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On almost everywhere convergence of Fourier series

on unbounded Vilenkin groups

By GYÖRGY GÁT (Nýıregyháza)

Dedicated to Professor Zoltán Daróczy on the occasion

of his seventieth birthday

Abstract. In 1973 Gosselin [9] proved that if we have a bounded Vilenkin system,

then the Vilenkin–Fourier series of a function in the Lebesgue class Lp for 1 < p converges

a.e. to the function. It is the most celebrated problem in the harmonic analysis on

unbounded Vilenkin groups to give function classes for the elements of which the Fourier

series converges almost everywhere. No positive answer is known even for continuous

functions in the Lipschitz class. In this paper we give a discretized version of the theorem

of Carleson and Hunt, and apply it in order to prove the following theorem with respect

to unbounded Vilenkin systems. Let f ∈ L2(Gm), and
P

∞

A=0
A2
PMA+1−1

k=MA
|f̂(k)|2 < ∞.

Then we have the a.e. relation Snf → f . This immediately implies the a.e. convergence

Snf → f for all f ∈ Lip(α, 2) (α > 0).

1. The discrete Fourier series

In the first part of this paper we pass from the statement of Carleson

and Hunt [6], [10] on Fourier series, as a statement about Fourier series on

the real line, to a statement about Fourier series for groups Zm. Namely, the

integers mod m. We note that this kind of observation, a transference result,
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has several antecedents in the literature. For instance the paper by Máté [12]

transfers the Carleson [6] theorem to the integers. The paper by Billard [3]

discusses the Carleson theorem in the context of Walsh systems. The papers by

Thiele [19] discuss several different proofs of Carleson theorem in the Walsh

setting. Campbell and Petersen [5] transfer the Carleson theorem to the

integers (unaware of Máté) and then to dynamical systems. Auscher and Carro

[2] discuss general transference between the three Euclidean groups R, T, and Z.

The second part of the paper concerns a positive result on the convergence

of Fourier series for unbounded Vilenkin groups and certain square integrable

functions on such groups.

Denote by e : R → C and em : R → C the following functions:

e(x) = exp(2πıx), em(x) = e(x/m).

The jth partial sum of the Vilenkin–Fourier series of the function g : Zm → C is:

Sjg(k) :=

j−1
∑

i=0

ĝ(i)em(ik),

where

ĝ(i) =
1

m

m−1
∑

n=0

g(n)ēm(in)

is the ith Fourier coefficient. The maximal function of the partial sums of the

Fourier series of g is

S∗g := sup
j∈Zm

|Sjg|.

The aim of this section is to prove that this maximal operator is of type (Lp, Lp)

that is to prove:

Theorem 1.1.

1

m

m−1
∑

n=0

|S∗g(n)|p ≤ C
1

m

m−1
∑

k=0

|g(k)|p,

where 1 < p <∞, and the constant C depends only on p.

Proof. For the basic idea of the proof of this theorem see 5.3 Lemma 3,

6.4 Theorem 12, and 5.5 Theorem 16 in the book of Schipp, Wade and Simon

[16]. Also see Theorem 7.5 in chapter X in the book of Zygmund [22]. For a

positive integer n let Kn be the nth classical trigonometric Fejér kernel function
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and for an integrable function f ∈ L1[0, 1] define the function V f : Zm → C in

the following way:

V f(x) :=

∫ 1

0

(

2K2m

( x

m
− t
)

−Km

( x

m
− t
))

f(t)dt (x ∈ Zm).

It is clear that if g : Zm → C and G :=
∑m−1

i=0 ĝ(i)ei, then for every j ∈ Zm we

have

Sjg = V

(

j−1
∑

i=0

ĝ(i)ei

)

= V (sjG),

where sjG denotes the jth partial sum of the trigonometric Fourier series of G.

That is, for every x ∈ Zm we have

sup
0≤j<m

|Sjg(x)|

= sup
0≤j<m

|V (sjG)(x)|

= sup
0≤j<m

∣

∣

∣

∣

∫ 1

0

(

2K2m

( x

m
− t
)

−Km

( x

m
− t
))

sjG(t)dt

∣

∣

∣

∣

≤ sup
0≤j<m

∣

∣

∣

∣

∫ 1

0

2K2m

( x

m
− t
)

sjG(t)dt

∣

∣

∣

∣

+ sup
0≤j<m

∣

∣

∣

∣

∫ 1

0

Km

( x

m
− t
)

sjG(t)dt

∣

∣

∣

∣

≤ 2

∫ 1

0

2K2m

( x

m
− t
)

sup
0≤j<m

|sjG(t)|dt +

∫ 1

0

Km

( x

m
− t
)

sup
0≤j<m

|sjG(t)|dt

= 2σ2m

(

sup
0≤j<m

|sjG|
)

(x) + σm

(

sup
0≤j<m

|sjG|
)

(x),

where σqh(x) :=
∫ 1

0 Kq

(

x
m

− t
)

h(t)dt (h ∈ L1[0, 1], q = 1, 2, . . . ). Since

‖σqh‖∞ = max
x∈Zm

|σqh(x)| ≤ max
x∈Zm

∣

∣

∣

∣

∫ 1

0

Kq

( x

m
− t
)

dt

∣

∣

∣

∣

‖h‖∞ = ‖h‖∞,

and besides,

‖σqh‖1 = m−1
m−1
∑

l=0

|σqh(l)| ≤
∫ 1

0

m−1
m−1
∑

l=0

Kq

(

l

m
− t

)

|h(t)|dt = ‖h‖1,

then for every 1 < p < +∞ we get by the help of the interpolation theorem of

Marczinkiewicz the operators σq are uniformly of type (Lp, Lp). Consequently,

the theorem of Carleson and Hunt [6], [10] gives
∥

∥ sup
0≤j<m

|Sjg|
∥

∥

p
≤ Cp

∥

∥ sup
0≤j<m

|sjG|
∥

∥

p
≤ Cp‖G‖p = Cp‖V ∗g‖p ≤ Cp‖g‖p,

where V ∗ denotes the adjoint operator of V . This completes the proof of the

theorem. �
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2. The Vilenkin systems

First we give a brief introduction to the theory of Vilenkin systems. These

orthonormal systems were introduced by N. Ja. Vilenkin in 1947 (see e.g. [20],

[1]) as follows.

Let m := (mk, k ∈ N) (N := {0, 1, . . .}) be a sequence of integers each of

them not less than 2. Let Zmk
denote the discrete cyclic group of order mk.

That is, Zmk
can be represented by the set {0, 1, . . . ,mk − 1}, with the group

operation mod mk addition. Since the groups is discrete, then every subset is

open. The normalized Haar measure on Zmk
, µk is defined by µk({j}) := 1/mk

(j ∈ {0, 1, . . . ,mk − 1}). Let

Gm :=
∞
×

k=0
Zmk

.

Then every x ∈ Gm can be represented by a sequence x = (xi, i ∈ N) ,

where xi ∈ Zmi
(i ∈ N). The group operation on Gm (denoted by +) is the

coordinate-wise addition (the inverse operation is denoted by −), the measure

(denoted by µ), which is the normalized Haar measure, and the topology are the

product measure and topology. Consequently, Gm is a compact Abelian group.

If supn∈N
mn <∞, then we call Gm a bounded Vilenkin group. If the generating

sequence m is not bounded, then Gm is said to be an unbounded Vilenkin group.

The Vilenkin group metrizable in the following way:

d(x, y) :=
∞
∑

i=0

|xi − yi|
Mi+1

(x, y ∈ Gm).

The topology induced by this metric, the product topology, and the topology

given by below are the same. A base for the neighborhoods of Gm can be given

by the intervals:

I0(x) := Gm, In(x) := {y = (yi, i ∈ N) ∈ Gm : yi = xi for i < n}
for x ∈ Gm, n ∈ P := N \ {0}. Let 0 = (0, i ∈ N) ∈ Gm denote the nullelement of

Gm, In := In(0) (n ∈ N).

Furthermore, let Lp(Gm) (1 ≤ p ≤ ∞) denote the usual Lebesgue spaces

(‖.‖p the corresponding norms) on Gm, An the σ algebra generated by the sets

In(x) (x ∈ Gm), and En the conditional expectation operator with respect to

An (n ∈ N) (E−1f := 0 (f ∈ L1)).

Let M0 := 1,Mn+1 := mnMn (n ∈ N) be the so-called generalized powers.

Then each natural number n can be uniquely expressed as

n =
∞
∑

i=0

niMi (ni ∈ {0, 1, . . . ,mi − 1}, i ∈ N),
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where only a finite number of ni ’s differ from zero. We introduce the following

notations:

n(k) :=

∞
∑

i=k

niMi, (n, k ∈ N) |n| := max {k ∈ N : nk 6= 0} (1 ≤ n ∈ N).

The generalized Rademacher functions are defined as

rn(x) := exp

(

2πı
xn

mn

)

(x ∈ Gm, n ∈ N, ı :=
√
−1 ).

It is known that
∑mn−1

i=0 ri
n(x) =

{

0, if xne0,

mn, if xn = 0
(x ∈ Gm, n ∈ N).

The nth Vilenkin function is

ψn :=
∞
∏

j=0

r
nj

j (n ∈ N).

The system ψ := (ψn : n ∈ N) is called a Vilenkin system. Each ψn is a character

of Gm, and all the characters of Gm are of this form.

Define the Fourier coefficients, the partial sums of the Fourier series, the

Dirichlet kernels, and the Fejér (or (C, 1)) means with respect to the Vilenkin

system ψ as follows

f̂(n) :=

∫

Gm

fψ̄ndµ, Snf :=

n−1
∑

k=0

f̂(k)ψk,

Dn(y, x) = Dn(y − x) :=

n−1
∑

k=0

ψk(y)ψ̄k(x), σnf :=
1

n

n
∑

k=1

Skf,

(n ∈ P, y, x ∈ Gm, f̂(0) :=
∫

Gm
fdµ, S0f = D0 = 0, f ∈ L1(Gm)). It is well-

known that

Snf(y) =

∫

Gm

f(x)Dn(y − x)dµ(x)

(n ∈ P, y ∈ Gm, f ∈ L1(Gm)). It is also well-known that

DMn
(x) =

{

Mn if x ∈ In(0)

0 if x /∈ In(0),

SMn
f(x) = Mn

∫

In(x)

fdµ = Enf(x) (f ∈ L1(Gm), n ∈ N).
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Moreover, [1] for n ∈ N

Dn = ψn

∞
∑

k=0

DMk

mk−1
∑

i=mk−nk

ri
k =

∞
∑

k=0

ψn(k+1)DMk

nk−1
∑

i=0

ri
k. (1)

If 1 ≤ p <∞ and k is any nonnegative integer, then the integrated modulus

of continuity of order k for f ∈ Lp(Gm) is

ωp(f, k) = sup {‖τyf − f‖p : y ∈ Ik} ,

where τyf(x) = f(x + y). Onneweer [13, p. 680] defined Lip(α, p) to be the

space of all f in Lp(Gm) such that ωp(f, k) = O(M−α
k ) [4], [14].

The almost everywhere convergence of the full partial sums for Lp(Gm),

p > 1, is known in the bounded case [9] but not in the unbounded case. There

is no known result with respect to the a.e. convergence of the partial sums Snf

even for continuous functions in Lipschitz classes.

On the other hand, mean convergence of the full partial sums for Lp, p > 1,

is known for the unbounded case. Namely, in 1999 the author [7] proved that if

f ∈ Lp(Gm), where p > 1, then σnf → f almost everywhere. This was the very

first “positive” result with respect to the a.e. convergence of the Fejér means

of functions on unbounded Vilenkin groups. With respect to norm convergence

that is, the fact that the partial sums Snf converges to f in Lp-norm for all

f ∈ Lp(Gm), and 1 < p < ∞ one can see the papers (written independently at

the same time) of Young [21], Schipp [15] and Simon [18], [17]. On the other

hand, much is unknown for unbounded Vilenkin systems. We mention for instance

the convergence of (C,α) means with negative α. For the Walsh–Paley system

this means is investigated by Goginava [8], but for unbounded Vilenkin systems,

nothing can be said.

In this paper we prove the following

Theorem 2.1. Let Gm be any Vilenkin group (bounded or not), and f ∈
L2(Gm) such that

∞
∑

A=0

A2

MA+1−1
∑

k=MA

|f̂(k)|2 <∞.

Then we have the a.e. relation limn→∞ Snf = f .

We could say that with respect to bounded Vilenkin systems since

log(MA) ∼ A, then Theorem 2.1 is nothing else but the well known Rademacher–

Menshov theorem for general orthonormal systems. But, in this paper we are
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talking about unbounded ones, and for this reason log(MA)/A can converge to

+∞ arbitrary fast. Consequently, for these Vilenkin groups Theorem 2.1 is much

stronger than the Rademacher–Menshov theorem. The same can be said with

respect to the theorem of Kolmogorov, Seliverstov, Plessner and Kacz-

marz (see e.g. [11]) which states for bounded Vilenkin groups that the inequality
∑∞

k=0 |f̂(k)|2 log k <∞ implies the almost everywhere convergence of the partial

sum of the Fourier series. We emphasize once again that in this paper we are

talking about of Vilenkin groups of any kind. That is, the sequence m can grow

“very fast”.

Proof. Introduce the operators Tn,k : L1(Gm) → L0(Gm) (n, k ∈ N):

Tn,kf(y)

:=

nk−1
∑

j=0

(

1

mk

mk−1
∑

s=0

(

Mk+1

∫

Ik+1(yk(s))

f(t)ψ̄n(k+1)(t)dµ(t)

)

ψn(k+1)(y)r̄
j
k(yk(s))

)

rj
k(y),

where y, yk(s) := (y0, . . . , yk−1, s, 0, 0, . . . ) ∈ Gm. In other words,

Tn,kf =

nk−1
∑

j=0

Ek

(

Ek+1(fψ̄n(k+1))ψn(k+1) r̄
j
k

)

rj
k. (2)

(1) and (2) imply that

Snf =

|n|
∑

k=0

Tn,kf.

Fix (for a moment) n(k+1) and y and let the function g be defined as

g(y0, . . . , yk−1, s) := Mk+1

∫

Ik+1(yk(s))

f(t)ψ̄n(k+1)(t)dµ(t) (s ∈ Zmk
).

Then we have

|Tn,kf(y)| =

∣

∣

∣

∣

∣

∣

nk−1
∑

j=0

1

mk

mk−1
∑

s=0

g(y0, . . . , yk−1, s)r̄
j
k(yk(s))rj

k(y)

∣

∣

∣

∣

∣

∣

.

By Theorem 1.1 we have

1

mk

mk−1
∑

yk=0

sup
nk

|Tn,kf(y)|2 ≤ C
1

mk

mk−1
∑

s=0

|g(y0, . . . , yk−1, s)|2

= CEk

(

∣

∣Ek+1(fψ̄n(k+1))
∣

∣

2
)

(y) (3)
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Apply the conditional Hölder inequality for Ek+1(fψ̄n(k+1)). Then We get

∣

∣Ek+1(fψ̄n(k+1))
∣

∣

2 ≤ Ek+1(|f |2). (4)

Consequently, by (3) and (4) we have the following inequality

1

mk

mk−1
∑

yk=0

sup
nk

|Tn,kf |2 ≤ CEk(Ek+1(|f |2)) ≤ CEk(|f |2).

This inequality immediately gives

∥

∥ sup
n

|Tn,kf |
∥

∥

2

2
≤ C‖f‖2

2 (5)

for any k ∈ N.

For k < A = |n| we have Tn,kf = Tn,k(EA+1f), and Tn,k(EAf) = 0. Conse-

quently in this case we get

∥

∥ sup
n

|Tn,kf |
∥

∥

2

2
=
∥

∥ sup
n

|Tn,k(EA+1f − EAf)|
∥

∥

2

2
≤ C‖EA+1f − EAf‖2

2.

Next, we discuss the case k = A. More exactly, the question is that: What can

be said about supA sup|n|=A |Tn,Af |? It is easy to have that Tn,Af = Tn,AEA+1f ,

and Tn,AEAf = EAf . Thus,

∥

∥ sup
A

sup
|n|=A

|Tn,Af |
∥

∥

2

2
=
∥

∥ sup
A

sup
|n|=A

|Tn,A(EA+1f − EAf) + EAf |
∥

∥

2

2

≤ C
∥

∥ sup
A

sup
|n|=A

|Tn,A(EA+1f − EAf)|
∥

∥

2

2
+ C

∥

∥ sup
A

|EAf |
∥

∥

2

2
=: i1 + i2.

By (5) for i1 we have

i1 ≤ C
∞
∑

A=0

∥

∥ sup
|n|=A

|Tn,A(EA+1f − EAf)|
∥

∥

2

2
≤ C

∞
∑

A=0

‖EA+1f − EAf‖2
2 ≤ C‖f‖2

2.

On the other hand, for i2 we get the same bound, that is, i2 ≤ C‖f‖2
2. (We recall

that the maximal function supA |EAf | is of type (L2, L2)). Finally, the equality

Snf =
∑|n|

k=0 Tn,kf = Tn,|n|f +
∑|n|−1

k=0 Tn,kf gives

∥

∥ sup
n

|Snf |
∥

∥

2

2
≤ C‖f‖2

2 + 2
∥

∥

∥
sup
A

sup
|n|=A

A−1
∑

k=0

|Tn,kf |
∥

∥

∥

2

2

≤ C‖f‖2
2 + C

∞
∑

A=0

A2‖EA+1f − EAf‖2
2.
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Since

‖EA+1f − EAf‖2
2 =

MA+1−1
∑

k=MA

|f̂(k)|2

and

‖f‖2
2 =

∞
∑

j=0

|f̂(j)|2 ≤ |f̂(0)|2 +

∞
∑

A=0

(A+ 1)2
MA+1−1
∑

k=MA

|f̂(k)|2,

then we have

∥

∥ sup
n

|Snf |
∥

∥

2

2
≤ C

(

|f̂(0)|2 +

∞
∑

A=0

(A+ 1)2
MA+1−1
∑

k=MA

|f̂(k)|2
)

. (6)

Let

L2
†(Gm) :=

{

f ∈ L2(Gm) : ‖f‖†

:=

√

√

√

√|f̂(0)|2 +

∞
∑

A=0

(A+ 1)2
MA+1−1
∑

k=MA

|f̂(k)|2 < +∞
}

.

It is clear that ‖.‖† is a norm and by (6) the maximal operator L2
†(Gm) ∋ f 7→

supn |Snf | ∈ L2(Gm) is bounded.

Since the set of Vilenkin polynomials is dense in L2
†(Gm) and limn→∞ Snf = f

holds trivially for all Vilenkin polynomials f , we have by standard argument the

a.e. relation limn→∞ Snf = f for every L2
†(Gm). The proof of Theorem 2.1 is

complete. �

Corollary 2.2. Let f ∈ Lip(α, 2) for some α > 0. Then Snf → f a.e.

Proof.
∑MA+1−1

k=MA
|f̂(k)|2 ≤∑∞

k=MA
|f̂(k)|2 = ‖f − EAf‖2

2 ≤ (ω2(f,A))2 ≤
CM−2α

A ≤ C2−2Aα. �
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