
Publ. Math. Debrecen

75/1-2 (2009), 123–135

Regularity theorem for a functional equation involving means

By JUSTYNA JARCZYK (Zielona Góra)

Dedicated to Professor Zoltán Daróczy on the occasion of his 70th birthday

Abstract. We prove a result improving regularity of solutions of equation

κx + (1− κ)y = λϕ−1(µϕ(x) + (1− µ)ϕ(y)) + (1− λ)ψ−1(νψ(x) + (1− ν)ψ(y)),

and leading to generalizations of some theorems established by D. GÃlazowska, W. Jar-

czyk, and J. Matkowski and by Z. Daróczy and Zs. Páles.

Given an interval I ⊂ R, a continuous strictly monotonic function ϕ : I → R
and a real µ ∈ (0, 1) we denote by Aϕ

µ the quasi-arithmetic mean generated by ϕ

and weighted by µ :

Aϕ
µ(x, y) = ϕ−1(µϕ(x) + (1− µ)ϕ(y)).

In paper [5] D. GÃlazowska, W. Jarczyk, and J. Matkowski found all
the quasi-arithmetic means Aϕ

1/2 and Aψ
1/2 such that the classical arithmetic mean

A is an affine combination of them:

A = λAϕ
1/2 + (1− λ)Aψ

1/2,

assuming that the generators ϕ, ψ are twice continuously differentiable. In other
words, they determined all functions ϕ,ψ : I → R of class C2 satisfying the
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functional equation

x + y

2
= λϕ−1

(
ϕ(x) + ϕ(y)

2

)
+ (1− λ)ψ−1

(
ψ(x) + ψ(y)

2

)
. (1)

The result of [5] was generalized by Z. Daróczy and Zs. Páles [3, Theo-
rem 6], where the equation

µx + (1− µ)y

= λϕ−1 (µϕ(x) + (1− µ)ϕ(y)) + (1− λ)ψ−1 (µψ(x) + (1− µ)ψ(y)) (2)

with given λ ∈ R \ {0, 1} and µ ∈ (0, 1) was solved in the class C1.
In the present paper we prove the theorem below which allows to generalize

the results of both papers [5] and [3]. It shows that continuous functions satisfying
the equation

κx + (1− κ)y

= λϕ−1 (µϕ(x) + (1− µ)ϕ(y)) + (1− λ)ψ−1 (νψ(x) + (1− ν)ψ(y)) , (3)

extending both of (1) and (2), are locally of much higher regularity. The Theo-
rem provides a positive answer to a question posed recently by Z. Daróczy [1].
Results improving regularity of solutions of functional equations have a vast lit-
erature (cf. book [6] by A. Járai and the bibliography therein). Some of them
will be used below.

The main result of this paper is the following regularity theorem concerning
functional equation (3).

Theorem. Let I ⊂ R be a non-trivial interval, κ, λ ∈ R\{0, 1} and let µ, ν ∈
(0, 1). If ϕ,ψ : I → R are continuous strictly monotonic functions and the pair

(ϕ,ψ) satisfies equation (3), then there exists a non-trivial interval I0 ⊂ I such

that ϕ|I0 , ψ|I0 are infinitely many times differentiable and ϕ′(x) 6= 0, ψ′(x) 6= 0
for every x ∈ I0.

In the proof we shall apply a modification of the method presented in [7]. In
particular, we need the following result obtained by Zs. Páles (see [9, Corollary 6
and Example 2 ]), as well as Lemma 2 which was proved in [7]. The latter is also
a consequence of L. Székelyhidi’s results [10] (see also [2], [8]).

Lemma 1. Let J ⊂ R be an open interval, c ∈ (0,∞), µ ∈ (0, 1), and let

f : J → R be a strictly increasing function such that

J 3 s 7→ f(s)− cf (µs + (1− µ)t)
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is strictly monotonic for every t ∈ J . Then for every s0 ∈ J there exist numbers

δ ∈ (0,∞) and K, L ∈ (0,∞) such that (s0 − δ, s0 + δ) ⊂ J and

K ≤ f(s)− f(t)
s− t

≤ L

for every s, t ∈ (s0 − δ, s0 + δ), s 6= t.

Lemma 2. Let J ⊂ R be an interval and let µ ∈ (0, 1), ϑ ∈ R. If f : J → R
satisfies

f(µs + (1− µ)t) = ϑf(s) + (1− ϑ)f(t) (4)

for all s, t ∈ J , then there exist an additive function a : R→ R and a real b such

that

f(s) = a(s) + b, s ∈ J.

At first we prove the following fact.

Lemma 3. Let J ⊂ R be an open interval, κ, λ ∈ R \ {0, 1}, µ, ν ∈ (0, 1),
and let f, g : J → (0,∞) satisfy the equation

f(µs + (1− µ)t)[κ(1− ν)g(t)− (1− κ)νg(s)]

= λµ(1− ν)f(s)g(t)− λ(1− µ)νf(t)g(s). (5)

If f is Lebesgue measurable and g is of the first Baire class, then f and g are

infinitely many times differentiable on a non-trivial subinterval of J .

Proof. Putting s = t in (5) it is easy to observe that

κ = λµ + (1− λ)ν. (6)

At first assume that f is constant on a non-trivial subinterval of J . Then,
by equation (5), we have

[(1− κ)− λ(1− µ)]νg(s) = [κ− λµ](1− ν)g(t)

for s, t from the same subinterval. Hence, by (6), also g is constant there.

Now assume that g is constant on a non-trivial interval J0 ⊂ J . Then, by (5),
we have

λµ(1− ν)f(s)− λ(1− µ)νf(t) = [κ(1− ν)− (1− κ)ν]f(µs + (1− µ)t)

for all s, t ∈ J0. Using (6) we can rewrite the above condition as

µ(1− ν)f(s)− (1− µ)νf(t) = (µ− ν)f(µs + (1− µ)t), s, t ∈ J0. (7)
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If µ = ν then, by (7), f is constant on J0. Now we assume that µ 6= ν. Then (7)
is equivalent to the condition

f(µs + (1− µ)t) =
µ(1− ν)
µ− ν

f(s)− (1− µ)ν
µ− ν

f(t), s, t ∈ J0.

Let ϑ := µ(1−ν)
µ−ν . Then

f(µs + (1− µ)t) = ϑf(s) + (1− ϑ)f(t), s, t ∈ J0.

Applying Lemma 2 we obtain that there exist additive function a : R → R and
number b ∈ R such that

f(s) = a(s) + b, s ∈ J0.

Thus, as f is Lebesgue measurable, it is continuous.

From that place we assume that neither f , nor g is constant on a non-trivial
subinterval of J . Let

C(g) := {v ∈ J : g is continuous at v}.

As g is of the first Baire class, C(g) is a dense Gδ subset of J . We show that
there exist s0, t0 ∈ C(g), s0 6= t0, such that

(1− κ)νg(s0) 6= κ(1− ν)g(t0). (8)

Suppose on the contrary that

(1− κ)νg(s) = κ(1− ν)g(t)

for all different s, t ∈ C(g). Then g is constant on C(g), i.e. there exists a positive
k such that

g(t) = k, t ∈ C(g). (9)

Therefore (1 − κ)ν = κ(1 − ν), whence κ = ν and, by (6), µ = ν. Now equation
(5) can be rewritten in the form

f(µs + (1− µ)t)[g(t)− g(s)] = λ[f(s)g(t)− f(t)g(s)]. (10)

Thus, by (9),
λk(f(s)− f(t)) = 0, s, t ∈ C(g),
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whence f is constant on C(g), i.e. there exists a positive l such that f(t) = l for
every t ∈ C(g).

If there existed an s0 ∈ J such that µs0 + (1 − µ)t ∈ J \ C(g) for every
t ∈ C(g), then C(g) would be homeomorphic with a subset of J \ C(g). This,
however, is impossible, as C(g) is a dense Gδ subset of J and, consequently,
J \ C(g) is of the first Baire category. Therefore, for every s ∈ J there exists a
t ∈ C(g) such that µs + (1 − µ)t ∈ C(g). Now, if s ∈ J and t ∈ C(g) are such
that µs + (1− µ)t ∈ C(g), then, by (10), we have

l[k − g(s)] = λ[kf(s)− lg(s)].

Hence

f(s) =
kl − l(1− λ)g(s)

kλ
, s ∈ J.

Using again (10) we obtain

kl − l(1− λ)g(µs + (1− µ)t)
kλ

[g(t)− g(s)]

= λ

(
kl − l(1− λ)g(s)

kλ
g(t)− kl − l(1− λ)g(t)

kλ
g(s)

)
, s, t ∈ J,

which, after some calculations, yields

[g(t)− g(s)][k − g(µs + (1− µ)t)] = 0, s, t ∈ J. (11)

Since g is not constant on J , there exists a v0 ∈ J such that m := g(v0) 6= k.
Take arbitrary v ∈ J and ε > 0 with (v − ε, v + ε) ⊂ J . As g is not constant on
intervals, there exists an s ∈ (v − ε, v + ε) such that

g(µs + (1− µ)v0) 6= k.

By (11) we have g(s) = g(v0) = m. Therefore, in every neighbourhood of v there
exists an s with g(s) = m and, since C(g) is dense in J , a point u such that
g(u) = k 6= m. Thus g is not continuous at v and, consequently, C(g) = ∅, which
is impossible. This proves the existence of different s0, t0 ∈ C(g) satisfying (8).

According to (8) there exist open intervals U, V containing s0, t0, respectively,
and such that for every s ∈ U and t ∈ V we have (1 − κ)νg(s) 6= κ(1 − ν)g(t).
Making use of (5) we obtain

f(µs + (1− µ)t) =
λµ(1− ν)f(s)g(t)− λ(1− µ)νf(t)g(s)

κ(1− ν)g(t)− (1− κ)νg(s)
, s ∈ U, t ∈ V.
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Now we are going to apply [6, Th. 8.6] by A. Járai. To this aim put n = 4,
T := J , Z = Z1 = · · · = Z4 = Y := R, X1 = X3 = A1 = A3 := U and
X2 = X4 = A2 = A4 := V . Fix an η > 0 with (t0 − η, t0 + η) ⊂ V and define

D :=
{

(v, y) ⊂ J × U : |v − (µs0 + (1− µ)t0)| < η

2
(1− µ)

and |y − s0| < η

2

(
1
µ
− 1

)}

and
W :=

{
(v, y, z1, z2, z3, z4) ∈ D × R4 : κ(1− ν)z4 6= (1− κ)νz3

}
.

Put also f := f , f1 := f |U , f2 := f |V , f3 := g|U , f4 := g|V and define g1, g3 :
D → U , g2, g4 : D → V by

g1(v, y) = g3(v, y) = y, g2(v, y) = g4(v, y) =
v − µy

1− µ
,

and h : W → R by

h(v, y, z1, z2, z3, z4) =
λµ(1− ν)z1z4 − λν(1− µ)z2z3

κ(1− ν)z4 − ν(1− κ)z3
.

Put K := [s0 − δ, s0 + δ], where 0 < δ < η
(

1
µ − 1

)
and [s0 − δ, s0 + δ] ⊂ U .

Making use of [6, Theorem 8.6], applied to the Lebesgue measure, we infer that
f is continuous on the interval

Jf :=
{

v ∈ J : |v − (µs0 + (1− µ)t0)| < η

2
(1− µ)

}
.

Fix an s∗ ∈ Jf . Since f is not constant on intervals, there is a t∗ ∈ Jf

such that f(µs∗ + (1 − µ)t∗) 6= λµ
κ f(s∗). By the continuity of f at t∗ we have

f(µs∗ + (1 − µ)t) 6= λµ
κ f(s∗) for t’s from a non-trivial interval Jg ⊂ Jf . Then,

by (5),

g(t) =
ν

1− ν
· (1− κ)f(µs∗ + (1− µ)t)− λ(1− µ)f(t)

κf(µs∗ + (1− µ)t)− λµf(s∗)
g(s∗), t ∈ Jg,

and, consequently, g is continuous on Jg.
Now we show that f is almost everywhere (with respect to the Lebesgue

measure) differentiable on some non-trivial subinterval of Jg provided µ 6= ν. In
that case equation (5) can be rewritten in the form

νg(s)[(1− κ)f(µs + (1− µ)t)− λ(1− µ)f(t)]

= (1− ν)g(t)[κf(µs + (1− µ)t)− λµf(s)].
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Interchanging s by t here we obtain

νg(t)[(1− κ)f(µt + (1− µ)s)− λ(1− µ)f(s)]

= (1− ν)g(s)[κf(µt + (1− µ)s)− λµf(t)]

for every s, t ∈ J . Multiplying these equalities by sides we have

(1− ν)2g(s)g(t)[κf(µs + (1− µ)t)− λµf(s)][κf(µt + (1− µ)s)− λµf(t)]

= ν2g(s)g(t)[(1− κ)f(µt + (1− µ)s)− λ(1− µ)f(s))]

· [(1− κ)f(µs + (1− µ)t)− λ(1− µ)f(t)],

whence, dividing it by positive g(s)g(t), we get

(1− ν)2[κf(µs + (1− µ)t)− λµf(s)][κf(µt + (1− µ)s)− λµf(t)]

= ν2[(1− κ)f(µt + (1− µ)s)− λ(1− µ)f(s))]

· [(1− κ)f(µs + (1− µ)t)− λ(1− µ)f(t)] (12)

for every s, t ∈ J . Put

k(s, t) := λ(1− µ)ν2[(1− κ)f(µs + (1− µ)t)− λ(1− µ)f(t)]

− λµ(1− ν)2[κf(µt + (1− µ)s)− λµf(t)]

for every s, t ∈ J . Fix an s0 ∈ Jg. Then

k(s0, s0) = λ(1− µ)ν2[(1− κ)f(s0)− λ(1− µ)f(s0)]

− λµ(1− ν)2[κf(s0)− λµf(s0)],

which, after using (6) and making some calculations, gives

k(s0, s0) = λ(1− λ)ν(1− ν)(ν − µ)f(s0).

Since f(s0) > 0, µ 6= 1, ν 6= 1, and µ 6= ν, we have k(s0, s0) 6= 0. Thus there exists
an ε > 0 such that (s0−ε, s0 +ε) ⊂ Jg and k(s, t) 6= 0 for all s, t ∈ (s0−ε, s0 +ε).
Let J0 := (s0 − ε, s0 + ε). By (12) we get

f(s) =
(1− κ)ν2f(µt + (1− µ)s)[(1− κ)f(µs + (1− µ)t)− λ(1− µ)f(t)]

k(s, t)

− κ(1− ν)2f(µs + (1− µ)t)[κf(µt + (1− µ)s)− λµf(t)]
k(s, t)
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for every s, t ∈ J0.
Put s = k = 1, n = 3, Z := R, T := J0, Y := R, D := J0

2, C :=
[s0 − ϑε, s0 + ϑε] with ϑ :=max{µ, 1− µ}, W := D ×G, where

G := {(w1, w2, w3) ∈ R3 : (1− µ)ν2[(1− κ)w2 − λ(1− µ)w1]

6= µ(1− ν)2[κw3 − λµw1]}.

Define f := f |J0 , g1, g2, g3 : D → R, by

g1(s, t) = t, g2(s, t) = µs + (1− µ)t, g3(s, t) = µt + (1− µ)s, (13)

and h : W → R by

h(s, t, w1, w2, w3) :=

(1− κ)ν2w3[(1− κ)w2 − λ(1− µ)w1]− κ(1− ν)2w2[κw3 − λµw1]
λ(1− µ)ν2[(1− κ)w2 − λ(1− µ)w1]− λµ(1− ν)2[κw3 − λµw1]

. (14)

Then, according to [6, Th. 11.6] by A. Járai, f is locally Lipschitzian on J0, and
thus, on account of [4, Th. 3.1.9] it is almost everywhere differentiable on J0.

Now take any positive integer p. We prove that f and g are p times continu-
ously differentiable on a non-trivial subinterval of J0. At first assume that µ 6= ν.
Then, as k(so, s0) 6= 0, we have (f(s0), f(s0), f(s0)) ∈ G. Since G is open, there
is an open interval P such that f(s0) ∈ P and P 3 ⊂ G. Using the continuity of
f we find such an open interval J1 that s0 ∈ J1 ⊂ J0 and f(J1) ⊂ P . Now let
s = k = 1, n = 3, Z := R, Z1 = Z2 = Z3 := P , Y = T = X1 = X2 = X3 := J1,
D := J1

2, and take r1 = r2 = r3 = 1. Define f = f1 = f2 = f3 := f |J1 ,
g1, g2, g3 : D → R by (12) and h : D × Z1 × Z2 × Z3 → R by (14). According to
[6, Th. 14.2] f is continuously differentiable on J1. Now, using [6, Th. 15.2] p−1
times, we get by induction that f is p times continuously differentiable on J1. As
J1 does not depend on p, this means that f is infinitely many times differentiable
on J1. It follows from (5) that

[κ(1− ν)f(µs0 + (1− µ)t)− λµ(1− ν)f(s0)]g(t)

= [(1− κ)νf(µs0 + (1− µ)t)− λ(1− µ)νf(t)]g(s0), t ∈ J1. (15)

As f is not constant on non-trivial intervals we can find a t ∈ J1 such that

κ(1− ν)f(µs0 + (1− µ)t)− λµ(1− ν)f(s0) 6= 0.
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By the continuity of f this is true for t’s running through a subinterval of J1.
Consequently, we can calculate g(t) by (15) on that subinterval. Clearly, g is
infitely many times differentiable there.

If µ = ν then, by (6), we have κ = µ, and thus equation (5) takes the form

f(µs + (1− µ)t)[g(t)− g(s)] = λ[f(s)g(t)− f(t)g(s)].

Now it is enough to use [3, Th. 5 and 2]. ¤

The following fact seems to be of interest on its own.

Lemma 4. Let I ⊂ R be an open interval, µ ∈ (0, 1), and let ϕ : I → R be a

continuous strictly monotonic function. Assume that the mean Aϕ
µ is differentiable

with respect to one of the variables. Then ϕ is differentiable on a non-trivial

interval and ϕ′ does not vanish wherever it exists. If, in addition, the partial

derivative of Aϕ
µ is continuous in the other variable on a non-trivial interval, then

ϕ is continuously differentiable on a non-trivial interval.

Proof. Assume, for instance, that Aϕ
µ is differentiable with respect to the

first variable.
Since ϕ−1 is strictly monotonic, it is differentiable almost everywhere with

respect to the Lebesgue measure. Fix any point u0 ∈ ϕ(I) of the differentiability
of ϕ−1. We prove that ϕ−1 is differentiable in the open interval µu0 +(1−µ)ϕ(I)
and the derivative of ϕ−1 does not vanish wherever it exists.

Take any point v ∈ ϕ(I) and then any u ∈ ϕ(I)\{u0} such that µu+(1−µ)v ∈
µu0 + (1− µ)ϕ(I). Then we have

ϕ−1(µu + (1− µ)v)− ϕ−1(µu0 + (1− µ)v)
(µu + (1− µ)v)− (µu0 + (1− µ)v)

=
Aϕ

µ(ϕ−1(u), ϕ−1(v))−Aϕ
µ(ϕ−1(u0), ϕ−1(v))

µ(u− u0)

=
1
µ
· Aϕ

µ(ϕ−1(u), ϕ−1(v))−Aϕ
µ(ϕ−1(u0), ϕ−1(v))

ϕ−1(u)− ϕ−1(u0)
· ϕ−1(u)− ϕ−1(u0)

u− u0
.

Now letting u tend to u0 we see that ϕ−1 is differentiable at µu0 + (1− µ)v and

(ϕ−1)′(µu0 + (1− µ)v) =
1
µ

∂1A
ϕ
µ(ϕ−1(u0), ϕ−1(v)) · (ϕ−1)′(u0) (16)

for all v ∈ ϕ(I). If (ϕ−1)′vanished anywhere, then, by (16), it would be zero
on a non-trivial interval, which is impossible as ϕ−1 is one-to-one. The desired
properties of the function ϕ follows directly from what we have just proved about
ϕ−1.

The additional assertion is a direct consequence of formula (16). ¤
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Proof of the Theorem. Replacing I with its interior we may assume
that I is open. Without loss of generality we may also confine ourselves to the
case of strictly increasing ϕ and ψ. Moreover, replacing, if necessary, κ with 1−κ

(consequently, µ with 1− µ and ν with 1− ν ) and by interchanging x and y, we
may assume that κ is positive. Of course, at least one of the numbers λ and 1−λ

is positive. Assume, for instance, the first case. Let J := ϕ(I). Clearly, J is an
open interval.

At first we show that ϕ and ϕ−1 are locally Lipschitzian and their derivatives
do not vanish wherever they exist. Putting s = ϕ(x) and t = ϕ(y) in (3) we get

(1− λ)ψ−1
(
νψ(ϕ−1(s)) + (1− ν)ψ(ϕ−1(t))

)

= κϕ−1(s) + (1− κ)ϕ−1(t)− λϕ−1(µs + (1− µ)t)

for every s, t ∈ J . Since the left-hand side is strictly monotonic as a function of s,
so does the right-hand side. Hence

J 3 s 7→ ϕ−1(s)− λ

κ
ϕ−1 (µs + (1− µ)t)

is strictly monotonic for every t ∈ J . For every v0 ∈ J , by Lemma 1, we can find
δ ∈ (0,∞) and K, L ∈ (0,∞) such that (v0 − δ, v0 + δ) ⊂ J and

K ≤ ϕ−1(u)− ϕ−1(v)
u− v

≤ L, u, v ∈ (v0 − δ, v0 + δ), u 6= v.

Then also for every x0 ∈ I there exist δ > 0 and K, L > 0 such that

1
L
≤ ϕ(x)− ϕ(y)

x− y
≤ 1

K
, x, y ∈ (x0 − δ, x0 + δ), x 6= y.

In particular, it follows that if the function ϕ is differentiable at a point x0 ∈ I,
then ϕ′(x0) 6= 0 and if the function ϕ−1 is differentiable at v0 ∈ ϕ(I), then
(ϕ−1)′(v0) 6= 0.

Now we show that ϕ is differentiable on I. For every v ∈ J put

U(v) =
1

1− µ
(J − v) ∩ 1

µ
(v − J);

observe that U(v) is an open interval containing 0. Given any v ∈ J and u ∈ U(v)
define also

V (u) = (J − (1− µ)u) ∩ (J + µu);
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clearly V (u) is an open interval and v ∈ V (u). Putting x = ϕ−1(v + (1 − µ)u)
and y = ϕ−1(v − µu) in (3) we get

λϕ−1(v) = κϕ−1(v + (1− µ)u) + (1− κ)ϕ−1(v − µu)

− (1−λ)ψ−1
(
νψ(ϕ−1(v + (1−µ)u))+ (1− ν)ψ(ϕ−1(v − µu))

)
(17)

for every v ∈ J and u ∈ U(v).
Take any v0 ∈ J and define functions f1, f2 : U(v0) → I by

f1(u) = ϕ−1(v0 + (1− µ)u), f2(u) = ϕ−1(v0 − µu).

For i = 1, 2 put

Ni = {u ∈ U(v0) : fi is not differentiable at u}.

By the monotonicity of f1, f2 the sets N1, N2 are of Lebesgue measure 0 and,
consequently, so is their union N . Since ϕ and ϕ−1 are locally Lipschitzian,
also the function Aϕ

µ has that property, and thus, by Rademacher’s theorem
[4, Theorem 3.1.9], Aϕ

µ is almost everywhere differentiable on I2. In particular,
the set

C=
{
(x, y) ∈ I2:Aϕ

µ(·, y) is differentiable at x and Aϕ
µ(x, ·) is differentiable at y

}

is of full Lebesgue measure in I2. As (f1, f2)(U(v0)) is the product of two open
intervals and the functions f1, f2 are locally Lipschitzian, the set (f1, f2)−1(C) has
a positive measure; otherwise C ∩ (f1, f2)(U(v0)) = (f1, f2)[(f1, f2)−1(C)] would
be of measure zero. Hence it follows that the set (f1, f2)−1(C) \N is non-empty.
Take any u0 ∈ (f1, f2)−1(C) \ N . Then f1, f2 are differentiable at u0 and the
functions Aϕ

µ(·, f2(u0)) and Aϕ
µ(f1(u0), ·) are differentiable at f1(u0) and f2(u0),

respectively.
Now define functions g1, g2 : V (u0) → I by

g1(v) = ϕ−1(v + (1− µ)u0), g2(v) = ϕ−1(v − µu0).

Observe that g1(v0) = f1(u0) and g2(v0) = f2(u0). Therefore the functions
Aϕ

µ(·, g2(v0)) and Aϕ
µ(g1(v0), ·) are differentiable at the points g1(v0) and g2(v0),

respectively, whence, according to (3), Aψ
ν (·, g2(v0)) and Aψ

ν (g1(v0), ·) are differ-
entiable at g1(v0) and g2(v0), respectively. Moreover, as f1 is differentiable at u0,
the function ϕ−1 is differentiable at v0 +(1−µ)u0, and thus g1 is differentiable at
v0. Similarly, we infer that the function g2 has the same property. Consequently,
the function V (u0) 3 v 7→ Aψ

ν (g1(v), g2(v)) is differentiable at v0. Now (17) gives

λϕ−1(v) = κg1(v) + (1− κ)g2(v)− (1− λ)Aψ
ν (g1(v), g2(v)), v ∈ V (u0),
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and we get the differentiability of ϕ−1 at v0. As v0 is an arbitrary point of J and
the derivative of ϕ−1 does not vanish, ϕ is differentiable on I.

According to (3) and applying Lemma 4 to ψ and ν instead of ϕ and µ,
respectively, we find a non-empty open interval I0 ⊂ I such that ψ is differentiable
in I0; clearly also ϕ is differentiable in I0.

Define functions f, g : I0 → (0,∞) by

f(s) = ϕ′(ϕ−1(s)), g(s) = ψ′(ϕ−1(s)).

We show that the pair (f, g) satisfies equation (5). Indeed, differentiating both
sides of equality (3) with respect to x we get

λµϕ′(x)
ϕ′(ϕ−1(µϕ(x) + (1− µ)ϕ(y)))

+
(1− λ)νψ′(x)

ψ′(ψ−1(νψ(x) + (1− ν)ψ(y)))
= κ (18)

for all x, y ∈ I0. On the other hand, differentiating equality (3) with respect to
y we have

λ(1− µ)ϕ′(y)
ϕ′(ϕ−1(µϕ(x) + (1− µ)ϕ(y)))

+
(1− λ)(1− ν)ψ′(y)

ψ′(ψ−1(νψ(x) + (1− ν)ψ(y)))
= 1− κ (19)

for all x, y ∈ I0. Multiplying equality (18) by (1− ν)ψ′(y) and (19) by −νψ′(x)
and adding the obtained equalities by sides we have

λµ(1− ν)ϕ′(x)ψ′(y)− λ(1− µ)νϕ′(y)ψ′(x)
ϕ′(ϕ−1(µϕ(x) + (1− µ)ϕ(y)))

= κ(1− ν)ψ′(y)− (1− κ)νψ′(x)

for all x, y ∈ I0, whence, setting here x = ϕ−1(s) and y = ϕ−1(t), we see that
equality (5) holds for every s, t ∈ ϕ(I0). Since ϕ−1 is locally Lipschitzian and ϕ′

is measurable ϕ′ ◦ ϕ−1 is Lebesgue measurable. Moreover, ψ′ is of the first Baire
class and ϕ−1 is continuous whence ψ′ ◦ϕ−1 is of the first Baire class. Therefore,
due to Lemma 3, we infer that f, g are infinitely many times differentiable on a
non-empty subinterval of ϕ(I0). This competes the proof. ¤
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