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Lightlike curves in Lorentz manifolds

By AUREL BEJANCU (Iaşi)

To the memory of Professor András Rapcsák

The purpose of the present paper is to initiate a general study of
differential geometry of lightlike curves in Lorentz manifolds. First, we
construct a complementary vector subbundle to the tangent bundle of a
lightlike curve. Then in section 2 we obtain the Frenet equations with re-
spect to a general Frenet field of frames and prove theorems of reduction of
the codimension of a lightlike curve (Theorems 3, 4 and 5). According to
the Theorem 5, any lightlike curve of a Minkowski space whose the seventh
curvature vanishes, lies in a 5-dimensional plane. This is a surprisingly re-
sult and it might have applications in multi-dimensional physical theories.
Finally, we prove an existence and uniqueness theorem for lightlike curves
in Lorentz manifolds.

§1. A complementary vector subbundle to the tangent bundle
of a lightlike curve

Let M be a real (m + 2)-dimensional Lorentz manifold, i.e., in M
there exists a semi-Riemannian metric g of index ν = 1, (cf. O’Neill [6]).
Suppose C is a differentiable curve in M locally given by

(1.1) xi = xi(t), t ∈ [a, b] .

In case the tangent vector field

d

dt
=

(
dx1

dt
, . . . ,

dxm+2

dt

)
,

has a non-null length with respect to g we have a complete study of the
geometry of C (cf. Spivak [7]). Surprisingly, though theory of curves is
one of the intensively studied theory of differential geometry, till now we
do not have a method of studying curves whose tangent vector field is
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lightlike, i.e., we have

(1.2) g

(
d

dt
,

d

dt

)
= 0 .

As far as we know, the results obtained on this class of curves refer to the
case when the ambient space is one of the Minkowski spaces R3

1 or R4
1 (cf.

Cartan [3], Castagnino [2], Bonnor [1], Graves [4], Ikawa [5]).
That is why, we consider as a need a general theory of such curves in

a Lorentz manifold. The present paper is concerned with such a study and
it might give more insights for a general study of lightlike submanifolds of
semi-Riemannian manifolds.

We say that C is a lightlike curve in M if there exists a lightlike vector
field ξ tangent to C, that is, we have

(1.3) g(ξ, ξ) = 0 .

Certainly, in this case there exists a diffrentiable function k0 6= 0 such that

(1.4)
d

dt
= k0ξ ,

and henceforth (1.2) and (1.3) are equivalent with each other. Denote by
TC the tangent bundle of C and define as in case of nondegenerate curves

(1.5) TC⊥ =
⋃

x∈C

TC⊥x ; TC⊥x = {v ∈ TxM, g(v, ξx) = 0} .

Then TC⊥ is a vector bundle over C whose fibres are (m+1)–dimensional
and ξ is a differentiable section of TC⊥. Thus TC is a 1-dimensional vector
subbundle of TC⊥. Suppose sC is a complementary vector subbundle to
TC in TC⊥, i.e., we have

(1.6) TC⊥ = TC ⊥ sC ,

where ⊥ means orthogonal direct sum. It follows that sC is a non–
degenerate m–dimensional vector subbundle of TM . Then denote by sC⊥
the 2–dimensional complementary orthogonal vector subbundle to sC in
TM , i.e., we have

(1.7) TM = sC ⊥ sC⊥ .

Throughout the paper we denote by F (C) the algebra of differentiable
functions on C and by Γ(E) the F (C)–module of differentiable sections of
a vector bundle E over C. We use the same notation for any other vector
bundle.

As in any theory of submanifolds appears as a necessity the con-
struction of a complementary vector bundle of the tangent bundle of the
submanifolds in the tangent bundle of the ambient space, we state first
the following result.
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Theorem 1. Let C be a lightlike curve in a Lorentz manifold M .
Then for a given vector subbundle sC as in (1.6) there exists a unique 1-
dimensional vector subbundle nC of sC⊥ such that on each neighbourhood
of coordinates U ⊂ C, for any ξ ∈ Γ(TC|U ) there exists N ∈ Γ(nC|U )
satisfying

(1.8) g(ξ, N) = 1 ,

and

(1.9) g(N, N) = 0 .

Proof. Since TC is a vector subbundle of sC⊥ we may consider a
complementary vector subbundle δ of TC in sC⊥. For any ξ ∈ Γ(TC|U )
there exists V ∈ Γ(δ|U ) such that g(ξ, V ) 6= 0, otherwise TM would be
degenerate with respect to g. Then it follows that any N ∈ Γ(sC⊥|U )
satisfying (1.8) and (1.9) is given by

(1.10) N =
1

g(ξ, V )

{
V − g(V, V )

2g(ξ, V )
ξ

}
.

Moreover, it is easy to check that N depends neither on vector bundle δ
nor or local section V . Hence for any ξ ∈ Γ(TC|U ) there exists a unique
vector field N ∈ Γ(sC⊥|U ) satisfying (1.8) and (1.9). Next, consider another
neighborhood of coorditanes U∗ ⊂ C such that U ∩U∗ 6= ∅. Then ξ∗ = fξ,
where f is nowhere zero differentiable function on U ∩ U∗, and by using
(1.10) obtain N∗ = 1

f N . Therefore we obtain a unique 1-dimensional
vector subbundle nC of sC⊥ whose local sections N satisfy (1.8) and (1.9).
The proof is complete.

Next we consider the vector bundle
(1.11) NC = nC ⊥ sC ,

which according to the proof of Theorem 1 is complementary to TC in
TM , i.e., we have

(1.12) TM = (TC ⊕ nC) ⊥ sC ,

where ⊕ means direct sum but not orthogonal. It is important to note
that the induced metrics on TC ⊕ nC and sC are of index ν = 1 (Lorentz
metric) and ν = 0 (Riemannian metric) respectively.

§2. The Frenet equations for a lightlike curve in a Lorentz manifold

Let C be a lightlike curve of an (m+2)–dimensional Lorentz manifold
M and {ξ,N} be the lightlike vector fields from Theorem 1. Suppose ∇
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is the Levi–Civita connection on M . Then by using (1.3), (1.8) and (1.9)
we obtain the following general Frenet equations for the lightlike curve C:

(2.1)

∇ξξ = Aξ + k1W1

∇ξN = −AN + k2W1 + k3W2

∇ξW1 = −k2ξ − k1N + k4W2 + k5W3

∇ξW2 = −k3ξ − k4W1 + k6W3 + k7W4

∇ξW3 = −k5W1 − k6W2 + k8W4 + k9W5

...
∇ξWm−2 = −k2m−5Wm−4 − k2m−4Wm−3+

+ k2m−2Wm−1 + k2m−1Wm

∇ξWm−1 = −k2m−3Wm−3 − k2m−2Wm−2 + k2mWm

∇ξWm = −k2m−1Wm−2 − k2mWm−1 ,

where A and {k1, . . . , k2m} are differentiable functions and {W1, . . . , Wm}
is an orthonormal basis of Γ(sC). We call

(2.2) {ξ,N,W1, . . . , Wm}
the lightlike Frenet field of frames on M along C, and {k1, . . . , k2m} the
curvature functions of C. Then by using (1.3), (1.8) and (1.9) we obtain

(2.3)





ξ̄ = fξ; N̄ = −f

2

m∑
α=1

(cα)2 +
1
f

N +
m∑

α=1

cαWα

W̄α =
m∑

β=1

aαβ(Wβ − acβξ) ,

where f 6= 0, cα and aαβ are differentiable functions, and for any point x on
C, [aαβ(x)] is an element of the orthogonal group O(m), and {ξ̄, N̄ , W̄1, . . . ,
W̄m} is another lightlike Frenet field of frames on M along C.

Next, from the first Frenet equation of (2.1) written for both Frenet
fields of frames we obtain

(2.4)





Ā = k̄1

m∑
α=1

a1αcα + ξ(f) + fA; k̄1a11 = f2k1

k̄1a12 = · · · = k̄1a1m = 0 .

Suppose k1 = 0 on C. Then k̄1 = 0 on C, otherwise from (2.4) obtain
a11 = a12 = · · · = a1m = 0, which is a contradiction because [aαβ ] is an
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orthogonal matrix. A lightlike curve C on which k1 = 0 is called a lightlike
geodesic of the Lorentz manifold M . In this case the first Frenet equation
becomes

(2.5) ∇ξ̄ ξ̄ = Āξ̄ ,

with respect to the lightlike Frenet field of frames {ξ̄, N̄ , W̄1, . . . , W̄m}.
Now, choose f from the first relation (2.3) as a solution of partial differ-
ential equation

(2.6) ξ(f) + fA = 0 .

Then Ā = 0 and (2.5) becomes

(2.7) ∇ξ̄ ξ̄ = 0 .

Suppose
d

dt
= ε̄ξ̄ and consider u given by

du

dt
= ε̄ as a new parameter on

C, provided ε̄ > 0 on C. Then
d

du
= ξ̄ and (2.7) becomes

(2.8)
d2xi

du2
+ Γj

i
k
dxj

du

dxk

du
= 0 ,

where Γj
i
k are the Christoffel symbols induced by ∇. Then by using (2.8)

we obtain

Theorem 2. A lightlike curve C of Rm+2
1 is a straight line if and only

if k1 = 0 on C.

For the particular case m = 2, Theorem 2 is due to Bonnor [1]. We
call u the pseudo-arc on C (cf. Vessiot [8]).

The above study enables us to suppose, from now on, k1 6= 0 at every
point of the lightlike curve C. Then k̄1 6= 0 and (2.4) becomes

(2.9)

{
a11 = 1, a1α = aα1 = 0, α ∈ {2, . . . , m}
Ā = f2k1c1 + ξ(f) + fA; k̄1 = f2k1 .

Remark 1. For the particular case m = 2, that is, for a lightlike
curve C of a 4-dimensional Lorentz manifold the transformation of lightlike
Frenet fileds of frames (2.3) becomes

(2.10)

{
ξ̄ = fξ; N̄ = − f

2 ((c1)2 + (c2)2)ξ + 1
f N + c1W1 + c2W2 ,

W̄1 = W1 − fc1ξ; W̄2 = W2 − fc2ξ .
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According to the above remark we are further concerned with the
study of relationships between {A, k1, . . . , k2m} and {Ā, k̄1, . . . , k̄2m} with
respect to the transformation of lightlike Frenet field of frames:

(2.11)





ξ̄ = fξ; N̄ = −f

2

m∑
α=1

(cα)2ξ +
1
f

N +
m∑

α=1

cαWα

W̄α = Wα − fcαξ, α ∈ {1, . . . , m} .

Thus by direct calculations using (2.11) and the last m + 1 equations in
(2.1) for both lightlike Frenet field of frames we obtain

(2.12)





k̄2 = k2 + fc1A + ξ(fc1) +
f2k1

2
((c1)2 − (c2)2 − (c3)2)−

− f(c2k4 + c3k5)

k̄3 = k3 + fc2A + ξ(fc2) + f2c1c2k1 + fc1k4 − fc3k6

k̄4 = f(k4 + fc2k1); k̄5 = f(k5 + fc3k1) ,

k̄α = fkα, α ∈ {6, . . . , m} ,

and

(2.13)
fAc3 + ξ(fc3) + f2c1c3k3 + fc1k5 + fc2k6 = 0

c2k7 + c3k8 = 0; c3k9 = 0; cα = 0, α ∈ {4, . . . ,m} .

Now we choose c1 given by

(2.14) c1 = − 1
f2k1

(ξ(f) + fA) .

Then from (2.9) it follows Ā = 0. Therefore, we always may consider a

lightlike Frenet field of frames
{

d

du
= ξ, N,W1, . . . , Wm

}
with respect to

with the Frenet equations are given by

Dξ

Du
= k1W1(2.15)

DN

Du
= k2W1 + k3W2

DW1

Du
= −k2ξ − k1N + k4W2 + k5W3

DW2

Du
= −k3ξ − k4W1 + k6W3 + k7W4
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DW3

Du
= −k5W1 − k6W2 + k8W4 + k9W5

...
DWm−2

Du
= −k2m−5Wm−4 − k2m−4Wm−3+

+ k2m−2Wm−1 + k2m−1Wm

DWm−1

Du
= −k2m−3Wm−3 − k2m−2Wm−2 + k2mWm

DWm

Du
= −k2m−1Wm−2 − k2mWm−1 ,

where
D

Du
= ∇ d

du
.

Theorem 3. Let C be a lightlike curve of a (m + 2)–dimensional
(m > 4) Lorentz manifold M with k1 6= 0 on C. Then with respect to the
lightlike Frenet field of frames {ξ, N, W1, . . . ,Wm} we have k8 = k9 = 0
on C.

Proof. We choose c3 = 1, c2 = 0 and f as a non-null solution of
(2.6). Then from (2.14) we obtain c1 = 0 and the assertion of the theorem
follows from (2.13).

Theorem 4. Let C be a lightlike curve of a Minkowski space Rm+2
1

(m > 3) with kα, α ∈ {1, . . . , 2p − 4}, p ∈ {3, . . . , m} nowhere zero and
k2p−3, k2p−2 and k2p−1 everywhere zero on C. Then C lies in some p–

dimensional Minkowski space of Rm+2
1 . In case k2m−1 and k2m are every-

where zero, C lies in a Minkowski hyperplane of Rm+2
1 .

Proof. Let {ξ = d
du , N, W1, . . . , Wp−2} be a part of a lightlike Frenet

field of frames along C, and ∆(u) ⊂ Tx(u)R
m+2
1 be the p–dimensional sub-

space spanned by {ξ(u), N(u),W1(u), . . . , Wp−2(u)}. All these subspace
are parallel as p–dimensional planes of Rm+2

1 . In order to prove this we

first note that
DX

Du
is just X ′(u) in Rm+2

1 and by using (2.15) obtain

(2.16) W ′
i (u) =

p∑

j=1

Aij(u)Wj(u), i ∈ {1, . . . , p} ,

where Wp−1 = N and Wp = ξ. Suppose now C is given by the equations

xi = xi(u), u ∈ [a, b] ,
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and V is a constant vector field on C such that

(2.17) g(Wi(a), V ) = 0, i ∈ {1, . . . p} .

Then by using (2.16) we obtain the system

(2.18)
d

du
(g(Wi(u), V ) = g(W ′

i (u), V ) =
p∑

j=1

Aij(u)g(Wj(u), V ) ,

with initial conditions (2.17). By the uniqueness of solutions of (2.18) we
infer g(Wi(u), V ) = 0 for all u. Hence all p–planes ∆(u) are parallel with
∆(a). The proof is complete by the following general result.

Proposition 1. (Spivak [7], p.39). Let C : xi = xi(u), u ∈ [a, b] be

an immersed curve of Rm+2 such that
dxi

du
∈ ∆(u) for all u, where ∆(u)

are parallel p–dimensional planes of Rm+2. Then C is a curve in some
p–dimensional plane of Rm+2.

Remark 2. The p–dimensional plane H wherein C lies is a Minkowski
space since both linear independent lightlike vector fields ξ and N belong
to H. The second assertion of the theorem follows in a similar way as the
first one.

From Theorems 3 and 4 we obtain the following surprising result.

Theorem 5. Let C be a lightlike curve of a Minkowski space Rm+2
1

(m > 4) with {k1, . . . , k6} nowhere zero and k7 everywhere zero on C.
Then C lies in a 5-dimensional plane of Rm+2

1 .

§3. The fundamental existence and uniqueness theorem
for lightlike curves

Let M be a (m + 2)–dimensional Lorentz manifold. In the previous
sections we have seen that the lightlike Frenet field of frames {ξ, N, W1, . . . ,
Wm} constructed along a lightlike curve is quasi-orthonormal
(cf. Vrănceanu–Roşca [9]), that is, {W1, . . . , Wm} is an orthonormal
basis and ξ and N are lightlike vector fields satisfying (1.8).

Consider Rm+2
1 with the Lorentz metric

(3.1) g(x, y) =
m+1∑
α=1

xαyα − xm+2ym+2 .
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Then we define the quasi-orthonormal basis

(3.2)





◦
W 1 = (1, 0, . . . , 0), . . . ,

◦
Wm = (0, . . . , 1, 0, 0) ,

◦
Wm+1 = (0, . . . ,

1√
2
,

1√
2
),

◦
Wm+2 = (0, . . . ,

1√
2
,− 1√

2
)

that is we have

(3.3)





g(
◦

Wα,
◦

W β) = δα,β ; g(
◦

Wm+1,
◦

Wm+1) = g(
◦

Wm+2,
◦

Wm+2) = 0

g(
◦

Wm+1,
◦

Wm+2 = 1, α, β ∈ {1, . . . , m} .

It is easy to see that

(3.4)
m∑

α=1

◦
W i

α

◦
W j

α +
◦

W i
m+1

◦
W j

m+2 +
◦

W j
m+1

◦
W i

m+2 = gij ,

where we put

gij =





1, i = j 6= m + 2
−1, i = j = m + 2
0, i 6= j .

Theorem 6. Let M be a Lorentz manifold, let k1, . . . , k2m: [−ε, ε] →
R be everywhere continuous functions and let {

◦
W 1, . . . ,

◦
Wm+2} from (3.2)

as a basis of Tx0M . Then there exists a unique pseudo-arc parametrized
lightlike curve C : xi = xi(u), u ∈ [−ε, ε], such that xi(0) = xi

0, whose
curvature functions are k1, . . . k2m and whose lightlike Frenet field of frames
{ξ,N,W1, . . . , Wm} satisfies

ξ(0) =
◦

Wm+1, N(0) =
◦

Wm+2, Wα(0) =
◦

Wα, α ∈ {1, . . . , m} .

Proof. First we note that without loss of generality we may suppose
M is the Minkowski space Rm+2

1 . Then consider the system of differential
equations

W ′
m+1(u) = k1W1(3.5)

W ′
m+2(u) = k2W1 + k3W2

W ′
1(u) = −k2Wm+1 − k1Wm+2 + k4W2 + k5W3

...

W ′
m−2(u) = −k2m−5Wm−4 − k2m−4Wm−3 + k2m−2Wm−1 + k2m−1Wm
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W ′
m−1(u) = −k2m−3Wm−3 − k2m−2Wm−2 + k2mWm

W ′
m(u) = −k2m−1Wm−2 − k2mWm−1 ,

and based on a well known result on the existence and uniqueness of its
solutions, there exists a unique solution (W1, . . . , Wm+2) satisfying ini-

tial conditions Wα(0) =
◦

Wα, α ∈ {1, . . . , m + 2}. Now we claim that
{W1(u), . . . , Wm+2(u)} is a quasi-orthonormal basis for any u ∈ [−ε, ε].
To this end, by direct calculations, using (3.4) we obtain

(3.6)
d

du

(
m∑

α=1

W i
αW j

α + W i
m+1W

j
m+2 + W j

m+1W
i
m+2

)
= 0 .

As for u = 0 we have (3.4), from (3.6) it follows

(3.7)
m∑

α=1

W i
α(u)W j

α(u) + W i
m+1(u)W j

m+2(u) + W j
m+1(u)W i

m+2(u) = gij

Further we construct the field of frames

(3.8)





Vm+1 =
1√
2

(Wm+1 + Wm+2) ; Vm+2 =
1√
2

(Wm+1 −Wm+2)

Vα = Wα, α ∈ {1, . . . , m} .

Then (3.7) becomes

(3.9)
m+1∑
α=1

V i
α(u)V j

α (u)− V i
m+2(u)V j

m+2(u) = gij .

Following Bonnor [1], we define the matrix [bij ] as follows

(3.10)

{
bαβ = V α

β , α, β ∈ {1, . . . ,m + 1}; bαm+2 = −√−1 V α
m+2

b(m+2)α =
√−1 V m+2

α ; b(m+2)(m+2) = V m+2
m+2 .

It is easy to check that [bij ] is an orthogonal matrix. This implies {V1, . . . ,
Vm+2} is an orthonormal basis with respect to the metric (3.1) of Rm+2

1 .
Hence {W1, . . . ,Wm+2} is a quasi-orthonormal basis for any u ∈ [−ε, ε].
The lightlike curve C is obtained by integrating the system

(3.11)
dxi

du
= W i

m+1(u) .

It follows that C is pseudo-arc parametrized with curvature functions
{k1, . . . , k2m} with respect to the quasi-orthonormal field of frames
{ξ = Wm+1, N = Wm+2, W1, . . . ,Wm}. The proof is complete.
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