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On the maximal operator of the Marcinkiewicz–Fejér means

of double Walsh–Kaczmarz-Fourier series

By USHANGI GOGINAVA (Tbilisi) and KÁROLY NAGY (Nýıregyháza)

Dedicated to Professor Zoltán Daróczy on the occasion of his seventieth birthday

Abstract. In the paper [3] we proved that the maximal operator of the Marcinki-

ewicz–Fejér means of the 2-dimensional Fourier series with respect to the Walsh–Kacz-

marz system is not bounded from the Hardy space H2/3 to the space L2/3.

Now, in this paper we prove a stronger result, that is there exists a martingale

f ∈ H2/3 such that the maximal Marcinkiewicz–Fejér operator with respect to Walsh–

Kaczmarz system does not belong to the space L2/3.

First, we give a brief introduction to the theory of dyadic analysis [8]. Let P

denote the set of positive integers, N := P ∪ {0}. Denote Z2 the discrete cyclic

group of order 2, that is Z2 = {0, 1}, where the group operation is the modulo 2

addition and every subset is open. The Haar measure on Z2 is given such that

the measure of a singleton is 1/2 . Let G be the complete direct product of the

countable infinite copies of the compact groups Z2. The elements of G are of the

form x = (x0, x1, . . . , xk, . . . ) with xk ∈ {0, 1} (k ∈ N). The group operation on G

is the coordinate-wise addition, the measure (denote by µ) and the topology are

the product measure and topology. The compact Abelian group G is called the

Walsh group. A base for the neighborhoods of G can be given in the following
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way:

I0(x) := G,

In(x) := In(x0, . . . , xn−1) := {y ∈ G : y = (x0, . . . , xn−1, yn, yn+1, . . . )},

(x ∈ G, n ∈ N). These sets are called dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G

denote the null element of G, In :=In(0) (n∈N). Set en := (0, . . . , 0, 1, 0, . . . ) ∈ G,

the nth coordinate of which is 1 and the rest are zeros (n ∈ N).

For k ∈ N and x ∈ G denote

rk(x) := (−1)xk

the kth Rademacher function. If n ∈ N, then n =
∑∞

i=0 ni2
i, where ni ∈ {0, 1}

(i ∈ N), i.e. n is expressed in the number system of base 2. Denote |n| := max{j ∈

N : nj 6= 0}, that is 2|n| ≤ n < 2|n|+1.

The Walsh–Paley system is defined as the sequence of Walsh–Paley functions:

wn(x) :=

∞∏

k=0

(rk(x))nk = r|n|(x)(−1)

|n|−1P
k=0

nkxk

(x ∈ G, n ∈ P).

The Walsh–Kaczmarz functions are defined by κ0 := 1 and for n ≥ 1

κn(x) := r|n|(x)

|n|−1∏

k=0

(r|n|−1−k(x))nk = r|n|(x)(−1)

|n|−1P
k=0

nkx|n|−k−1

.

For A ∈ N define the transformation τA : G → G by

τA(x) := (xA−1, xA−2, . . . , x0, xA, xA+1, . . . ).

By the definition of τA (see [11]), we have

κn(x) = r|n|(x)wn−2|n|(τ|n|(x)) (n ∈ N, x ∈ G).

The space Lp(G
2), 0 < p ≤ ∞ with norms or quasi-norms ‖ · ‖p is defined in

the usual way.

The Dirichlet kernels are defined by

Dα
n(x) :=

n−1∑

k=0

αk(x),
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where αk = wk or κk. Recall that (see e.g. [8])

D2n(x) := Dw
2n(x) = Dκ

2n(x) =

{
2n, if x ∈ In(0),

0, if x /∈ In(0).
(1)

The two-dimensional dyadic cubes are of the form

In,n(x, y) := In(x) × In(y).

The σ-algebra generated by the dyadic rectangles {In,n(x, y) : (x, y) ∈ G×G}

is denoted by Fn,n.

Denote by f = (f (n,n), n ∈ N) a martingale with respect to (Fn,n, n ∈ N)

(for details see, e.g. [15]). The maximal function of a martingale f is defined by

f� = sup
n∈N

|f (n,n)|.

In case f ∈ L1(G × G), the maximal function can also be given by

f�(x, y) = sup
n∈N

1

µ(In,n(x, y))

∣∣∣∣
∫

In,n(x,y)

f(u, v)dµ(u, v)

∣∣∣∣, (x, y) ∈ G × G.

For 0 < p < ∞ the Hardy martingale space H�
p (G × G) consists of all

martingales for which

‖f‖Hp := ‖f�‖p < ∞.

The Kroneker product (αm,n : n, m ∈ N) of two Walsh(–Kaczmarz) system

is said to be the two-dimensional Walsh(–Kaczmarz) system. Thus,

αm,n(x, y) = αn(x)αm(y).

If f ∈ L1(G
2), then the number f̂α(n, m) :=

∫
G2 fαm,n (n, m ∈ N) is said to

be the (n, m)th Walsh–(Kaczmarz)–Fourier coefficient of f. We can extend this

definition to martingales in the usual way (see Weisz [14], [15]).

Denote by Sα
n,m the (n,m)th rectangular partial sum of the Walsh–(Kaczmarz)

–Fourier series of a martingale f . Namely,

Sα
n,m(f ; x, y) :=

n−1∑

k=0

m−1∑

i=0

f̂α(k, i)αk,i(x, y).

The Marcinkiewicz–Fejér means of a martingale f are defined by

Mα
n(f ; x, y) :=

1

n

n∑

k=0

Sα
k,k(f, x, y).
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The 2-dimensional Dirichlet kernels and Marcinkiewicz–Fejér kernels are de-

fined by

Dα
k,l(x, y) := Dα

k (x)Dα
l (y), Kα

n (x, y) :=
1

n

n∑

k=0

Dα
k,k(x, y).

For the martingale f we consider the maximal operator

Mκ∗f(x, y) = sup
n

|Mκ
n(f, x, y)|.

A bounded measurable function a is a p-atom, if there exists a dyadic 2-

dimensional cube I × I, such that

a)
∫

I×I adµ = 0;

b) ‖a‖∞ ≤ µ(I × I)−1/p;

c) supp a ⊂ I × I.

The basic result of atomic decomposition is the following one.

Theorem A (Weisz [15]). A martingale f = (f (n,n) : n ∈ N) is in H�
p

(0 < p ≤ 1) if and only if there exists a sequence (ak, k ∈ N) of p-atoms and a

sequence (µk, k ∈ N) of real numbers such that for every n ∈ N,

∞∑

k=0

µkS2n,2nak = f (n,n),
∞∑

k=0

|µk|
p < ∞. (2)

Moreover,

‖f‖H�
p
∼ inf

( ∞∑

k=0

|µk|
p

)1/p

.

In 1939 for the two-dimensional trigonometric Fourier series Marcinkiewicz

[7] has proved for f ∈ L logL([0, 2π]2) that the means

Mnf =
1

n

n−1∑

j=1

Sj,j(f)

converge a.e. to f as n → ∞. Zhizhiashvili [16] improved this result for f ∈

L([0, 2π]2).

For the two-dimensional Walsh–Fourier series Weisz [13] proved that the

maximal operator

Mw∗f = sup
n≥1

1

n

∣∣∣∣∣

n−1∑

j=0

Sw
j,j(f)

∣∣∣∣∣
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is bounded from the two-dimensional dyadic martingale Hardy space Hp to the

space Lp for p > 2/3 and is of weak type (1, 1). The first author [4] proved that

the assumption p > 2/3 is essential for the boundedness of the maximal operator

Mw∗ from the Hardy space Hp(G
2) to the space Lp(G

2).

In 1974 Schipp [9] and Young [12] proved that the Walsh–Kaczmarz sys-

tem is a convergence system. Gát [1] proved, for any integrable functions, that

the Fejér means with respect to the Walsh–Kaczmarz system converge almost

everywhere to the function itself. Gát’s Theorem was extended by Simon [10] to

Hp spaces, namely that the maximal operator of Fejér means of one-dimensional

Fourier series is bounded from Hardy space Hp(G
2) into the space Lp(G

2) for

p > 1/2.

The second author [6] proved, that for any integrable functions, the Marcinki-

ewicz–Fejér means with respect to the two dimensional Walsh–Kaczmarz system

converge almost everywhere to the function itself. This Theorem was extended

in [2]. Namely, the following is true:

Theorem B. Let p > 2/3, then the maximal operator Mκ∗ of the Marcinki-

ewicz–Fejér means of double Walsh–Kaczmarz-Fourier series is bounded from the

Hardy space Hp(G
2) to the space Lp(G

2).

In the paper [3] it was proved that the assumption p > 2/3 is essential for

the boundedness of the maximal operator Mκ∗ from the Hardy space Hp(G
2) to

the space Lp(G
2). Namely,

Theorem C. The maximal operator Mκ∗ of the Marcinkiewicz–Fejér means

of double Walsh–Kaczmarz-Fourier series is not bounded from the Hardy space

H2/3(G
2) to the space L2/3(G

2).

We will prove a stronger theorem than Theorem C.

Theorem 1. There exists a martingale f ∈ H2/3(G × G) such that

|Mκ,∗f‖L2/3
= +∞.

Proof. Let {mk : k ∈ N} be an increasing sequence of positive integers such

that
∞∑

k=0

1

m
2/3
k

< ∞, (3)

k−1∑

l=0

28ml

ml
<

28mk

mk
, (4)

28mk−1

mk−1
<

2mk

kmk
. (5)
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We note that such an increasing sequence {mk : k ∈ N} which satisfies condition

(3)–(5) can be constructed. Let

f (A,A)(x, y) :=
∑

k,2mk<A

λkak(x, y), where λk :=
1

mk

and

ak(x, y) := 22mk(D22mk+1(x) − D22mk (x))(D22mk+1(y) − D22mk (y)).

The martingale f := (f (0,0), f (1,1), . . . , f (A,A), . . . ) ∈ H�

2/3(G × G). Indeed,

S2A,2Aak(x, y) =

{
0, if A ≤ 2mk,

ak(x, y), if A > 2mk,

f (A,A)(x) =
∑

k,2mk<A

λkak(x, y) =
∞∑

k=0

λkS2A,2Aak(x, y),

from (3) and Theorem A we conclude that f ∈ H�

2/3(G × G).

Now, we investigate the Fourier coefficients. Since,

∫

G×G

f (A)(x, y)κi(x)κj(y)dµ(x, y)

=






0, (i, j) /∈
∞⋃

k=0

{22mk , . . . , 22mk+1 − 1} × {22mk , . . . , 22mk+1 − 1},

0, (i, j) ∈ {22mk , . . . , 22mk+1 − 1} × {22mk , . . . , 22mk+1 − 1},

A = 0, 1, . . . , 2mk,

22mk

mk
, (i, j) ∈ {22mk , . . . , 22mk+1 − 1} × {22mk , . . . , 22mk+1 − 1},

A > 2mk,

we can write

f̂κ(i, j)

=






22mk

mk
, (i, j) ∈ {22mk , . . . , 22mk+1 − 1} × {22mk , . . . , 22mk+1 − 1},

0, (i, j) /∈
∞⋃

k=1

{22mk , . . . , 22mk+1 − 1} × {22mk , . . . , 22mk+1 − 1}.
(6)

Set qA,s := 22A + 22s for any A > s.



On the maximal operator of Marcinkiewicz–Fejér means of. . . 101

We decompose the (qmk,s)th Marcinkiewicz–Fejér means as follows

Mκ
qmk,s

f(x, y) =
1

qmk,s

qmk,s∑

j=1

Sκ
j,jf(x, y) =

1

qmk,s

22mk−1∑

j=1

Sκ
j,jf(x, y)

+
1

qmk,s

qmk,s∑

j=22mk

Sκ
j,jf(x, y) =: I + II. (7)

Let j ∈ {0, 1, . . . , 22mk − 1} for some k. Then from (6) and (4), it is easy to

show that

|Sκ
j,jf(x, y)| ≤

k−1∑

l=0

22ml+1−1∑

ν=22ml

22ml+1−1∑

µ=22ml

|f̂κ(ν, µ)| ≤

k−1∑

l=0

28ml

ml
≤

C2mk

kmk
.

Consequently, we have

|I| ≤
1

qmk,s

22mk−1∑

j=1

|Sκ
j,jf(x, y)| ≤

c

qmk,s

22mk−1∑

j=1

2mk

kmk

≤
c22mk

qmk,s

2mk

kmk
≤

c2mk

kmk
. (8)

Now, we discuss II.

Let i ∈ {22mk , . . . , qmk
− 1}. Then from (6) we have

Sκ
i,if (x, y) =

i−1∑

ν=0

i−1∑

µ=0

f̂κ(ν, µ)κν(x)κµ(y)

=

k−1∑

l=0

22ml+1−1∑

ν=22ml

22ml+1−1∑

µ=22ml

f̂κ(ν, µ)κν(x)κµ(y)

+

i−1∑

ν=22mk

i−1∑

µ=22mk

f̂κ (ν, µ)κν(x)κµ(y)

=

k−1∑

l=0

22ml

ml
(D22ml+1(x) − D22ml (x))(D22ml

+1(y) − D22ml
(y))

+
22mk

mk
(Dκ

i (x) − D22mk
(x))(Dκ

i (y) − D22mk
(y)) (9)
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and

II =
1

qmk,s
(qmk,s − 22mk + 1)

k−1∑

l=0

22ml

ml

× (D22ml+1(x) − D22ml (x))(D22ml+1(y) − D22ml (y))

+
1

qmk,s

22mk

mk

( qmk,s∑

i=22mk

(Dκ
i (x) − D22mk (x))(Dκ

i (y) − D22mk (y))

)
=: II1+II2.

By (4), (5) and |D2n(x)| ≤ 2n, we get that

|II1| ≤ C
k−1∑

l=0

28ml

ml
≤ C

2mk

kmk

and

|Mκ
qmk,s

f(x, y)| ≥ |II2| −
C2mk

kmk
.

We can write the nth Dirichlet kernel with respect to the Walsh–Kaczmarz

system in the following form:

Dκ
n(x) = D2|n|(x) +

n−1∑

k=2|n|

r|k|(x)wk−2|n| (τ|k|(x))

= D2|n|(x) + r|n|(x)Dw
n−2|n|(τ|n|(x)). (10)

By the help of this equation we immediately have for II2 that

II2 =
22mk

qmk,smk
r2mk

(x)r2mk
(y)

22s∑

i=0

Dw
i (τ2mk

(x))Dw
i (τ2mk

(y))

=
22mk

qmk,smk
r2mk

(x)r2mk
(y)22sKw

22s(τ2mk
(x)), τ2mk

(y)).

This implies

|Mκ
qmk,s

f(x, y)| ≥
22s

mk
|Kw

22s(τ2mk
(x)), τ2mk

(y))| −
C2mk

kmk
.

We decompose the set G as the following disjoint union:

G = IA ∪
A−1⋃

t=0

JA
t ,
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where A > t ≥ 1 and JA
t := {x ∈ G : xA−1 = · · · = xA−t = 0, xA−t−1 = 1},

JA
0 := {x ∈ G : xA−1 = 1}. Notice that, by the definition of τA we have

τA(JA
t ) = It\It+1. By Corollary 2.4 in [5], for (x, y) ∈ IA × IA

Kw
2A(x, y) =

(2A + 1)(2A+1 + 1)

6
. (11)

Therefore, for k > C we write

∫

G×G

|Mκ∗|2/3dµ ≥

2mk−1∑

t=1

∫

J
2mk
t ×J

2mk
t

|Mκ∗|2/3dµ

≥

mk−1∑

s=[
mk
6

]+1

∫

J
2mk
2s ×J

2mk
2s

|Mκ∗|2/3dµ

≥

mk−1∑

s=[
mk
6

]+1

∫

J
2mk
2s ×J

2mk
2s

|Mκ
qmk,s

|2/3dµ

≥

mk−1∑

s=[
mk
6

]+1

∫

J
2mk
2s ×J

2mk
2s

(
22s

mk
|Kw

22s ◦ (τ2mk
× τ2mk

)|−
C2mk

kmk

)2/3

dµ

≥

mk−1∑

s=[
mk
6

]+1

∫

(I2s\I2s+1)×(I2s\I2s+1)

(
22s

mk
|Kw

22s | −
C2mk

kmk

)2/3

dµ,

and (11) gives

∫

G×G

|Mκ∗|2/3dµ ≥

mk−1∑

s=[
mk
6

]+1

∫

(I2s\I2s+1)×(I2s\I2s+1)

∣∣∣∣
26s

mk
−

C2mk

kmk

∣∣∣∣
2/3

dµ

≥ c

mk−1∑

s=[
mk
6

]+1

∫

(I2s\I2s+1)×(I2s\I2s+1)

(
26s

mk

)2/3

dµ

≥ c

mk−1∑

s=[
mk
6

]+1

24s

m
2/3
k

2−4s ≥ cm
1/3
k → ∞ as k → ∞.

This completes the proof of the main theorem. �
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