Title: D'Alembert's functional equation on topological monoids
Author(s): Thomas M. K. Davison
We prove that if f is a continuous complex-valued function on the topological monoid M with neutral element e satisfying the functional equation

$$
f(x y z)+f(x z y)=2 f(x) f(y z)+2 f(y) f(z x)+2 f(z) f(x y)-4 f(x) f(y) f(z)
$$

and $f(e)=1$, then there is a continuous homomorphism $h: M \rightarrow \operatorname{Mat}_{2}(\mathbb{C})$, the multiplicative monoid of complex 2×2 matrices such that $f=\frac{1}{2}$ troh. As a consequence we prove that if f is a continuous function on the topological group G satisfying $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y)$ and $f(e)=1$ then there is a continuous homomorphism $h: G \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ such that $f=\frac{1}{2} \operatorname{tr} \circ h$.

Address:

Thomas M. K. Davison
Department of Mathematics and Statistics
McMaster University
Hamilton, Ontario
Canada L8S 4K1

