Publ. Math. Debrecen **75/1-2** (2009), 137–148

Limits of random iterates

By RAFAŁ KAPICA (Katowice) and JANUSZ MORAWIEC (Katowice)

Dedicated to Professor Zoltán Daróczy on his 70th birthday

Abstract. Given a probability space (Ω, \mathcal{A}, P) , a nonempty subset X of a separable Banach space Y and an rv-function $f: X \times \Omega \to X$, we assume that the sequence of iterates of f converges to a function $\xi: X \times \Omega^{\infty} \to Y$. We give conditions on f and types of convergence which imply continuity of ξ with respect to the first variable. A possible application of obtained results to iterative equations is presented.

1. Introduction

Throughout this paper we assume that (Ω, \mathcal{A}, P) is a probability space, X is a non-empty subset of a separable Banach space $(Y, \|\cdot\|)$. By $\mathcal{B}(X)$ we denote the σ -algebra of all Borel subsets of X. Following [6] we say that $f: X \times \Omega \to X$ is a random valued vector function (shortly an *rv*-function) if it is measurable with respect to the product σ -algebra $\mathcal{B}(X) \otimes \mathcal{A}$. Given an *rv*-function f define the sequence $(f^m)_{m \in \mathbb{N}}$ of its *iterates* as follows (see [6]; cf. [7]):

 $f^1(x,\omega_1,\omega_2,\ldots) = f(x,\omega_1), \quad f^{m+1}(x,\omega_1,\omega_2,\ldots) = f(f^m(x,\omega_1,\omega_2,\ldots),\omega_{m+1}),$ for all $x \in X$ and $(\omega_1,\omega_2,\ldots) \in \Omega^{\infty}$. Since, in fact, $f^m(\cdot,\omega)$ depends only on the first *m* coordinates of $\omega = (\omega_1,\omega_2,\ldots)$, we may (and we do) consider this iterate

Mathematics Subject Classification: 37H99, 37N99, 39B12.

Key words and phrases: Random-valued vector functions, sequences of iterates, iterative equations, continuous solutions.

This research was supported by the Silesian University Mathematics Department (Discrete Dynamical Systems and Iteration Theory program – the first author, and Functional Equations program – the second author).

as a function defined on $X \times \Omega^{\infty}$ or, alternatively, on $X \times \Omega^m$. It may be shown that these iterates form a random dynamical system (see [2]) and a homogeneous MARKOV chain (see [18]). The basic property of iterates of rv-functions says that they are rv-functions on the product probability space $(\Omega^{\infty}, \mathcal{A}^{\infty}, P^{\infty})$. Further properties of iterates of rv-functions were studied in [3], [14] in the scalar case and in [10], [12] in the vector case.

Iteration is one of the basic technique for solving functional equations in a single variable which usually leads to solutions expressed by limits of iterates (see [4], [15], [16]). It turns out that the above definition of iterates of rv-functions can be successfully adopted in this technique (see [5]). However, we still do not know much on regularity of limits of convergent iterates of rv-functions.

Assume that for every $x \in X$ the sequence $(f^m(x, \cdot))_{m \in \mathbb{N}}$ of an rv-function f converges, in some sense, to a function $\xi(x, \cdot)$. In general $\xi : X \times \Omega^{\infty} \to Y$ is measurable with respect to the second variable. The problem is: What we need assume on f and which type of convergence should holds to get an additional information on ξ . In the present paper we focus on the problem of continuity of ξ with respect to the first variable.

The paper is organized as follows. At the beginning we introduce definitions of some types of continuity of rv-functions. In the third section we show that if the sequence of iterates of a given rv-function consists of continuous functions, then its limit function ξ so is, if suitable kind of convergence holds. Next, in the section four, we study conditions under which continuity of a given rv-function implies continuity of its sequence of iterates. In the last section we give a possible application of obtained results to iterative equations.

2. Notation

In the remainder of this paper we assume that $p \in [1, +\infty)$ is fixed.

Let $(f_m)_{m \in \mathbb{N}_0}$ be a sequence of measurable functions, acting from Ω to X. By $P-\lim_{m\to\infty} f_m = f_0$ we denote the convergence in probability P and, if moreover, $f_m \in L^p(\Omega, \mathcal{A}, P)$ for all $m \in \mathbb{N}_0$, then by $L^p-\lim_{m\to\infty} f_m = f_0$ we denote the convergence in L^p . Here and later we consider integrability in the Bochner sense.

Motivated by [5] we introduce a few kinds of regularity of rv-functions.

We say that an rv-function $f: X \times \Omega \to X$ is:

- *P*-continuous at $x_0 \in X$ if P-lim_{$j\to\infty$} $f(x_j, \cdot) = f(x_0, \cdot)$ for every sequence $(x_j)_{j\in\mathbb{N}}$ of points from X convergent to x_0 ;
- *P*-continuous if f is *P*-continuous at every point from X;

- Uniformly P-continuous if for any $\varepsilon, \beta > 0$ there exists a $\delta > 0$ such that $P(||f(x, \cdot) - f(y, \cdot)|| \ge \beta) \le \varepsilon$ for all $x, y \in X$ with $||x - y|| \le \delta$.

Assume that $f: X \times \Omega \to X$ is an rv-function such that $f(x, \cdot) \in L^p$ for all $x \in X$. We say that f is:

- L^p -continuous at $x_0 \in X$ if L^p -lim_{$j\to\infty$} $f(x_j, \cdot) = f(x_0, \cdot)$ for every sequence $(x_j)_{j\in\mathbb{N}}$ of points from X convergent to x_0 ;
- L^p -continuous if f is L^p -continuous at every point from X;
- Uniformly L^p -continuous if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $\int_{\Omega} \|f(x,\cdot) f(y,\cdot)\|^p dP \le \varepsilon$ for all $x, y \in X$ with $\|x y\| \le \delta$.

It is clear that every uniformly *P*-continuous rv-function is *P*-continuous, every L^p -continuous at x_0 rv-function is *P*-continuous at x_0 , and every uniformly L^p -continuous rv-function is uniformly *P*-continuous and L^p -continuous.

Remark 2.1. Assume that $f: X \times \Omega \to X$ is an rv-function and there exists an integrable function $\psi: \Omega \to [0, +\infty)$ such that $||f(x, \cdot)||^p \leq \psi$ for all $x \in X$.

- (i) If f is P-continuous at $x_0 \in X$, then f is L^p -continuous at x_0 .
- (ii) If f is uniformly P-continuous, then f is uniformly L^p -continuous.

PROOF. We will prove assertion (i) only. The proof of assertion (ii) is similar.

Fix $\varepsilon > 0$ and a sequence $(x_j)_{j \in \mathbb{N}}$ convergent to x_0 . By *P*-continuity of f at x_0 we choose a $j_0 \in \mathbb{N}$ such that $\int_{\|f(x_j,\cdot)-f(x_0,\cdot)\|^p \ge \varepsilon} \psi dP \le \varepsilon$ for all $j \ge j_0$. Hence

$$\int_{\Omega} \|f(x_j,\cdot) - f(x_0,\cdot)\|^p dP \le 2^{p+1} \int_{\|f(x_j,\cdot) - f(x_0,\cdot)\|^p \ge \varepsilon} \psi dP + \varepsilon \le (2^{p+1}+1)\varepsilon$$

for all $j \geq j_0$.

We say that a sequence $(f_m)_{m \in \mathbb{N}}$ of rv-functions is *P*-continuous at x_0 , *P*-continuous, etc., if f_m is *P*-continuous at x_0 , *P*-continuous, etc., for all $m \in \mathbb{N}$.

We finish this section with two examples. In both of them we assume that $(\Omega, \mathcal{A}, P) = ((0, 1), \mathcal{B}(0, 1), l_1|_{\mathcal{B}(0, 1)}).$

Example 2.2. Consider a function $g: (0, +\infty) \times (0, 1) \to (0, +\infty)$ given by $g(x, \omega) = \frac{\omega}{x}$. A simple verification shows that g is L^p -continuous, but $g^m(x, \cdot) \notin L^p$ for all $x \in (0, 1)$ and $m \geq 2$.

The second example shows that L^p -continuity is stronger than P-continuity.

Example 2.3. Consider a function $f: [0, +\infty) \times (0, 1) \to [0, +\infty)$ given by

$$f(x,\omega) = \begin{cases} x^{-\frac{1}{p}} \chi_{[0,x)}(\omega), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

It is easy to check that f is P-continuous at 0. Since $\int_0^1 |f(x,\cdot)|^p dP = 1$ for all $x \neq 0$, we conclude that $f(x,\cdot) \in L^p$ for all $x \in [0, +\infty)$ and that f is not L^p -continuous at 0.

For p = 1 we can get, by induction,

$$f^{m}(x,\omega_{1},\ldots,\omega_{m}) = \begin{cases} x^{(-1)^{n}}, & \text{if } x \neq 0 \text{ and } \omega_{k} < x^{(-1)^{k+1}} \text{ for all } k \in \{1,\ldots,n\}, \\ 0, & \text{otherwise}, \end{cases}$$

for all $m \in \mathbb{N}$. It follows easily that for every $m \in \mathbb{N}$ the iterate f^{2m+1} is not L^1 -continuous at 0, whereas the sequence $(f^{2m})_{m \in \mathbb{N}}$ is uniformly L^1 -continuous and the sequence $(f^m)_{m \in \mathbb{N}}$ is P^{∞} -continuous.

3. Continuity of limits

Throughout this section we assume that $f: X \times \Omega \to X$ and $\xi: X \times \Omega^{\infty} \to Y$ are rv-functions. We show that continuity of $(f^m)_{m \in \mathbb{N}}$ can be transferred to continuity of its limit function if suitable local uniform convergence holds with respect to the first variable; i.e., every point $x \in X$ has a neighbourhood on which convergence is uniform.

Proposition 3.1. Assume that $(f^m)_{m \in \mathbb{N}}$ is P^{∞} -continuous at $x_0 \in X$.

(i) If

for every $\varepsilon, \beta > 0$ and for each sequence $x_j \to x_0$ there exist $m, j_0 \in \mathbb{N}$ such that, for all $j \ge j_0$, we have $P^{\infty}(\|f^m(x_j, \cdot) - \xi(x_j, \cdot)\| \ge \beta) \le \varepsilon$, then ξ is P^{∞} -continuous at x_0 . (3.1)

(ii) If ξ is P^{∞} -continuous at x_0 and if

for every $\varepsilon, \beta > 0$ there exists m such that $P^{\infty}(||f^m(x_0, \cdot) - \xi(x_0, \cdot)|| \ge \beta) \le \varepsilon$, then (3.1) holds. (3.2)

PROOF. Fix $\varepsilon, \beta > 0$ and a sequence $(x_j)_{j \in \mathbb{N}}$ convergent to x_0 .

(i) Applying (3.1), to a sequence $(y_j)_{j \in \mathbb{N}}$ defined by $y_{2n-1} = x_0$ and $y_{2n} = x_n$ for all $n \in \mathbb{N}$, we conclude that there exist $m, j_0 \in \mathbb{N}$ such that

$$P^{\infty}(\|f^m(x_0,\cdot) - \xi(x_0,\cdot)\| \ge \beta) \le \varepsilon, \tag{3.3}$$

$$P^{\infty}(\|f^m(x_j, \cdot) - \xi(x_j, \cdot)\| \ge \beta) \le \varepsilon \quad \text{for all } j \ge j_0.$$
(3.4)

By P^{∞} -continuity of f^m at x_0 we choose a $j_1 \geq j_0$ such that

$$P^{\infty}(\|f^m(x_j,\cdot) - f^m(x_0,\cdot)\| \ge \beta) \le \varepsilon \quad \text{for all } j \ge j_1.$$
(3.5)

Now (3.4), (3.5) and (3.3) imply

$$P^{\infty}(\|\xi(x_{j},\cdot) - \xi(x_{0},\cdot)\| \ge 3\beta) \le P^{\infty}(\|\xi(x_{j},\cdot) - f^{m}(x_{j},\cdot)\| \ge \beta) + P^{\infty}(\|f^{m}(x_{j},\cdot) - f^{m}(x_{0},\cdot)\| \ge \beta) + P^{\infty}(\|f^{m}(x_{0},\cdot) - \xi(x_{0},\cdot)\| \ge \beta) \le 3\varepsilon$$

for all $j \geq j_1$.

(ii) Applying (3.2) we choose an $m \in \mathbb{N}$ such that (3.3) holds. By P^{∞} continuity of f^m at x_0 we choose a $j_1 \in \mathbb{N}$ such that (3.5) holds, and by P^{∞} continuity of ξ at x_0 we choose a $j_2 \geq j_1$ such that

$$P^{\infty}(\|\xi(x_j,\cdot) - \xi(x_0,\cdot)\| \ge \beta) \le \varepsilon \quad \text{for all } j \ge j_2.$$
(3.6)

From (3.5), (3.3) and (3.6) we conclude that $P^{\infty}(\|f^m(x_j, \cdot) - \xi(x_j, \cdot)\| \ge 3\beta) \le 3\varepsilon$ for all $j \ge j_2$.

If $(f^m)_{m\in\mathbb{N}}$ is P^{∞} -continuous at x_0 and if P^{∞} -lim $_{m\to\infty} f^m(x_0, \cdot) = \xi(x_0, \cdot)$, then Proposition 3.1 shows that P^{∞} -continuity of ξ at x_0 is equivalent to condition (3.1). Hence we have the following corollary.

Corollary 3.2. Assume that $(f^m)_{m \in \mathbb{N}}$ is P^{∞} -continuous. If P^{∞} -lim_{$m \to \infty$} $f^m(x, \cdot) = \xi(x, \cdot)$ locally uniformly, then ξ is P^{∞} -continuous.

Note that in the case where X has an ordered structure the sequence $(f^m(x, \cdot))_{m \in \mathbb{N}}$ forms a submartingale provided the mean $m(x) = \mathbb{E}f(x, \cdot)$ satisfies $m(x) \geq x$ for all $x \in X$ (see [10]; cf. [5]). Consequently, convergence of iterates follows from a submartingale convergence theorem (see [17]). However, a uniform convergence theorem holds only for positive parts of $(f^m(x, \cdot) - \xi(x, \cdot))_{m \in \mathbb{N}}$ (see [9]).

The next proposition may be proved in the same way as Proposition 3.1.

Proposition 3.3. Assume that $(f^m)_{m \in \mathbb{N}}$ is L^p -continuous at $x_0 \in X$ and $\xi(x, \cdot) \in L^p$ for all $x \in X$.

(i) *If*

for every $\varepsilon > 0$ and for each sequence $x_j \to x_0$ there exist $m, j_0 \in \mathbb{N}$ such that, for all $j \ge j_0$, we have $\int_{\Omega^{\infty}} \|f^m(x_j, \cdot) - \xi(x_j, \cdot)\|^p dP^{\infty} \le \varepsilon$, (3.7) then ξ is L^p -continuous at x_0 .

(ii) If ξ is L^p -continuous at x_0 and if for every $\varepsilon > 0$ there exists an $m \in \mathbb{N}$ such that $\int_{\Omega^{\infty}} \|f^m(x_0, \cdot) - \xi(x_0, \cdot)\|^p dP^{\infty} \leq \varepsilon$, then (3.7) holds.

Corollary 3.4. Assume that $(f^m)_{m \in \mathbb{N}}$ is L^p -continuous. If L^p -lim $_{m \to \infty} f^m(x, \cdot) = \xi(x, \cdot)$ locally uniformly, then ξ is L^p -continuous.

Concerning uniform continuity we have the following propositions.

Proposition 3.5. Assume that $(f^m)_{m \in \mathbb{N}}$ is uniformly P^{∞} -continuous. If P^{∞} -lim_{$m\to\infty$} $f^m(x,\cdot) = \xi(x,\cdot)$ uniformly, then ξ is uniformly P^{∞} -continuous.

Proposition 3.6. Assume that $(f^m)_{m \in \mathbb{N}}$ is uniformly L^p -continuous. If L^p -lim_{$m\to\infty$} $f^m(x, \cdot) = \xi(x, \cdot)$ uniformly, then ξ is uniformly L^p -continuous.

4. Continuity of iterates

In this section we are interested in conditions under which sequences of iterates of continuous rv-functions are continuous. For this purpose we will formulate a more general problem.

Until the end we assume that $(\widetilde{\Omega}, \widetilde{\mathcal{A}}, \widetilde{P})$ is a probability space, \widetilde{X} is a nonempty subset of a separable Banach space $(\widetilde{Y}, \|\cdot\|), f: X \times \Omega \to X$ and $g: \widetilde{X} \times \widetilde{\Omega} \to \widetilde{X}$ are rv-functions, $\Phi: \widetilde{X} \to X$ is a continuous function. Define a Φ -composition function $f \circ_{\Phi} g: \widetilde{X} \times \widetilde{\Omega} \times \Omega \to X$ putting

$$f \circ_{\Phi} g(\widetilde{x}, \widetilde{\omega}, \omega) = f(\Phi(g(\widetilde{x}, \widetilde{\omega})), \omega).$$

It is easy to check that $f \circ_{\Phi} g$ is an rv-function with respect to the product space $(\widetilde{\Omega} \times \Omega, \widetilde{\mathcal{A}} \otimes \mathcal{A}, \widetilde{P} \otimes P)$. Clearly, $f \circ_{Id_X} f$ coincides with the second iterate f^2 of f. The problem reads: Under which assumptions the Φ -composition function is continuous?

We begin with a result which can be proved by adapting the proof of Lemma 2.2 from [5]; that lemma is just the first part of our Corollary 4.2 in the case where X = [0, 1].

Theorem 4.1. If g is \widetilde{P} -continuous at $\widetilde{x}_0 \in \widetilde{X}$ and if f is P-continuous at points of the set $\Phi \circ g({\widetilde{x}_0} \times \widetilde{\Omega})$, then $f \circ_{\Phi} g$ is $\widetilde{P} \otimes P$ -continuous at \widetilde{x}_0 .

If there exists a $\widetilde{P} \otimes P$ -integrable function $\psi : \widetilde{\Omega} \times \Omega \to [0, +\infty]$ such that $\|f \circ_{\Phi} g(\widetilde{x}, \cdot)\|^p \leq \psi$ for all $\widetilde{x} \in \widetilde{X}$, then from Remark 2.1(i) we conclude that $\widetilde{P} \otimes P$ continuity in the assertion of Theorem 4.1 can be replaced by L^p -continuity. Note
that such a ψ exists if f is bounded, and in particular, if X is bounded.

Corollary 4.2. If f is P-continuous, then $(f^m)_{m \in \mathbb{N}}$ is P^{∞} -continuous. Moreover, if f is bounded, then $(f^m)_{m \in \mathbb{N}}$ is L^p -continuous.

Concerning uniform continuity in probability we have the following result.

Theorem 4.3. Assume that there exists an a > 0 such that

$$\|\Phi(\widetilde{x}) - \Phi(\widetilde{y})\| \le a \|\widetilde{x} - \widetilde{y}\| \qquad \text{for all } \widetilde{x}, \widetilde{y} \in g(\widetilde{X} \times \Omega).$$

$$(4.1)$$

If g is uniformly \tilde{P} -continuous and if f is uniformly P-continuous, then $f \circ_{\Phi} g$ is uniformly $\tilde{P} \otimes P$ -continuous.

PROOF. Fix $\varepsilon, \beta > 0$. By uniform *P*-continuity of f we choose a $\gamma > 0$ such that $P(||f(x, \cdot) - f(y, \cdot)|| \ge \beta) \le \varepsilon$ for all $x, y \in X$ with $||x - y|| \le a\gamma$. This jointly with (4.1) gives

$$\begin{split} P(\|f \circ_{\Phi} g(\widetilde{x}, \widetilde{\omega}, \cdot) - f \circ_{\Phi} g(\widetilde{y}, \widetilde{\omega}, \cdot)\| \geq \beta) \leq \varepsilon & \text{for all } \widetilde{x}, \widetilde{y} \in \widetilde{X}, \widetilde{\omega} \in \widetilde{\Omega} \\ & \text{with } \|g(\widetilde{x}, \widetilde{\omega}) - g(\widetilde{y}, \widetilde{\omega})\| \leq \gamma. \end{split}$$

Now, by uniform \widetilde{P} -continuity of g we choose a $\delta \leq \gamma$ such that

$$\widetilde{P}(\|g(\widetilde{x},\cdot) - g(\widetilde{y},\cdot)\| \ge \gamma) \le \varepsilon \text{ for all } \widetilde{x}, \widetilde{y} \in \widetilde{X} \text{ with } \|\widetilde{x} - \widetilde{y}\| \le \delta$$

Fix $\widetilde{x}, \widetilde{y} \in \widetilde{X}$ such that $\|\widetilde{x} - \widetilde{y}\| \leq \delta$. Then, by the Fubini theorem, we have

$$\begin{split} (\widetilde{P} \otimes P)(\|f \circ_{\Phi} g(\widetilde{x}, \cdot) - f \circ_{\Phi} g(\widetilde{y}, \cdot)\| \geq \beta) \\ &= \int_{\|g(\widetilde{x}, \widetilde{\omega}) - g(\widetilde{y}, \widetilde{\omega})\| \geq \gamma} P(\|f \circ_{\Phi} g(\widetilde{x}, \widetilde{\omega}, \cdot) - f \circ_{\Phi} g(\widetilde{y}, \widetilde{\omega}, \cdot)\| \geq \beta) d\widetilde{P}(\widetilde{\omega}) \\ &+ \int_{\|g(\widetilde{x}, \widetilde{\omega}) - g(\widetilde{y}, \widetilde{\omega})\| < \gamma} P(\|f \circ_{\Phi} g(\widetilde{x}, \widetilde{\omega}, \cdot) - f \circ_{\Phi} g(\widetilde{y}, \widetilde{\omega}, \cdot)\| \geq \beta) d\widetilde{P}(\widetilde{\omega}) \\ &\leq \widetilde{P}(\|g(\widetilde{x}, \cdot) - g(\widetilde{y}, \cdot)\| \geq \gamma) + \int_{\|g(\widetilde{x}, \widetilde{\omega}) - g(\widetilde{y}, \widetilde{\omega})\| < \gamma} \varepsilon d\widetilde{P}(\widetilde{\omega}) \leq 2\varepsilon, \end{split}$$

which completes the proof.

As an immediate consequence of Theorem 4.3 and Remark 2.1(ii) we get the following corollaries.

Corollary 4.4. Assume that (4.1) holds with some a > 0 and there exists a $\widetilde{P} \otimes P$ -integrable function $\psi : \widetilde{\Omega} \times \Omega \to [0, +\infty]$ such that $\|f \circ_{\Phi} g(\widetilde{x}, \cdot)\|^p \leq \psi$ for all $\widetilde{x} \in \widetilde{X}$. If g is uniformly \widetilde{P} -continuous and if f is uniformly P-continuous, then $f \circ_{\Phi} g$ is uniformly L^p -continuous.

Corollary 4.5. If f is uniformly P-continuous, then $(f^m)_{m\in\mathbb{N}}$ is uniformly P^{∞} -continuous. Moreover, if f is bounded, then $(f^m)_{m\in\mathbb{N}}$ is uniformly L^p -continuous.

Now we pass to L^p -continuity.

Theorem 4.6. Assume that there exist $a, b, c, d, \alpha, \beta \ge 0$ such that

$$\int_{\Omega} \|f(x,\cdot)\|^p dP \le a \|x\|^{\alpha} + b \quad \text{for all } x \in \Phi \circ g(\widetilde{X} \times \widetilde{\Omega}), \tag{4.2}$$

$$\|\Phi(\widetilde{x})\|^{\alpha} \le c \|\widetilde{x}\|^{\beta} + d \quad \text{for all } \widetilde{x} \in g(\widetilde{X} \times \widetilde{\Omega}), \tag{4.3}$$

and for every countable and bounded set $K \subset \widetilde{X}$ the function

$$``\widetilde{\Omega} \ni \widetilde{\omega} \longmapsto \sup \left\{ \|g(\widetilde{x}, \widetilde{\omega})\|^{\beta} : \widetilde{x} \in K \right\} \in [0, +\infty]" \quad is \ \widetilde{P}\text{-integrable.}$$
(4.4)

If g is \widetilde{P} -continuous at $\widetilde{x}_0 \in \widetilde{X}$ and if f is L^p -continuous at points of the set $\Phi \circ g(\{\widetilde{x}_0\} \times \widetilde{\Omega})$, then $f \circ_{\Phi} g$ is L^p -continuous at \widetilde{x}_0 .

PROOF. By (4.2), (4.3) and (4.4) we have $f \circ_{\Phi} g(\tilde{x}, \cdot) \in L^p$ for all $\tilde{x} \in \tilde{X}$. Fix a sequence $(\tilde{x}_j)_{j \in \mathbb{N}}$ convergent to \tilde{x}_0 and for every $j \in \mathbb{N}$ put

$$I_j = \int_{\widetilde{\Omega} \times \Omega} \|f \circ_{\Phi} g(\widetilde{x}_j, \cdot) - f \circ_{\Phi} g(\widetilde{x}_0, \cdot)\|^p d(\widetilde{P} \otimes P).$$

The proof will be completed if we show that every strictly increasing sequence $(j_k)_{k\in\mathbb{N}}$ of positive integers has a subsequence $(j'_k)_{k\in\mathbb{N}}$ such that

$$\lim_{k \to \infty} I_{j'_k} = 0. \tag{4.5}$$

Fix a strictly increasing sequence $(j_k)_{k\in\mathbb{N}}$ of positive integers. By \widetilde{P} -continuity of g we choose its subsequence $(j'_k)_{k\in\mathbb{N}}$ such that $g(\widetilde{x}_{j'_k}, \cdot)$ converges to $g(\widetilde{x}_0, \cdot)$ almost everywhere and put $A = \{\widetilde{\omega} \in \widetilde{\Omega} : \lim_{k\to\infty} g(\widetilde{x}_{j'_k}, \widetilde{\omega}) = g(\widetilde{x}_0, \widetilde{\omega})\}$. Clearly, $\widetilde{P}(A) = 1$. Next, for every $k \in \mathbb{N}$ define a function $\psi_k : A \to [0, +\infty]$ putting

$$\psi_k(\widetilde{\omega}) = \int_{\Omega} \|f \circ_{\Phi} g(\widetilde{x}_{j'_k}, \widetilde{\omega}, \cdot) - f \circ_{\Phi} g(\widetilde{x}_0, \widetilde{\omega}, \cdot)\|^p dP.$$

It is clear that

$$I_{j'_k} = \int_A \psi_k d\widetilde{P}.$$
(4.6)

Continuity of Φ implies $\lim_{k\to\infty} \Phi(g(\widetilde{x}_{j'_k},\widetilde{\omega})) = \Phi(g(\widetilde{x}_0,\widetilde{\omega}))$ for all $\widetilde{\omega} \in A$, and then L^p -continuity of f yields

$$\lim_{k \to \infty} \psi_k(\widetilde{\omega}) = 0 \quad \text{for all } \widetilde{\omega} \in A.$$
(4.7)

Put $K = {\widetilde{x}_{j'_k} : k \in \mathbb{N} } \cup {\widetilde{x}_0}$. Fix $k \in \mathbb{N}$ and $\widetilde{\omega} \in A$. From (4.2) and (4.3) we get

$$\begin{split} \psi_k(\widetilde{\omega}) &\leq 2^p \int_{\Omega} \|f \circ_{\Phi} g(\widetilde{x}_{j'_k}, \widetilde{\omega}, \cdot)\|^p dP + 2^p \int_{\Omega} \|f \circ_{\Phi} g(\widetilde{x}_0, \widetilde{\omega}, \cdot)\|^p dP \\ &\leq 2^p ac \big(\|g(\widetilde{x}_{j'_k}, \widetilde{\omega})\|^{\beta} + \|g(\widetilde{x}_0, \widetilde{\omega})\|^{\beta} \big) + 2^{p+1} (ad+b) \\ &\leq 2^{p+1} ac \sup \big\{ \|g(\widetilde{x}, \widetilde{\omega})\|^{\beta} : \widetilde{x} \in K \big\} + 2^{p+1} (ad+b). \end{split}$$

This jointly with (4.4), (4.6) and (4.7) imply (4.5).

Applying Theorem 4.6 to g = f with $\alpha = \beta = p$ we get the following corollary.

Corollary 4.7. Assume that there exist $a, b \ge 0$ such that $\int_{\Omega} ||f(x, \cdot)||^p dP \le a ||x||^p + b$ for all $x \in X$ and for every bounded set $K \subset X$ there exists an integrable function $\psi : \Omega \to [0, +\infty)$ such that $||f(x, \cdot)||^p \le \psi$ for all $x \in K$. If f is L^p -continuous, then $(f^m)_{m \in \mathbb{N}}$ is L^p -continuous.

Observe that if f and g are non expansive in L^p and if Φ is non expansive, then $f \circ_{\Phi} g$ does. In particular, we have the following proposition.

Proposition 4.8. If $f(x, \cdot) \in L^p$ for all $x \in X$ and if there exists an $a \ge 0$ such that $\int_{\Omega} \|f(x, \cdot) - f(y, \cdot)\|^p dP \le a \|x - y\|^p$ for all $x, y \in X$, then $(f^m)_{m \in \mathbb{N}}$ is uniformly L^p -continuous.

5. Iterative equations

Fix an rv-function $\xi : X \times \Omega^{\infty} \to X$ and define a function $\pi : X \times \mathcal{B}(X) \to [0,1]$ putting

$$\pi(x,B) = P^{\infty}(\xi(x,\cdot) \in B).$$
(5.1)

It is easy to see that for every $x \in X$ the function $\pi(x, \cdot)$ is a probability measure. Assume now that ξ is P^{∞} -continuous at $x_0 \in X$. Fix a continuous and bounded function $g: X \to \mathbb{R}$ and a sequence $(x_j)_{j \in \mathbb{N}}$ convergent

to x_0 . Then $P^{\infty}-\lim_{j\to\infty} g \circ \xi(x_j,\cdot) = g \circ \xi(x_0,\cdot)$ and $g \circ \xi$ is bounded. Hence $\lim_{j\to\infty} \int_X g(x)\pi(x_j,dx) = \int_X g(x)\pi(x_0,dx)$, and in consequence, the sequence $(\pi(x_j,\cdot))_{j\in\mathbb{N}}$ converges weakly to $\pi(x_0,\cdot)$. This jointly with Corollary 3.2 and [11, Theorem 2] gives following proposition concerning solutions of iterative equations.

Proposition 5.1. Assume that f is P-continuous and for every $x \in X$ the sequence $(f^m(x, \cdot))_{m \in \mathbb{N}}$ converges locally uniformly in probability to a random variable $\xi(x, \cdot)$, and $\pi(x, \cdot)$ is the measure given by (5.1). If $\pi(x, \cdot) \neq \pi(y, \cdot)$ for some $x, y \in X$, then there exists a continuous and bounded function $g: X \to \mathbb{R}$ such that the function $\varphi: X \to \mathbb{R}$ defined by

$$\varphi(x) = \int_X g(y) \pi(x, dy)$$

is a bounded, continuous and non-constant solution of the equation

$$\varphi(x) = \int_{\Omega} \varphi(f(x, \cdot)) dP$$

The next example shows a possible application of Proposition 5.1.

Example 5.2. Fix measurable functions $L, M : \Omega \to \mathbb{R}$ and continuous functions $F, G : \mathbb{R} \to \mathbb{R}$. Define a function $f : \mathbb{R}^2 \times \Omega \to \mathbb{R}^2$ putting

$$f(x, y, \omega) = (G(x)L(\omega), F(x)M(\omega) + y).$$

It is clear that f is P-continuous. Iterating f we get

$$f^{m}(x,y,\omega) = \left(G_{m}(x,\omega), \sum_{k=1}^{m} F\left(G_{k-1}(x,\omega)\right)M_{k}(\omega) + y\right)$$

for all $(x, y, \omega) \in \mathbb{R}^2 \times \Omega^\infty$, where $G_k : \mathbb{R} \times \Omega^\infty \to \mathbb{R}$ and $M_k : \Omega^\infty \to \mathbb{R}$ are defined by $G_0(x, \omega) = x$, $G_k(x, \omega) = G(G_{k-1}(x, \omega))L(\omega_k)$, $M_k(\omega) = M(\omega_k)$ for all $k \in \mathbb{N}$.

Assume now that $|G(x)| \leq |x|$ for all $x \in \mathbb{R}$ and there exists an $\alpha > 0$ such that $|F(x)| \leq \alpha |x|$ for all $x \in \mathbb{R}$. Then

$$\|f^{m+n}(x,y,\omega) - f^m(x,y,\omega)\|$$

= $|G_{m+n}(x,\omega) - G_m(x,\omega)| + \left|\sum_{k=m+1}^{m+n} F\left(G_{k-1}(x,\omega)\right)M_k(\omega)\right|$

Limits of random iterates

$$\leq |x| \left(\prod_{k=1}^{m+n} |L_k(\omega)| + \prod_{k=1}^n |L_k(\omega)| \right) + \alpha |x| \sum_{k=m+1}^{m+n} |M_k(\omega)| \prod_{i=1}^{k-1} |L_i(\omega)| \quad (5.2)$$

for all $m, n \in \mathbb{N}$ and $(x, y, \omega) \in \mathbb{R}^2 \times \Omega^\infty$, where $L_i : \Omega^\infty \to \mathbb{R}$ is defined by $L_i(\omega) = L(\omega_i)$ for all $i \in \mathbb{N}$. According to the Kolmogorov law of large numbers the first summand in (5.2) converges to zero provided P(L = 0) = 0 and $-\infty < \mathbb{E} \log |L| < 0$. If additionally $\mathbb{E} \log \max\{|M|, 1\} < +\infty$, then we get the desired convergence of $(f^m(x, y, \cdot))_{m \in \mathbb{N}}$ (see [13]; cf. [8]). It is not difficult to check that the convergence is locally uniform and that the limit function in not constant in (x, y). Proposition 5.1 now shows that the equation

$$\varphi(x,y) = \int_{\Omega} \varphi(G(x)L, F(x)M + y)dP$$

has a bounded, continuous and non-constant solution $\varphi : \mathbb{R}^2 \to \mathbb{R}$.

Remark 5.3. Assume additionally that in Example 5.2 functions $L, M : \Omega \to \mathbb{R}$ are in L^p . Then f is L^p -continuous, and, by Corollary 4.7, we conclude that $(f^m(x, y, \cdot))_{m \in \mathbb{N}}$ is L^p -continuous. Moreover, if $\mathbb{E}|L|^p < 1$, then $(f^m(x, y, \cdot))_{m \in \mathbb{N}}$ converges in L^p (see [19]; cf. [1]); this convergence is locally uniform. Corollary 3.4 now implies L^p -continuity of the limit function.

References

- G. ALSMEYER, A. IKSANOV and U. RÖSLER, On distributional properties of perpetuities, http://arxiv.org/abs/0803.3716.
- [2] L. ARNOLD, Random Dynamical Systems, Lecture Notes in Math. 1609, Springer, Berlin, 1995.
- [3] K. BARON, On the convergence of sequences on iterates of random-valued functions, Aequationes Math. 32 (1987), 240–251.
- [4] K. BARON and W. JARCZYK, Recent results on functional equations in a single variable, perspectives and open problems, *Aequationes Math.* **61** (2001), 1–48.
- [5] K. BARON and W. JARCZYK, Random-valued functions and iterative functional equations, Aequationes Math. 67 (2004), 140–153.
- [6] K. BARON and M. KUCZMA, Iteration of random-valued functions on the unit interval, Colloq. Math. 37 (1977), 263–269.
- [7] PH. DIAMOND, A stochastic functional equation, Aequationes Math. 15 (1977), 225-23.
- [8] A. K. GRINCEVIČJUS, On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines, *Teor. Probability Appl.* **19** (1974), 163–168.
- J. HOFFMANN-JØRGENSEN, Uniform convergence of martingales, Probability in Banach Spaces, 7 (Oberwolfach, 1988), 127–137, Progr. Probab., 21, Birkhäuser, Boston, MA, 1990.

- [10] R. KAPICA, Convergence of sequences of iterates of random-valued vector functions, Colloq. Math. 97 (2003), 1–6.
- [11] R. KAPICA, Sequences of iterates of random-valued vector functions and solutions of related equations, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 213 (2004), 113–118.
- [12] R. KAPICA, Theorems of Thron's type for random-valued vector functions and the Krein-Rutman theorem, Ann. Polon. Math. 85 (2005), 13–24.
- [13] H. KESTEN, Random difference equations and renewal theory for products of random matrices, Acta Math. 131 (1973), 207–248.
- [14] M. KUCZMA, Normalizing factors for iterates of random valued functions, Pr. Nauk. Uniw. Śl. Katow. 6 (1975), 67–72.
- [15] M. KUCZMA, Functional Equations in a Single Variable, Monografie Matematyczne 46 PWN, Polish Scientific Publishers, Warszawa, 1968.
- [16] M. KUCZMA, B. CHOCZEWSKI and R. GER, Iterative Functional Equations, in: Encyclopedia of Mathematics and its Applications, Vol. 32, *Cambridge University Press*, 1990.
- [17] M. LOÉVE, Probability Theory II, Graduate Texts in Mathematics 46, Springer-Verlag, New York – Heidelberg – Berlin, 1978.
- [18] S. P. MEYN and R. L. TWEEDIE, Markov Chains and Stochastic Stability, Communications and Control Engineering Series, Springer-Verlag, London, 1993.
- [19] W. VERVAAT, On a stochastic difference equation and a representation of non-negative infinitely divisible random variables, Adv. Appl. Prob. 11 (1979), 750–783.

RAFAL KAPICA INSTITUTE OF MATHEMATICS SILESIAN UNIVERSITY BANKOWA 14, PL-40-007 KATOWICE POLAND

E-mail: rkapica@math.us.edu.pl

JANUSZ MORAWIEC INSTITUTE OF MATHEMATICS SILESIAN UNIVERSITY BANKOWA 14, PL-40-007 KATOWICE POLAND

E-mail: morawiec@math.us.edu.pl

(Received July 9, 2008; revised March 16, 2009)