) =
Ay(z,y;p) for all z,y € J if and only if ¢ ~ ¢ on J.
We define the following sets:

T (J)={teR|J+tCRy}
T (J):={teR|-J+tCR4}.
With the help of these notations , set
(@) =vr+t if teT (J) (zel)
(@) i=v—z+t if teT_(J) (zel).

The general problem is as follows: determine all the functions ¢, € CM(J)
and the constants 7 # 0,1, (p,q) € (0,1)2, u # 0,1 such that

e~ (po(u) + (L= p)e(v) + (1 — )y~ (qv(u) + (1 — Q(v)) = ru+ (1 —r)v

holds for all u,v € J. If either p or ¢ equals 1/2, the following theorem gives
the solutions of this equation. If (p,) is the solution of the above functional
equation with p = 1/2, ¢ # 1/2, then (v, ) is the solution of the equation with
p # 1/2, ¢ = 1/2. So it is enough to state our theorem for the case p = 1/2,
q # 1/2. In [4] the above equation (with p = 1/2) is solved for 0 < r < 1, but
here we take r # 0,1 and we get further solutions, which solutions are also found
by Z. DAROCZY in [2] without the assumption of differentiability of the functions
o and .

Theorem 2. Let J C R be a nonvoid open interval and r # 0,1, 0 < ¢ < 1,
r,q# %, r#q. If p,9 € CM(J) are solutions of the functional equation

21(7“_—23)@1 (sﬁ(U) ;L sﬂ(v)) N <1 3 21(7"_—23)

) o avt) + (- v
=ru+(1—rjw (7)
for all u,v € J and ¢, are differentiable on J and ¢'(u) > 0, ¢'(u) > 0 for all

w € J then ¢ ~ id and ¢ ~ id on J, furthermore in the case r = Mw the

following cases are also possible:
p~logy, Y i teT(J)  or  p~logyy, Yoy ifteT-(J)
and in the case r = 5-L- the following cases are also possible:

2g—1

e~y e~y dfteTe(J)  or o~ Yy i teT-(J).
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PROOF. It is enough to solve the functional equation (7) up to the equiva-
lence of the functions ¢ and 1. With the notations f := ¢’ o™t g: =y 0!,
I := ¢(J) we get that equation (3) holds. Due to the definition of f, we obtain

the differential equation for the function ¢:

¢'(z) = flo(x) zel (®)

By Theorem 1, the case r # q2+(ql2—q)2 , T 2qq_1 gives the constant solutions,
which implies that ¢ ~ id, ¥ ~ id.

If r = qur(qw the proof is found in [4].

Ifr= ﬁ then

1
—dgT and g(I):m for a:HIEI, (9)
where dy,ds,ds € R, d3 > 0.

In the case dy =0, ¢ ~id and ¥ ~ id.

In the case dy # 0 from (8) we have

1
"(u) = d3————— >0 forallueJ
¢’ (u) 3d1<p(U)+d2 r U
which implies that ¢(u) ~ +/Cau + Cs, from which we deduce that either there
exists t € Ty (J) such that ¢ ~ ;" on J or there exists t € T_(J) such that
@~y onlJ.
Due to the definition of g, by (9) we obtain that

") = ——~———>0 forallucJ,
Q/J ( ) dl QD(U) + d2
which implies that either there exists ¢t € T'y (J) such that ¢ ~ ;" on J or there
exists t € T_(J) such that ¢ ~~; on J. O
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