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On a quantitative form of Wirsing’s mean-value theorem
for multiplicative functions

By KARL-HEINZ INDLEKOFER (Paderborn)

Dedicated to Professor Zoltan Dardczy on the occasion of his 70th birthday

Abstract. In this paper, the author applies the convolution arithmetic to the
investigation of the summatory function of arithmetical functions. Mean value theorems
with remainder term estimation are proved for real-valued multiplicative functions of

modulus< 1.

1. Introduction

In some recent papers we investigated inequalities of the form

F(s) — Az((s)

S

log p
1
p (1)

2 3
dt | +0( 14> 1f(p) -1

p<z

1 /°°
logx J_

(5 =1+ b%gm +it), where A, is a complex constant, f can be chosen either as von
Mangoldt’s function A or as a completely multiplicative function of modulus < 1,
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and F' and ¢ denote the generating function of f, defined by

P=3 1"

n>1

and the Riemann ¢ -function, respectively. We used the estimate (1) to prove
the prime number theorem and the theorem of Haldsz in the case of completely
multiplicative functions f, |f| < 1. (The assertion for arbitrary multiplicative
functions of modulus < 1 follows then by well-known convolution arguments.)
The proof of the result can be split into two parts. The first one is contained in

Proposition 1 ([13]). Assume that f is completely multiplicative with
|f| <1 and A, € C. Then if we put M(x) =3, . (f(n) — Az),

<
T log = u?

1 1 1
+0<|Am|10ng|f(p) .t °§p> +0(12s)

p<z

Ml L[ Dl

for all © > xg.

For the second part we used Schwarz’s inequality and Parseval’s formula

(Re s=0>1)
N

1 TIM e
[, (1|
logz J, u? log x s

— 00

2

dt:27r/ |M(e®)e 7 |* duw (2)
0

1
2 3
dt)

to prove

where M(z) =3, ., f(n),s=1+ L+ it and

log

F(s) = Z fé’sl)

is absolutely convergent for Res > 1.
The aim of this paper is to prove Proposition 1 for arbitrary multiplicative
functions f with |f| < 1, and to apply this result to a quantitative proof of
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Wirsing’s theorem that a real-valued multiplicative function f with values —1 <
f(n) <1 (n € N) has a mean-value, i.e.

n<x

exists. For example, if the series

diverges we show

< exp(—czl_f(p)> (4)

. 1
with ¢ = E-

Remark 1. The existence of such a constant c is contained in HALASZ’s result

[3] (see P. D. T. A. ELLIOTT [2], chapter 19, where the estimates of Haldsz are
described and refined).

In 1986 A. HILDEBRAND [7] showed

<(xH)

p<z

> f(n)

n<z

1
T

His proof uses the prime number theorem with logarithmic error term.

R. R. HALL and G. TENENBAUM [5] proved (4) with the optimal constant
¢ = 0,32867... but they made use of the prime number theorem in the form
m(x) =liz+ O (ac exp ( — 2\/10@)) whereas our proof uses only Selberg’s sym-
metry formula and very elementary properties of the (-function on s = o + it for
o> 1.

Theorem 1. Let f : N — C be multiplicative with |f| < 1 and let A, € C.
Put M(z) =3, -, (f(n) — Az). Then, for x > 3,

Ml 2 [ MG,
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For 3 < u < z we define HO(@) and H; (@) by

1 oo

H? =
0 <logu> /,Oo
1 oo

H? =
! <logu> /,Oo

respectively. Then we formulate

2
dt (6)

F(1+ 1oéu + it)
14 o +it

and )
F'(1+ kéu + it)
1+ 1oéu + it

(7)

Theorem 2. Let f :— C such that F(s) = Y .- f(n)n™% converges ab-
solutely for Res = o > 1. Then the following three assertions hold for x > 3.

(i) [ %#du < Hy (@) (log )

(ii) /: |Mu(2u)|du < H (10;)

T 1

[N

u2 1 yl/2
2log x

Remark 2. An appropriate choice of A, depends on the behaviour of the sum

Z 1_Re§mp_w (a € R), (8)

namely, we define

o 11 <1 - 1> (1+ io: f(p)k> pfk(1+ia0) if (8) converges
b k=1

1+1dag p<q for some a = ag,

A=

0 if (8) diverges

for all a € R.
(see [13]). Here we consider only real-valued functions f and distinguish the cases
where > (1— f (p))p~! converges or diverges, respectively. This ends Remark 2.
As an immediate consequence of Theorem 1 and Theorem 2 we have

Corollary 1. Let M be given as in Theorem 1 with A, = 0. Then the
following assertions are equivalent.

(i) lim 271 M(z) =0
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o e [M ()]
(ii) Jim gz IA 5

(ifi) lim ! N [ M ()]

z—oo log x

du =0

u

" du=0

(iv) lim (0—1)f00‘ "*”‘ dt =0

o—1t otit

dt = 0.

(v) lim (o —1)3[° oo’ (oin)|*

o—1+ otit

In the case of real-valued f we obtain a quantitative version of Wirsing’s
theorem. If the series > (1 — f(p))p~* converges we can define a function &g (z)
tending to zero as x tends to infinity such that if y(x) = xd0()

L) ), (10)
y(z)<p<w p

For, assume

Z 1= /) _;(p) =c—e(x)

where £(z) \, 0 as  — oco. Then, choose §;(z) > 0 such that

1- [ 1
Zz‘f(p)logploga:<5(x)+logm/2 g(q?)dquO(lng)) < d1(z)logx

p<z

and d1(x) = o(1) (z — o0). Putting do(x) = ((51(37))% and y(z) = 2% gives

EE: 1 _'f(p) .IOg])‘< 61($) =:6o<$)

vaee P logp T do(@)

which proves (10).
With these notations we formulate the following

Theorem 3. Let f : N — R be multiplicative and —1 < f(n) <1 for every
n € N.

(i) If
1-flp) | _
Ig ’ oo (x— 00)
then
é Z f(n) < exp ( Z 1) — 1)
n<z p<z

as r — 0Q.
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(ii) If
1—
Zﬂ =c—e(z) (z— o)

p<z p
then
% Z f(n) = H <1 + i f;]ﬁp) (1 _ 11)) 10 <(5O(x))1/18>
n<w p<z k=1

2. Proof of Theorem 1

Remark 3. In the following we use the convolution arithmetic for functions
from
S={f:R—=C, f(z)=0forz <1},

which coincides with the Dirichlet convolution for the class
A:={feS8: f(x) =0 for z ¢ N}.
of arithmetical functions.
So, for f,g € S, the convolution f % g in S is defined by

(Frg)@) = Y f(5)en

1<n<z

The “action” of this definition on functions of A is given by the following: if
feA geSthen fxge Aand forneN,

(f + 9)(n }jf( ) g(d

In general the binary operation * is not commutative in S, but if f,g € A

then fxg=gx*f.
Consider the function ¢ defined by

1 forx=1,
e(x) =
0 otherwise.
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Clearly € € A, and
fxe=f for fes

and
f(z) ifzxeN,
(ex f(z) = for f €. (11)
0 otherwise
Thus € serves as a right identity under convolution for all of S, but is a left
identity only in .A.
The relation (11) suggests that for each f € S we define an image fy € A by

fo=¢exf for feS.
The Mobius function p is defined by
loxpu=e,
where 1g =e* 1 and 1 € S with

1 forz>1,
1(z) =
0 otherwise.

The well-known Mo6bius inversion formula says that if f,g € S then f = gx1
if and only if g = f * .

Let L € S denote the logarithm function. Then obviously L acts as a deriva-
tion on S, that is

L-(fxg)=(L-f)*g+f*(L-g) forall fg€S.
Further, we introduce the von Mangoldt function A € A by

E*L:LOZA*lo,
ie.

A:Lo*ﬂ

This ends Remark 3.

Now, let f be multiplicative and |f| < 1. We define a completely multiplica-
tive function f by f(p) = f(p) for all primes p.

Then f = h x f where the multiplicative function h is given by

0 ifk=1
h(p*) = _ (12)
f") = f)fp*1) itk >2.
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This definition corresponds to the equations

F(s) = H(9)F(e) = 3 M0 5~ I
and n>1 n>1
0 k ) k -1
Fis) =] (HZ f;ff) =11 <1+Z hfﬁiﬁ) 11 (1— ff)) - (13
p k=1 p k=2 P

Now, let M(z) =3, ., (f(n) — A) with some constant A = A4, € C, i.e.

Then

Putting Ry = L = (f — A 1) leads to

LMZI*LO(ffA].o)‘FRl. (14)
Since

Lof = Loh* f + h* Lof = Loh* f + hx (Af x f) = Loh+ f + fx Af

we conclude
1xLof=1xf)*xAf+ Ry

where, because of (12)

Ry = O(x > nth(n)| logn> =O(x).

n<zx
Observing A = Af—l—A(lO — f) gives
1 Lo(f —Alg) =1# f* Af — AL x 1o+ Af) — A(1x 1o+ A(1o — f)) + Ro
= MxAf—A(1x1g) «A(1g — f) + Ro. (15)

Collecting (14) and (15) shows

LM =M% Af+ Ry + Ry + R (16)
with
Ri(z) = O(z), Ra(z)=0(x)



On a quantitative form of Wirsing’s mean-value theorem. .. 113

and
|R3| < |A|(1%1g%Al1o — f]).

We multiply (16) with L and obtain
L*M = (LM % Af) + M  LoAf + L(Ry + Ro + Ry). (17)
Then, by substituting (16) in (17) we arrive at

L2M:(M*Af+R1+R2+R3)*Af+M*LOAf+L(R1+R2+R3)
— M« (Af % Af + Lo AJ) + Ry (18)

where

Ra(z) = O(zlog z) + o( (logz)|4] Y 2= logp - |)

p<zx
since ) .
|Rs + Af| < A|(L%10) x (A* AL — f]).

Thus by (18), since |f| <1

|M (z)|log® x < Z ‘M (%)‘ {(AxA)(n)+ A(n)logn}

n<x

+ O(x|A;)(log ) Z loip ’1 - f(p)‘ + O(zlog z).

p<z

Selberg’s formula

Z (AxA)(n) + Z A(n)logn = 2zlogz + O(x)

n<z n<zx

and partial summation (see, for example, Lemma 3.1 of [12]) yield the assertion
of Theorem 1.

3. Proof of Theorem 2

Observing

/j \Mu(Qu)lduS </11 Wdu>é (/f duu>;
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shows

|MJE$)| < ( 1 /1” IM(U)Qqu. (19)

log ud

Since 1 < u?/1°8x <2 for 1 < u < z we get

/r M@, /I M) /°° M)*

US u3+2a u3+2a

where a = ﬁ Substituting u = e* and using Parseval’s Formula (2) gives
2T

o [ < ([ de)é: <2l7r NS 2d5>% (20)

where s =1+ @ + it. This gives (i).
Putting K(u) = >_, -, f(n)logn partial summation shows that for u > 3

K(u) [*_ K@)
M = 21
() logu +/2 t(logt)? dt (21)
so that
© M {(w)| /z | K (u))| /t (K ()] /x du
A g, < -
/1 u? du < 9 u210gudu+ o t(logt)? Jy u2dt
1 © K (u)
<1 du. 22
- ( Jr10g2)/2 u?logu " (22)
Observing

/: mciu< </: Wd“)é (/Qwulj;u); )

we arrive in the same way as above at
5 1/2
ds) (24)

x oS /2 00 ’
| M ()] [K(e)? N (1 F'(s)
(] ) = (oS

where s =1+ loéx + ¢t. This proves (ii).
For the proof of inequality (iii) we modify the estimate of the integral on the

left hand side in (23) and arrive at

2 2
YK YK “od ¥ od v K
[P Oy L T T U
5 u?logu 5 u?logu J, wvlogw 5 wvlogv J,1/2 u?logu
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2
* d YK (u
«f “2/|<>'du
2 wlog®v u?

The last integral we estimate as in (i) by

/ L((;L)|dU<< (1ogv)1/2H1< L >
9y U logv

which yields

2
“ K (u) /x 1/2 1 dv
———d I g .
/2 Plogu u < ; (logv) 1 logv ) vlog? 0

Substituting y = - gives assertion (iii).

4. Some lemmas

115

Lemma 1. Let f be a nonnegative multiplicative function, 0 < f < 1. Then

n<x p<lx

PrOOF. Put M =1 f. Then

LM =1xLof+Lxf
which leads to

_1Zf <<exp<zf ) for all z > 2.

log z M (x Zf logn+0<210g z> = Zf(n) Z log p® + O(x)

n<z n<x n<z p|n
= logp* > f(n O(x)
pe<z nﬁp—a
pin
S ) Y g + 00 (z )
n<x pe<E <
Since
Z (n) H( f(p) ...><<exp<
n<z p<z p<z

the assertation of Lemma 2 follows immediately.

f)
p

)
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From the representation (13) we deduce

Fes) (s dm-1
o = p<z o+ ()) (25)

where w(s) is holomorphic in a neighbourhood of s = 1 so that there w(s)—w(1) =
O(|s — 1|). For general values F'(s) we prove

Lemma 2. Forallte R ando >1

=

(o + it)] < (C(0))¥ (o +2it)| 7. (26)
PRrROOF. We have

4 (1~ f(p)Rep™) > 4 (1 — [Re p™*|) > 1 — Rep*"

since

1 —TRe(z122) <2(1 —Rez1) +2(1 —Rezo)

holds for all complex numbers z1, zo with |z1] < 1, |22] < 1.

Observing
f(p)Rep™™ Rep™"
[F(s)| =< exp | > ()70 and [¢(s)| < exp | Y —
p b P
we obtain the inequality (26). O

Lemma 3. Let s = o +it. Then

HOIRS

if [t| <3
T |t <

and
IC(s)] < log|t| if|t| >3

uniformly in o > 1.

ProOF. Partial summation shows

s =y 1 Flu—u

uS

which obviously implies ((s) = O(‘sil‘) for |t| < 3.
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In the same manner we conclude for every ¢ > 1 and positive integer N

s Nl—s 0 _
C(s)—Zn =51 +8/ [uu]Tludu.

N

Hence

N
1 * du
< E i E—— -
|<(S)| —n:1n + |S—1| +|S| N ulto
1 |s| im0
| 1 + — N7 + constant
s — o

<log N +
and the desired result is obtained by choosing N suitably. O

We may assume that f(p) = 1 if p > z since these values do not influence
the sum Y __ f(n). Then, choosing

A, = exp (Z f(p;l + w(l)) (27)

n<z

we obtain from (25)

F(s) _ (Lot .
Axas)—ep(zuuo) D(5-2)+ol 1|)> (28)

p<z

if o > 1.
Lemma 4. Let s =1+ @ +4t. Then

S 1) -1 ;—;\<<log<2+|s—1|1ogx> (20)
and, if y(x) = .’1,‘60(;)
S i) - 1) pl—;] < log (2 + 80(x)(s — 1) log) (30)

p<y(z)
PrOOF. We put a = exp (ﬁ) and get

>

p<a

PP P

1 1 1 lo
‘ =3 S —exp((1-s)logp)| < YL — s 2P <1 (31)
< < p
p=>a pla
For those primes p in the range a < p < z, if there are any, we estimate

crudely, and then

>

a<p<lz

1 1 1 log x
E _ p‘ <2 Z ~ =log Toga +0(1) <« log(2+ |s — 1|log x)

a<p<lzx

which proves (29). Then the upper bound (30) is obvious. O
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5. Proof of Theorem 3

For the proof of assertion (i) we shall apply the inequality (iii) of Theorem 2.
Thus we have to estimate

() :/‘X’ F'(1+y+it)
! 1+y+it

2

—00

forall%ﬁygl.
For this purpose we divide the range of integration into three parts

L ={teR:|[t| <K(c—-1)}
L={teR:K(c—-1)< |t| < K}
I :={teR: K <|t|}.

We employ the factorization (s = 1+ y + it)

F@:?ﬁf@
Thus
F'(s) | 2 [Z|F'(s) |
A : mggyF@[mLﬂ$ dt. (32)
Define

L(u) := > A(n)f(n).

n<u

Then we may apply Parseval’s identity to obtain (¢ =1+ y)
(oo}
/.

Since L(u) = O(u) uniformly for u > 1 each of the integrals in the equation (33)

F'(s) |

sF(s)

o0
m:%/|mwﬁmww (33)
0

can be estimated by

%)
<</ eQw(l—a’)dw < y—l-
0

The last inequality together with (32) shows that

Ji

F(s)

tel;

2
1—
dt < sup |F(s)]? -y~ < exp < -2 E }f(p)>K2 Sy

p<z
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since, by Lemma 4 and ¢ € I,

F(s) 1D
|<<s><<e"p< 2. ) p(

p<z
< exp < — Z 1f(p)>K
p<z p

Concerning the integral over I we have by Lemma 2 and Lemma 3

BUCEBIEEEY D

p<z

sup |F(s))? « K~Y2y=2 4 y=3/210g K
tels

J,

Let us now handle the integral over I3.

and thus )
Fl
) dt < K=Yy 4 (log K)y~%/2.

Again by Parseval’s formula we get

F/
[JR2ae s B f Pt
I mox S |t=m|<1
1m —82
fz /H’Znﬂc 'lognn ’dt<<K1’3
5 )
m>K | |

Choosing K = exp (3 Y op<a
Let us now turn to the proof of assertion (ii). For this we make use of

%@) we obtain assertion (i) of Theorem 3.

inequality (i) of Theorem 2. This means we have to estimate the integral

/°° F(o +it) — AyC(o +it) th
o+t

— 00

where o0 =1+ 10;70 and A, is defined by (27).
We again split the range of integration into three parts I, I and I3, respec-
tively, as above.

For the integral over I; we use (17) together with Lemma 4 and conclude

F(s) = AxC(s) = O([C()(0o(x)[s — 1]log  + do(x))) + O(|s — 1)

J,

and
2
F(s) = 4C) " 4y <5o(ff)K +do(z) + Ilingxl> o8




120 Karl-Heinz Indlekofer

Concerning the integral over I we have, by Lemma 2 and Lemma 3

F 2 F 3/2
/ £ls) dtzmaX|F(U+it)|1/2/ %dt
Is S tels I |S|
1 F 3/2
< / | (S)| dt.
KU — 17 Jy, sl

It remains to estimate the last integral. We shall proceed as in [1] and [11].
In the halfplane o > 1 e have

e = e | G007 )| = > (1) s

and thus, by Lemma 1 and Parseval’s equality

F 3/2 0
/ | (S)2| / exp [ —2 Z “p —1 ) p20(0=1) g0 <</ w2e=2w(e=1) g0
Iy |s] 0 0

p<e“’

Collecting the estimates we conclude

J,
Then,

/°° ’F(s) — Au((s) |

if we choose K = (do(z))~%/%. This ends the proof of Theorem 3.

F(s)|*

dt < K~Y®%logz.

1
dt < (50(56)1( + + ) logz < H(6o(x))"/°

K& K
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