# On the maximal operator of the Marcinkiewicz-Fejér means of double Walsh-Kaczmarz-Fourier series 

By USHANGI GOGINAVA (Tbilisi) and KÁROLY NAGY (Nyíregyháza)

Dedicated to Professor Zoltán Daróczy on the occasion of his seventieth birthday


#### Abstract

In the paper [3] we proved that the maximal operator of the Marcinki-ewicz-Fejér means of the 2-dimensional Fourier series with respect to the Walsh-Kaczmarz system is not bounded from the Hardy space $H_{2 / 3}$ to the space $L_{2 / 3}$.

Now, in this paper we prove a stronger result, that is there exists a martingale $f \in H_{2 / 3}$ such that the maximal Marcinkiewicz-Fejér operator with respect to WalshKaczmarz system does not belong to the space $L_{2 / 3}$.


First, we give a brief introduction to the theory of dyadic analysis [8]. Let $\mathbb{P}$ denote the set of positive integers, $\mathbb{N}:=\mathbb{P} \cup\{0\}$. Denote $Z_{2}$ the discrete cyclic group of order 2 , that is $Z_{2}=\{0,1\}$, where the group operation is the modulo 2 addition and every subset is open. The Haar measure on $Z_{2}$ is given such that the measure of a singleton is $1 / 2$. Let $G$ be the complete direct product of the countable infinite copies of the compact groups $Z_{2}$. The elements of $G$ are of the form $x=\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)$ with $x_{k} \in\{0,1\}(k \in \mathbb{N})$. The group operation on $G$ is the coordinate-wise addition, the measure (denote by $\mu$ ) and the topology are the product measure and topology. The compact Abelian group $G$ is called the Walsh group. A base for the neighborhoods of $G$ can be given in the following

[^0]way:
\[

$$
\begin{gathered}
I_{0}(x):=G \\
I_{n}(x):=I_{n}\left(x_{0}, \ldots, x_{n-1}\right):=\left\{y \in G: y=\left(x_{0}, \ldots, x_{n-1}, y_{n}, y_{n+1}, \ldots\right)\right\}
\end{gathered}
$$
\]

$(x \in G, n \in \mathbb{N})$. These sets are called dyadic intervals. Let $0=(0: i \in \mathbb{N}) \in G$ denote the null element of $G, I_{n}:=I_{n}(0)(n \in \mathbb{N})$. Set $e_{n}:=(0, \ldots, 0,1,0, \ldots) \in G$, the $n$th coordinate of which is 1 and the rest are zeros $(n \in \mathbb{N})$.

For $k \in \mathbb{N}$ and $x \in G$ denote

$$
r_{k}(x):=(-1)^{x_{k}}
$$

the $k$ th Rademacher function. If $n \in \mathbb{N}$, then $n=\sum_{i=0}^{\infty} n_{i} 2^{i}$, where $n_{i} \in\{0,1\}$ $(i \in \mathbb{N})$, i.e. $n$ is expressed in the number system of base 2 . Denote $|n|:=\max \{j \in$ $\left.\mathbb{N}: n_{j} \neq 0\right\}$, that is $2^{|n|} \leq n<2^{|n|+1}$.

The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:

$$
w_{n}(x):=\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{n_{k}}=r_{|n|}(x)(-1) \sum_{k=0}^{|n|-1} n_{k} x_{k} \quad(x \in G, n \in \mathbb{P})
$$

The Walsh-Kaczmarz functions are defined by $\kappa_{0}:=1$ and for $n \geq 1$

$$
\kappa_{n}(x):=r_{|n|}(x) \prod_{k=0}^{|n|-1}\left(r_{|n|-1-k}(x)\right)^{n_{k}}=r_{|n|}(x)(-1) \sum_{k=0}^{|n|-1} n_{k} x_{|n|-k-1}
$$

For $A \in \mathbb{N}$ define the transformation $\tau_{A}: G \rightarrow G$ by

$$
\tau_{A}(x):=\left(x_{A-1}, x_{A-2}, \ldots, x_{0}, x_{A}, x_{A+1}, \ldots\right)
$$

By the definition of $\tau_{A}$ (see [11]), we have

$$
\kappa_{n}(x)=r_{|n|}(x) w_{n-2^{|n|}}\left(\tau_{|n|}(x)\right) \quad(n \in \mathbb{N}, x \in G)
$$

The space $L_{p}\left(G^{2}\right), 0<p \leq \infty$ with norms or quasi-norms $\|\cdot\|_{p}$ is defined in the usual way.

The Dirichlet kernels are defined by

$$
D_{n}^{\alpha}(x):=\sum_{k=0}^{n-1} \alpha_{k}(x)
$$

where $\alpha_{k}=w_{k}$ or $\kappa_{k}$. Recall that (see e.g. [8])

$$
D_{2^{n}}(x):=D_{2^{n}}^{w}(x)=D_{2^{n}}^{\kappa}(x)= \begin{cases}2^{n}, & \text { if } x \in I_{n}(0)  \tag{1}\\ 0, & \text { if } x \notin I_{n}(0)\end{cases}
$$

The two-dimensional dyadic cubes are of the form

$$
I_{n, n}(x, y):=I_{n}(x) \times I_{n}(y)
$$

The $\sigma$-algebra generated by the dyadic rectangles $\left\{I_{n, n}(x, y):(x, y) \in G \times G\right\}$ is denoted by $F_{n, n}$.

Denote by $f=\left(f^{(n, n)}, n \in N\right)$ a martingale with respect to $\left(F_{n, n}, n \in \mathbb{N}\right)$ (for details see, e.g. [15]). The maximal function of a martingale $f$ is defined by

$$
f^{\square}=\sup _{n \in N}\left|f^{(n, n)}\right| .
$$

In case $f \in L_{1}(G \times G)$, the maximal function can also be given by

$$
f^{\square}(x, y)=\sup _{n \in \mathbb{N}} \frac{1}{\mu\left(I_{n, n}(x, y)\right)}\left|\int_{I_{n, n}(x, y)} f(u, v) d \mu(u, v)\right|, \quad(x, y) \in G \times G .
$$

For $0<p<\infty$ the Hardy martingale space $H_{p}^{\square}(G \times G)$ consists of all martingales for which

$$
\|f\|_{H_{p}}:=\left\|f^{\square}\right\|_{p}<\infty
$$

The Kroneker product ( $\alpha_{m, n}: n, m \in \mathbb{N}$ ) of two Walsh(-Kaczmarz) system is said to be the two-dimensional Walsh(-Kaczmarz) system. Thus,

$$
\alpha_{m, n}(x, y)=\alpha_{n}(x) \alpha_{m}(y)
$$

If $f \in L_{1}\left(G^{2}\right)$, then the number $\hat{f}^{\alpha}(n, m):=\int_{G^{2}} f \alpha_{m, n}(n, m \in \mathbb{N})$ is said to be the $(n, m)$ th Walsh-(Kaczmarz)-Fourier coefficient of $f$. We can extend this definition to martingales in the usual way (see Weisz [14], [15]).

Denote by $S_{n, m}^{\alpha}$ the ( $n, m$ )th rectangular partial sum of the Walsh-(Kaczmarz) -Fourier series of a martingale $f$. Namely,

$$
S_{n, m}^{\alpha}(f ; x, y):=\sum_{k=0}^{n-1} \sum_{i=0}^{m-1} \hat{f}^{\alpha}(k, i) \alpha_{k, i}(x, y)
$$

The Marcinkiewicz-Fejér means of a martingale $f$ are defined by

$$
\mathcal{M}_{n}^{\alpha}(f ; x, y):=\frac{1}{n} \sum_{k=0}^{n} S_{k, k}^{\alpha}(f, x, y)
$$

The 2-dimensional Dirichlet kernels and Marcinkiewicz-Fejér kernels are defined by

$$
D_{k, l}^{\alpha}(x, y):=D_{k}^{\alpha}(x) D_{l}^{\alpha}(y), \quad K_{n}^{\alpha}(x, y):=\frac{1}{n} \sum_{k=0}^{n} D_{k, k}^{\alpha}(x, y)
$$

For the martingale $f$ we consider the maximal operator

$$
\mathcal{M}^{\kappa *} f(x, y)=\sup _{n}\left|\mathcal{M}_{n}^{\kappa}(f, x, y)\right|
$$

A bounded measurable function $a$ is a $p$-atom, if there exists a dyadic 2dimensional cube $I \times I$, such that
a) $\int_{I \times I} a d \mu=0$;
b) $\|a\|_{\infty} \leq \mu(I \times I)^{-1 / p}$;
c) $\operatorname{supp} a \subset I \times I$.

The basic result of atomic decomposition is the following one.
Theorem A (WEISZ [15]). A martingale $f=\left(f^{(n, n)}: n \in \mathbb{N}\right)$ is in $H_{p}^{\square}$ $(0<p \leq 1)$ if and only if there exists a sequence $\left(a_{k}, k \in \mathbb{N}\right)$ of $p$-atoms and a sequence $\left(\mu_{k}, k \in \mathbb{N}\right)$ of real numbers such that for every $n \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{k=0}^{\infty} \mu_{k} S_{2^{n}, 2^{n}} a_{k}=f^{(n, n)}, \quad \sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}<\infty \tag{2}
\end{equation*}
$$

Moreover,

$$
\|f\|_{H_{p}^{\square}} \sim \inf \left(\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}\right)^{1 / p}
$$

In 1939 for the two-dimensional trigonometric Fourier series MARCINKIEWICZ [7] has proved for $f \in L \log L\left([0,2 \pi]^{2}\right)$ that the means

$$
\mathcal{M}_{n} f=\frac{1}{n} \sum_{j=1}^{n-1} S_{j, j}(f)
$$

converge a.e. to $f$ as $n \rightarrow \infty$. ZhizhiAshVILI [16] improved this result for $f \in$ $L\left([0,2 \pi]^{2}\right)$.

For the two-dimensional Walsh-Fourier series Weisz [13] proved that the maximal operator

$$
\mathcal{M}^{w *} f=\sup _{n \geq 1} \frac{1}{n}\left|\sum_{j=0}^{n-1} S_{j, j}^{w}(f)\right|
$$

is bounded from the two-dimensional dyadic martingale Hardy space $H_{p}$ to the space $L_{p}$ for $p>2 / 3$ and is of weak type $(1,1)$. The first author [4] proved that the assumption $p>2 / 3$ is essential for the boundedness of the maximal operator $\mathcal{M}^{w *}$ from the Hardy space $H_{p}\left(G^{2}\right)$ to the space $L_{p}\left(G^{2}\right)$.

In 1974 Schipp [9] and Young [12] proved that the Walsh-Kaczmarz system is a convergence system. GÁt [1] proved, for any integrable functions, that the Fejér means with respect to the Walsh-Kaczmarz system converge almost everywhere to the function itself. Gát's Theorem was extended by Simon [10] to $H_{p}$ spaces, namely that the maximal operator of Fejér means of one-dimensional Fourier series is bounded from Hardy space $H_{p}\left(G^{2}\right)$ into the space $L_{p}\left(G^{2}\right)$ for $p>1 / 2$.

The second author [6] proved, that for any integrable functions, the Marcinki-ewicz-Fejér means with respect to the two dimensional Walsh-Kaczmarz system converge almost everywhere to the function itself. This Theorem was extended in [2]. Namely, the following is true:

Theorem B. Let $p>2 / 3$, then the maximal operator $\mathcal{M}^{\kappa *}$ of the Marcinki-ewicz-Fejér means of double Walsh-Kaczmarz-Fourier series is bounded from the Hardy space $H_{p}\left(G^{2}\right)$ to the space $L_{p}\left(G^{2}\right)$.

In the paper [3] it was proved that the assumption $p>2 / 3$ is essential for the boundedness of the maximal operator $\mathcal{M}^{\kappa *}$ from the Hardy space $H_{p}\left(G^{2}\right)$ to the space $L_{p}\left(G^{2}\right)$. Namely,

Theorem C. The maximal operator $\mathcal{M}^{\kappa *}$ of the Marcinkiewicz-Fejér means of double Walsh-Kaczmarz-Fourier series is not bounded from the Hardy space $H_{2 / 3}\left(G^{2}\right)$ to the space $L_{2 / 3}\left(G^{2}\right)$.

We will prove a stronger theorem than Theorem C.
Theorem 1. There exists a martingale $f \in H_{2 / 3}(G \times G)$ such that

$$
\mid \mathcal{M}^{\kappa, *} f \|_{L_{2 / 3}}=+\infty
$$

Proof. Let $\left\{m_{k}: k \in \mathbb{N}\right\}$ be an increasing sequence of positive integers such that

$$
\begin{gather*}
\sum_{k=0}^{\infty} \frac{1}{m_{k}^{2 / 3}}<\infty  \tag{3}\\
\sum_{l=0}^{k-1} \frac{2^{8 m_{l}}}{m_{l}}<\frac{2^{8 m_{k}}}{m_{k}}  \tag{4}\\
\frac{2^{8 m_{k-1}}}{m_{k-1}}<\frac{2^{m_{k}}}{k m_{k}} \tag{5}
\end{gather*}
$$

We note that such an increasing sequence $\left\{m_{k}: k \in \mathbb{N}\right\}$ which satisfies condition (3)-(5) can be constructed. Let

$$
f^{(A, A)}(x, y):=\sum_{k, 2 m_{k}<A} \lambda_{k} a_{k}(x, y), \quad \text { where } \lambda_{k}:=\frac{1}{m_{k}}
$$

and

$$
a_{k}(x, y):=2^{2 m_{k}}\left(D_{2^{2 m_{k}+1}}(x)-D_{2^{2 m_{k}}}(x)\right)\left(D_{2^{2 m_{k}+1}}(y)-D_{2^{2 m_{k}}}(y)\right)
$$

The martingale $f:=\left(f^{(0,0)}, f^{(1,1)}, \ldots, f^{(A, A)}, \ldots\right) \in H_{2 / 3}^{\square}(G \times G)$. Indeed,

$$
\begin{gathered}
S_{2^{A}, 2^{A}} a_{k}(x, y)= \begin{cases}0, & \text { if } A \leq 2 m_{k}, \\
a_{k}(x, y), & \text { if } A>2 m_{k},\end{cases} \\
f^{(A, A)}(x)=\sum_{k, 2 m_{k}<A} \lambda_{k} a_{k}(x, y)=\sum_{k=0}^{\infty} \lambda_{k} S_{2^{A}, 2^{A}} a_{k}(x, y),
\end{gathered}
$$

from (3) and Theorem A we conclude that $f \in H_{2 / 3}^{\square}(G \times G)$.
Now, we investigate the Fourier coefficients. Since,

$$
\begin{aligned}
& \int_{G \times G} f^{(A)}(x, y) \kappa_{i}(x) \kappa_{j}(y) d \mu(x, y) \\
& = \begin{cases}0, & (i, j) \notin \bigcup_{k=0}^{\infty}\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \times\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \\
0, & (i, j) \in\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \times\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \\
& A=0,1, \ldots, 2 m_{k} \\
\frac{2^{2 m_{k}}}{m_{k}}, & (i, j) \in\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \times\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \\
& A>2 m_{k}\end{cases}
\end{aligned}
$$

we can write

$$
\begin{align*}
& \widehat{f}^{\kappa}(i, j) \\
& = \begin{cases}\frac{2^{2 m_{k}}}{m_{k}}, & (i, j) \in\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \times\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \\
0, & (i, j) \notin \bigcup_{k=1}^{\infty}\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \times\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} .\end{cases} \tag{6}
\end{align*}
$$

Set $q_{A, s}:=2^{2 A}+2^{2 s}$ for any $A>s$.

We decompose the $\left(q_{m_{k}, s}\right)$ th Marcinkiewicz-Fejér means as follows

$$
\begin{align*}
\mathcal{M}_{q_{m_{k}, s}}^{\kappa} f(x, y)= & \frac{1}{q_{m_{k}, s}} \sum_{j=1}^{q_{m_{k}, s}} S_{j, j}^{\kappa} f(x, y)=\frac{1}{q_{m_{k}, s}} \sum_{j=1}^{2^{2 m_{k}}-1} S_{j, j}^{\kappa} f(x, y) \\
& +\frac{1}{q_{m_{k}, s}} \sum_{j=2^{2 m_{k}}}^{q_{m_{k}, s}} S_{j, j}^{\kappa} f(x, y)=: I+I I . \tag{7}
\end{align*}
$$

Let $j \in\left\{0,1, \ldots, 2^{2 m_{k}}-1\right\}$ for some $k$. Then from (6) and (4), it is easy to show that

$$
\left|S_{j, j}^{\kappa} f(x, y)\right| \leq \sum_{l=0}^{k-1} \sum_{\nu=2^{2} m_{l}}^{2^{2 m_{l}+1}-1} \sum_{\mu=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1}\left|\widehat{f}^{\kappa}(\nu, \mu)\right| \leq \sum_{l=0}^{k-1} \frac{2^{8 m_{l}}}{m_{l}} \leq \frac{C 2^{m_{k}}}{k m_{k}} .
$$

Consequently, we have

$$
\begin{align*}
|I| & \leq \frac{1}{q_{m_{k}, s}} \sum_{j=1}^{2^{2 m_{k}-1}}\left|S_{j, j}^{\kappa} f(x, y)\right| \leq \frac{c}{q_{m_{k}, s}} \sum_{j=1}^{2^{2 m_{k}}-1} \frac{2^{m_{k}}}{k m_{k}} \\
& \leq \frac{c 2^{2 m_{k}}}{q_{m_{k}, s}} \frac{2^{m_{k}}}{k m_{k}} \leq \frac{c 2^{m_{k}}}{k m_{k}} . \tag{8}
\end{align*}
$$

Now, we discuss $I I$.
Let $i \in\left\{2^{2 m_{k}}, \ldots, q_{m_{k}}-1\right\}$. Then from (6) we have

$$
\begin{align*}
S_{i, i}^{\kappa} f(x, y)= & \sum_{\nu=0}^{i-1} \sum_{\mu=0}^{i-1} \widehat{f^{\kappa}}(\nu, \mu) \kappa_{\nu}(x) \kappa_{\mu}(y) \\
= & \sum_{l=0}^{k-1} \sum_{\nu=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1} \sum_{\mu=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1} \widehat{f}^{\kappa}(\nu, \mu) \kappa_{\nu}(x) \kappa_{\mu}(y) \\
& +\sum_{\nu=2^{2 m_{k}}}^{i-1} \sum_{\mu=2^{2 m_{k}}}^{i-1} \widehat{f}^{\kappa}(\nu, \mu) \kappa_{\nu}(x) \kappa_{\mu}(y) \\
= & \sum_{l=0}^{k-1} \frac{2^{2 m_{l}}}{m_{l}}\left(D_{2^{2 m_{l}}+1}(x)-D_{2^{2 m_{l}}}(x)\right)\left(D_{2^{2 m_{l}+1}}(y)-D_{2^{2 m_{l}}}(y)\right) \\
& +\frac{2^{2 m_{l}}}{m_{k}}\left(D_{i}^{\kappa}(x)-D_{2^{2 m_{k}}}(x)\right)\left(D_{i}^{\kappa}(y)-D_{2^{2 m_{k}}}(y)\right) \tag{9}
\end{align*}
$$

and

$$
\begin{aligned}
I I= & \frac{1}{q_{m_{k}, s}}\left(q_{m_{k}, s}-2^{2 m_{k}}+1\right) \sum_{l=0}^{k-1} \frac{2^{2 m_{l}}}{m_{l}} \\
& \times\left(D_{2^{2 m_{l}+1}}(x)-D_{2^{2 m_{l}}}(x)\right)\left(D_{2^{2 m_{l}+1}}(y)-D_{2^{2 m_{l}}}(y)\right) \\
& +\frac{1}{q_{m_{k}, s}} \frac{2^{2 m_{k}}}{m_{k}}\left(\sum_{i=2^{2 m_{k}}}^{q_{m_{k}}, s}\left(D_{i}^{\kappa}(x)-D_{2^{2 m_{k}}}(x)\right)\left(D_{i}^{\kappa}(y)-D_{2^{2 m_{k}}}(y)\right)\right)=: I I_{1}+I I_{2} .
\end{aligned}
$$

By (4), (5) and $\left|D_{2^{n}}(x)\right| \leq 2^{n}$, we get that

$$
\left|I I_{1}\right| \leq C \sum_{l=0}^{k-1} \frac{2^{8 m_{l}}}{m_{l}} \leq C \frac{2^{m_{k}}}{k m_{k}}
$$

and

$$
\left|\mathcal{M}_{q_{m_{k}, s}}^{\kappa} f(x, y)\right| \geq\left|I I_{2}\right|-\frac{C 2^{m_{k}}}{k m_{k}} .
$$

We can write the $n$th Dirichlet kernel with respect to the Walsh-Kaczmarz system in the following form:

$$
\begin{align*}
D_{n}^{\kappa}(x) & =D_{2^{|n|}}(x)+\sum_{k=2^{|n|}}^{n-1} r_{|k|}(x) w_{k-2^{|n|}}\left(\tau_{|k|}(x)\right) \\
& =D_{2^{|n|}}(x)+r_{|n|}(x) D_{n-2^{|n|}}^{w}\left(\tau_{|n|}(x)\right) . \tag{10}
\end{align*}
$$

By the help of this equation we immediately have for $I I_{2}$ that

$$
\begin{aligned}
I I_{2} & =\frac{2^{2 m_{k}}}{q_{m_{k}, s} m_{k}} r_{2 m_{k}}(x) r_{2 m_{k}}(y) \sum_{i=0}^{2^{2 s}} D_{i}^{w}\left(\tau_{2 m_{k}}(x)\right) D_{i}^{w}\left(\tau_{2 m_{k}}(y)\right) \\
& \left.=\frac{2^{2 m_{k}}}{q_{m_{k}, s} m_{k}} r_{2 m_{k}}(x) r_{2 m_{k}}(y) 2^{2 s} K_{2^{2 s}}^{w}\left(\tau_{2 m_{k}}(x)\right), \tau_{2 m_{k}}(y)\right)
\end{aligned}
$$

This implies

$$
\left.\left.\left|\mathcal{M}_{q_{m_{k}, s}}^{\kappa} f(x, y)\right| \geq \frac{2^{2 s}}{m_{k}} \right\rvert\, K_{2^{2 s}}^{w}\left(\tau_{2 m_{k}}(x)\right), \tau_{2 m_{k}}(y)\right) \left\lvert\,-\frac{C 2^{m_{k}}}{k m_{k}}\right.
$$

We decompose the set $G$ as the following disjoint union:

$$
G=I_{A} \cup \bigcup_{t=0}^{A-1} J_{t}^{A}
$$

where $A>t \geq 1$ and $J_{t}^{A}:=\left\{x \in G: x_{A-1}=\cdots=x_{A-t}=0, x_{A-t-1}=1\right\}$, $J_{0}^{A}:=\left\{x \in G: x_{A-1}=1\right\}$. Notice that, by the definition of $\tau_{A}$ we have $\tau_{A}\left(J_{t}^{A}\right)=I_{t} \backslash I_{t+1}$. By Corollary 2.4 in [5], for $(x, y) \in I_{A} \times I_{A}$

$$
\begin{equation*}
\mathcal{K}_{2^{A}}^{w}(x, y)=\frac{\left(2^{A}+1\right)\left(2^{A+1}+1\right)}{6} \tag{11}
\end{equation*}
$$

Therefore, for $k>C$ we write

$$
\begin{aligned}
\int_{G \times G}\left|\mathcal{M}^{\kappa *}\right|^{2 / 3} d \mu & \geq \sum_{t=1}^{2 m_{k}-1} \int_{J_{t}^{2 m_{k}} \times J_{t}^{2 m_{k}}}\left|\mathcal{M}^{\kappa *}\right|^{2 / 3} d \mu \\
& \geq \sum_{s=\left[\frac{m_{k}}{6}\right]+1}^{m_{k}-1} \int_{J_{2 s}^{2 m_{k}} \times J_{2 s}^{2 m_{k}}}\left|\mathcal{M}^{\kappa *}\right|^{2 / 3} d \mu \\
& \geq \sum_{s=\left[\frac{m_{k}}{6}\right]+1}^{m_{k}-1} \int_{J_{2 s}^{2 m_{k}} \times J_{2 s}^{2 m_{k}}}\left|\mathcal{M}_{q_{m_{k}, s}, s}\right|^{2 / 3} d \mu \\
& \geq \sum_{s=\left[\frac{m_{k}}{6}\right]+1}^{m_{k}-1} \int_{J_{2 s}^{2 m_{k}} \times J_{2 s}^{2 m_{k}}}\left(\frac{2^{2 s}}{m_{k}}\left|K_{2^{2 s}}^{w} \circ\left(\tau_{2 m_{k}} \times \tau_{2 m_{k}}\right)\right|-\frac{C 2^{m_{k}}}{k m_{k}}\right)^{2 / 3} d \mu \\
& \geq \sum_{s=\left[\frac{m_{k}}{6}\right]+1}^{m_{k}-1} \int_{\left(I_{2 s} \backslash I_{2 s+1}\right) \times\left(I_{2 s} \backslash I_{2 s+1}\right)}\left(\frac{2^{2 s}}{m_{k}}\left|K_{2^{2 s}}^{w}\right|-\frac{C 2^{m_{k}}}{k m_{k}}\right)^{2 / 3} d \mu
\end{aligned}
$$

and (11) gives

$$
\begin{aligned}
\int_{G \times G}\left|\mathcal{M}^{\kappa *}\right|^{2 / 3} d \mu & \geq \sum_{s=\left[\frac{m_{k}}{6}\right]+1}^{m_{k}-1} \int_{\left(I_{2 s} \backslash I_{2 s+1}\right) \times\left(I_{2 s} \backslash I_{2 s+1}\right)}\left|\frac{2^{6 s}}{m_{k}}-\frac{C 2^{m_{k}}}{k m_{k}}\right|^{2 / 3} d \mu \\
& \geq c \sum_{s=\left[\frac{m_{k}}{6}\right]+1}^{m_{k}-1} \int_{\left(I_{2 s} \backslash I_{2 s+1}\right) \times\left(I_{2 s} \backslash I_{2 s+1}\right)}\left(\frac{2^{6 s}}{m_{k}}\right)^{2 / 3} d \mu \\
& \geq c \sum_{s=\left[\frac{m_{k}}{6}\right]+1}^{m_{k}-1} \frac{2^{4 s}}{m_{k}^{2 / 3}} 2^{-4 s} \geq c m_{k}^{1 / 3} \rightarrow \infty \text { as } k \rightarrow \infty .
\end{aligned}
$$

This completes the proof of the main theorem.

## References

[1] G. GÁt, On $(C, 1)$ summability of integrable functions with respect to the Walsh-Kaczmarz system, Studia Math. 130 (1998), 135-148.
[2] G. Gát, U. Goginava and K. Nagy, On the Marcinkiewicz-Fejér means of double Fourier series with respect to the Walsh-Kaczmarz system, Studia Sci. Math. Hung. (2009), (to appear).
[3] U. Goginava and K. Nagy, On the Marcinkiewicz-Fejér means of double Walsh-Kacz-marz-Fourier series, Math. Pannonica 19/1 (2008), 49-56.
[4] U. Goginava, The maximal operator of the Marcinkiewicz-Fejér means of the $d$-dimensional Walsh-Fourier series, East J. Approx. 12, no. 3 (2006), 295-302.
[5] K. Nagy, Some convergence properties of the Walsh-Kaczmarz system with respect to the Marcinkiewicz means, Rendiconti del Circolo Matematico di Palermo, Serie II. Suppl. 76 (2005), 503-516.
[6] K. Nagy, On the two-dimensional Marcinkiewicz means with respect to Walsh-Kaczmarz system, J. Approx. Theory 142 (2006), 138-165.
[7] J. Marcinkiewicz, Sur une methode remarquable de sommation des series doubles de Fourier, Ann. Scuola Norm. Sup. Pisa 8 (1939), 149-160.
[8] F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol - New York, 1990.
[9] F. Schipp, Pointwise convergence of expansions with respect to certain product systems, Analysis Math. 2 (1976), 63-75.
[10] P. Simon, On the Cesàro summability with respect to the Walsh-Kaczmarz system, J. Approx. Theory 106 (2000), 249-261.
[11] V. A. Skvortsov, On Fourier series with respect to the Walsh-Kaczmarz system, Anal. Math. 7 (1981), 141-150.
[12] W. S. Young, On the a.e. convergence of Walsh-Kaczmarz-Fourier series, Proc. Amer. Math. Soc. 44 (1974), 353-358.
[13] F. Weisz, Convergence of double Walsh-Fourier series and Hardy spaces, Approx. Theory and its Appl. 17 (2001), 32-44.
[14] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Springer-Verlang, Berlin, 1994.
[15] F. Weisz, Summability of Multi-Dimensional Fourier Series and Hardy Space, Kluwer Academic, Dordrecht, 2002.
[16] L. V. Zhizhiashvili, Generalization of a theorem of Marcinkiewicz, Izv. Akad. Nauk USSR Ser Math. 32 (1968), 1112-1122.

USHANGI GOGINAVA
Institute of mathematics
FACULTY OF EXACT AND NATURAL SCIENCES
TBILISI STATE UNIVERSITY
CHAVCHAVADZE STR. 1, TBILISI 0128
GEORGIA
E-mail: z_goginava@hotmail.com
KÁROLY NAGY
InSTITUTE OF MATHEMATICS AND COMPUTER SCIENCES
COLLEGE OF NYÍREGYHÁZA
H-4400, NYÍREGYHÁZA, P.O. BOX 166
HUNGARY
E-mail: nkaroly@nyf.hu
(Received December 11, 2008; revised June 21, 2009)


[^0]:    Mathematics Subject Classification: 42C10.
    Key words and phrases: Walsh-Kaczmarz system, Fejér means, Marcinkiewicz means, maximal operator.
    The first author is supported by the Georgian National Foundation for Scientific Research, grant no GNSF/ST07/3-171.

