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Limits of random iterates

By RAFAL KAPICA (Katowice) and JANUSZ MORAWIEC (Katowice)

Dedicated to Professor Zoltan Dardczy on his 70th birthday

Abstract. Given a probability space (2, A, P), a nonempty subset X of a separa-
ble Banach space Y and an rv-function f : X x Q — X, we assume that the sequence
of iterates of f converges to a function £ : X x 2°° — Y. We give conditions on f and
types of convergence which imply continuity of £ with respect to the first variable. A
possible application of obtained results to iterative equations is presented.

1. Introduction

Throughout this paper we assume that (€2, .4, P) is a probability space, X is
a non-empty subset of a separable Banach space (Y ||-||). By B(X) we denote the
o-algebra of all Borel subsets of X. Following [6] we say that f: X x Q — X is
a random valued vector function (shortly an rv-function) if it is measurable with
respect to the product o-algebra B(X) ® A. Given an rv-function f define the
sequence (f™),en of its iterates as follows (see [6]; cf. [7]):

fl(l’,whwm ) = f@,w), fm+1(17,w1,w27 ) =M@ wnwa, L) W),
for all z € X and (w1,ws,...) € Q. Since, in fact, f™(-,w) depends only on the
first m coordinates of w = (w1, wa,...), we may (and we do) consider this iterate
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as a function defined on X x Q2*° or, alternatively, on X x Q™. It may be shown
that these iterates form a random dynamical system (see [2]) and a homogeneous
MARKOV chain (see [18]). The basic property of iterates of rv-functions says that
they are rv-functions on the product probability space (2°°,.4°°, P>°). Further
properties of iterates of rv-functions were studied in [3], [14] in the scalar case
and in [10], [12] in the vector case.

Iteration is one of the basic technique for solving functional equations in a
single variable which usually leads to solutions expressed by limits of iterates (see
[4], [15], [16]). It turns out that the above definition of iterates of rv-functions
can be successfully adopted in this technique (see [5]). However, we still do not
know much on regularity of limits of convergent iterates of rv-functions.

Assume that for every x € X the sequence (f™(z,-))men of an rv-function
f converges, in some sense, to a function £(z,-). In general £ : X x Q®° — Y is
measurable with respect to the second variable. The problem is: What we need
assume on f and which type of convergence should holds to get an additional
information on £. In the present paper we focus on the problem of continuity of £
with respect to the first variable.

The paper is organized as follows. At the beginning we introduce definitions
of some types of continuity of rv-functions. In the third section we show that if
the sequence of iterates of a given rv-function consists of continuous functions,
then its limit function £ so is, if suitable kind of convergence holds. Next, in the
section four, we study conditions under which continuity of a given rv-function
implies continuity of its sequence of iterates. In the last section we give a possible
application of obtained results to iterative equations.

2. Notation

In the remainder of this paper we assume that p € [1,+00) is fixed.

Let (fim)men, be a sequence of measurable functions, acting from Q to X. By
P-lim,, .o fin = fo we denote the convergence in probability P and, if moreover,
fm € LP(Q, A, P) for all m € Ny, then by LP-lim,, oo frn = fo we denote the
convergence in LP. Here and later we consider integrability in the Bochner sense.

Motivated by [5] we introduce a few kinds of regularity of rv-functions.

We say that an rv-function f: X x Q — X is:

— P-continuous at xo € X if P-lim; .o f(xj,-) = f(xo,-) for every sequence

(xj)jen of points from X convergent to xo;

— P-continuous if f is P-continuous at every point from X;
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— Uniformly P-continuous if for any e, 3 > 0 there exists a § > 0 such that
P(||f(z,)) = fly,")|]| = B) <e forall z,y € X with ||z —y| < 4.

Assume that f : X xQ — X is an rv-function such that f(z,-) € LP for all z € X.
We say that f is:

— LP-continuous at xg € X if LP-lim; .o f(z4,-) = f(xo,-) for every sequence
(xj)jen of points from X convergent to xo;

— LP-continuous if f is LP-continuous at every point from X;

— Uniformly LP-continuous if for every € > 0 there exists a § > 0 such that
fQ If(x,) = f(y,)||[PdP < ¢ for all z,y € X with ||z — y|| < 4.

It is clear that every uniformly P-continuous rv-function is P-continuous, every
LP-continuous at xo rv-function is P-continuous at xg, and every uniformly LP-
continuous rv-function is uniformly P-continuous and LP-continuous.

Remark 2.1. Assume that f: X x  — X is an rv-function and there exists
an integrable function ¢ : Q — [0, +00) such that || f(z,-)||? < ¢ for all z € X.
(i) If f is P-continuous at zg € X, then f is LP-continuous at xg.
(ii) If f is uniformly P-continuous, then f is uniformly LP-continuous.
PROOF. We will prove assertion (i) only. The proof of assertion (ii) is similar.

Fix € > 0 and a sequence (z;);en convergent to xo. By P-continuity of f
at o we choose a jp € N such that fo(w_ £ YdP < ¢ for all j > jo.
J

H xo,)[|[P>€
ence
/ 1£(25.) — (o, -)|[PdP < 2741 / GdP + = < (27 1 1)e
Q [ f(z,")—f(zo,")||P>e
for all j > jo. O

We say that a sequence (fy,)men of rv-functions is P-continuous at zg, P-
continuous, etc., if f,, is P-continuous at zy, P-continuous, etc., for all m € N.
We finish this section with two examples. In both of them we assume that

(QvAv P) = ((07 1)78(07 1)7ll|B(0,1))'

Ezample 2.2. Consider a function g : (0,+00) x (0,1) — (0,+00) given by
g(z,w) = £. A simple verification shows that g is LP-continuous, but ¢"(z,-) &
LP for all z € (0,1) and m > 2.

The second example shows that LP-continuity is stronger than P-continuity.
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Ezample 2.3. Consider a function f : [0, +00) x (0,1) — [0, 4+00) given by

1

I_FX[O,;E)(W)a if z # 0,
0, if x =0.

f(wi) =

It is easy to check that f is P-continuous at 0. Since fol |f(z,-)|PdP = 1 for
all x # 0, we conclude that f(z,) € LP for all z € [0,+00) and that f is not
LP-continuous at 0.

For p =1 we can get, by induction,

D" if 2 £ 0 and wy, < 2D for all ke {1,...,n},
M, w1,y . wm) =
0, otherwise,

for all m € N. It follows easily that for every m € N the iterate f2™*! is not
L'-continuous at 0, whereas the sequence (f?™),en is uniformly L!-continuous
and the sequence (f™)men is P*°-continuous.

3. Continuity of limits

Throughout this section we assume that f: X xQ — X and ¢ : X xQ*° - Y
are rv-functions. We show that continuity of (f™)men can be transferred to
continuity of its limit function if suitable local uniform convergence holds with
respect to the first variable; i.e., every point € X has a neighbourhood on which
convergence is uniform.

Proposition 3.1. Assume that (f™)n,en is P*°-continuous at xg € X.
(i) If

for every €, 3> 0 and for each sequence x; — x there exist m, jo € N

such that, for all j > jo, we have P (|| f™(xj,-) —&(xj,-)|| > B) <e, (8:-1)
then £ is P*°-continuous at x.

(if) If £ is P*-continuous at xo and if
for every e, > 0 there exists m such that P> (||f™(zo,:) — (3.2)

§(wo, )| = B) <e,
then (3.1) holds.

PRrROOF. Fix ¢, 8 > 0 and a sequence (z;);en convergent to .
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(1) Applying (3.1), to a sequence (y;),en defined by yon—1 = xo and Yo, = xp
for all n € N, we conclude that there exist m, jo € N such that

PE([f™ (0, ) = &(xo, )| 2 B) <, (3.3)
P (g,) = &(xj,) | =2 B) < e forall j = jo. (3.4)

By P*-continuity of f™ at xy we choose a j; > jo such that
Pl f™(xz4,) = f™(xo, )| = B) <e forall j>j. (3.5)
Now (3.4), (3.5) and (3.3) imply

P(l€(xs, ) = &(@o, )l = 36) < P=([I§(x;,-) = f™ (), )] = B)
+PE( (g, ) = [ (@o, ) = B) + P (1™ (w0, ) — &(o, )| = B) < 3¢

for all 7 > j;.

(ii) Applying (3.2) we choose an m € N such that (3.3) holds. By P>-
continuity of f™ at xy we choose a j; € N such that (3.5) holds, and by P>°-
continuity of £ at xp we choose a j2 > j; such that

PE(l€(s, ) = E(xo, )| = B) <& forall j > jo. (3.6)

From (3.5), (3.3) and (3.6) we conclude that P>°(|| f(x;,-) —&(x;, )| > 36) < 3e
for all 7 > jo. (|

If (f™)men is P°°-continuous at xg and if P®-lim,, ., f™(zo,) = {(xo, ),
then Proposition 3.1 shows that P°°-continuity of £ at x( is equivalent to condition
(3.1). Hence we have the following corollary.

Corollary 3.2. Assume that (f™)men Is P>°-continuous. If
P-limy, o f™(x,-) = &(x, ) locally uniformly, then & is P*°-continuous.

Note that in the case where X has an ordered structure the sequence
(f™(z,"))men forms a submartingale provided the mean m(x) = Ef(x, -) satisfies
m(z) > x for all z € X (see [10]; cf. [5]). Consequently, convergence of iterates
follows from a submartingale convergence theorem (see [17]). However, a uni-
form convergence theorem holds only for positive parts of (f™(x,-) — &(z,))men
(see [9]).

The next proposition may be proved in the same way as Proposition 3.1.
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Proposition 3.3. Assume that (f™)men is LP-continuous at o € X and
&(z,-) e LP for allx € X.

(i) If

for every € > 0 and for each sequence x; — xg there exist m, jo € N

such that, for all j > jo, we have [, || f™(xj,-)—&(zj,-)|[PdP>® < €,
then £ is LP-continuous at xg.

(3.7)

(i) If € is LP-continuous at xo and if for every € > 0 there exists an m € N
such that [o.. || f™(x0,-) — &(xo,-)|[PdP> < e, then (3.7) holds.

Corollary 3.4. Assume that (f™)men is LP-continuous. If
LP-lim,,— o f™(x,-) = &(x, ) locally uniformly, then & is LP-continuous.

Concerning uniform continuity we have the following propositions.

Proposition 3.5. Assume that (f™)men is uniformly P°°-continuous. If
P-limy, o0 f™(x,-) = &(x, ) uniformly, then £ is uniformly P°°-continuous.

Proposition 3.6. Assume that (f™)men is uniformly LP-continuous. If
LP-limy, o0 f™(x, ) = &(x, ) uniformly, then £ is uniformly LP-continuous.

4. Continuity of iterates

In this section we are interested in conditions under which sequences of iter-
ates of continuous rv-functions are continuous. For this purpose we will formulate
a more general problem.

Until the end we assume that (SNQ,.Z, ]5) is a probability space, X is a non-
empty subset of a separable Banach space (Y,||-]]), f: X xQ — X and g :
X xQ — X are rv-functions, ® : X — X is a continuous function. Define a
®-composition function fogg : XxQOxQ— X putting

fo(bg(f,a},w) = f(@(g(’:f,&)),w).

It is easy to check that fogg is an rv-function with respect to the product space
((NZ x QA® AP ® P). Clearly, fomu, f coincides with the second iterate f?
of f. The problem reads: Under which assumptions the ®-composition function
is continuous?

We begin with a result which can be proved by adapting the proof of Lem-
ma 2.2 from [5]; that lemma is just the first part of our Corollary 4.2 in the case
where X = [0, 1].
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Theorem 4.1. If g is P-continuous at Zo € X and if f is P-continuous at
points of the set ® o g({Zp} x Q), then fogg is P ® P-continuous at Zy.

If there exists a P ® P-integrable function 1 :  x Q — [0, 40c] such that
| foag(Z,-)||P < ¢ for all ¥ € X, then from Remark 2.1(i) we conclude that P® P-
continuity in the assertion of Theorem 4.1 can be replaced by LP-continuity. Note
that such a 1 exists if f is bounded, and in particular, if X is bounded.

Corollary 4.2. If f is P-continuous, then (f™),¢cn is P*°-continuous. More-
over, if f is bounded, then (f™)men Is LP-continuous.

Concerning uniform continuity in probability we have the following result.
Theorem 4.3. Assume that there exists an a > 0 such that
@) — @(y)| < allz— 7| for all T,y € g(X x Q). (4.1)
If g is uniformly P-continuous and if f is uniformly P-continuous, then fogg is
uniformly P ® P-continuous.

ProoF. Fix ¢,3 > 0. By uniform P-continuity of f we choose a v > 0 such
that P(||f(z,-)— f(y,-)|| > B) <eforall z,y € X with ||x—y]|| < ay. This jointly
with (4.1) gives

P(|foag(Z,@,-) — foag(§,@,)| > B) <e  forallZ,je X,ueQ
with [l9(7,3) — 97, 3)]| < 7.

Now, by uniform ﬁ-continuity of g we choose a § < such that
P(lg(@,) — 95, )l = ) < & for all &5 € X with & — ]| < 6.
Fix 7,7 € X such that ||Z — 7| < 8. Then, by the Fubini theorem, we have

(P @ P)(|[fosg(@ ) = foug (@)l = B)

P(|foag(®@,) = foug(y,d,-)l| > B)dP(@)

/lg(f@)—g(ii@)lz"y
4 / P(| foog(@.3.-) — Foug(d.3, )| = A)AP@G)

llg(@.@)—g(g,@)lI<v

< B(lg(@ ) — 9@ ) =) + / cdP(®) < 2,

llg(Z,)—g(7,@)l|<v

which completes the proof. (|
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As an immediate consequence of Theorem 4.3 and Remark 2.1(ii) we get the
following corollaries.

Corollary 4.4. Assume that (4.1) holds with some a > 0 and there exists
a P ® P-integrable function 1 : Q x Q — [0,40c] such that ||foeg(Z,-)||P < ¥
forallZ € X. If g is uniformly P-continuous and if f is uniformly P-continuous,
then fogg is uniformly LP-continuous.

Corollary 4.5. If f is uniformly P-continuous, then (f™)men is uniformly
P -continuous. Moreover, if f is bounded, then (f™)men is uniformly LP-

continuous.
Now we pass to LP-continuity.

Theorem 4.6. Assume that there exist a,b, c,d,a, 3 > 0 such that
/Q £ (z, )|[PdP < al|z]|* +b for allz € ® o g(X x Q), (4.2)
|®@)|| < ¢l|Z]|® +d forall 7 € g(X x ), (4.3)
and for every countable and bounded set K C X the function
“05 O — sup {||g(9?,c~u)||ﬁ :Te K} e[0,+00]” s P-integrable. (4.4)

If g is P-continuous at %o € X and if f is LP-continuous at points of the set
Do g({Zo} x N), then fogg is LP-continuous at Zg.

PROOF. By (4.2), (4.3) and (4.4) we have fogg(Z,-) € LP for all T € X.
Fix a sequence (Z;);en convergent to Ty and for every j € N put
L= [ foag(@) ~ foagl@n. )|Pd(P o )
axQ
The proof will be completed if we show that every strictly increasing sequence
(Jx)ken of positive integers has a subsequence (j;)ren such that
khl]go I, =0. (4.5)
Fix a strictly increasing sequence (j )xen of positive integers. By P-continuity
of g we choose its subsequence (j;)ren such that g(Z;/,-) converges to g(%o,")

almost everywhere and put A = {& € Q : limy_o0 9(zj,w) = g(To,w)}. Clearly,
P(A) = 1. Next, for every k € N define a function ¢, : A — [0, +-00] putting

(@) = /Q 1forg(@;.@, ) — foug(Fo, B, )||PdP.
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It is clear that
Ijé = / YrdP. (4.6)
A

Continuity of ® implies limy oo ®(g(7;/,w)) = P(g9(Zo,w)) for all w € A,
and then LP-continuity of f yields

klim Yp(@) =0 forallw e A. (4.7)

Put K ={z;, : k € N} U{Zo}. Fix k € Nand w € A. From (4.2) and (4.3)
we get

Ge(@) < 20 /Q | fong(F;s, @, ) |PdP + 27 /Q |fong(Fo, 3, )|PdP

< 2ac(lg(@;, )17 + (@0, @)[1%) + 27 (ad + b)
< 2p+1acsup{|\g(ff,@)||ﬁ TeK}+ 2P (ad + b).

This jointly with (4.4), (4.6) and (4.7) imply (4.5). O
Applying Theorem 4.6 to g = f with a = § = p we get the following corollary.

Corollary 4.7. Assume that there exist a,b > 0 such that [, || f(z,-)|[PdP <
al||z||P+b for all z € X and for every bounded set K C X there exists an integrable
function ¢ : Q@ — [0,400) such that ||f(z,)||? < ¢ for all x € K. If f is LP-
continuous, then (f™)men Is LP-continuous.

Observe that if f and g are non expansive in LP and if ® is non expansive,
then fogg does. In particular, we have the following proposition.

Proposition 4.8. If f(z,-) € L? for all z € X and if there exists an a > 0
such that fQ If(x,) = f(y,)||PdP < a||lx — y||P for all z,y € X, then (f™)men is
uniformly LP-continuous.

5. Iterative equations

Fix an rv-function £ : X x 2 — X and define a function 7 : X x B(X) —
[0, 1] putting
#(, B) = P¥(¢(x,") € B). (5.1)

It is easy to see that for every x € X the function m(x,-) is a probability
measure. Assume now that £ is P®-continuous at zp € X. Fix a contin-
uous and bounded function ¢ : X — R and a sequence (z;)jen convergent
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to zo. Then P™-lim; . g o &(z;,-) = g o &(zo,-) and g o is bounded. Hence
limj oo [y 9(x)7(z5,dz) = [y g(@)7(x0,dz), and in consequence, the sequence
(m(zj,-));jen converges weakly to m(zo, ). This jointly with Corollary 3.2 and [11,
Theorem 2] gives following proposition concerning solutions of iterative equations.

Proposition 5.1. Assume that f is P-continuous and for every x € X the
sequence (f™(x,))men converges locally uniformly in probability to a random
variable &(z,-), and w(x,-) is the measure given by (5.1). If w(x,-) # «w(y,-) for
some x,y € X, then there exists a continuous and bounded function g : X — R
such that the function ¢ : X — R defined by

M@:A}@ﬂ%@)

is a bounded, continuous and non-constant solution of the equation

ﬂ@:AﬂKUWP

The next example shows a possible application of Proposition 5.1.
Ezxample 5.2. Fix measurable functions L, M : 2 — R and continuous func-
tions F,G : R — R. Define a function f : R? x Q — R? putting
[z, y,w) = (G(2)L(w), F(z)M (w) +y).

It is clear that f is P-continuous. Iterating f we get

fm(x,y,w) = (Gm(.’II,W), ZF(Gk—l(xuw))Mk(w) + y)
k=1

for all (z,y,w) € R? x 0%, where Gj, : R x 2° — R and M} : Q2 — R are

defined by Go(z,w) = z, Gi(r,w) = G(Gr-1(z,w))L(wg), Mi(w) = M (wy) for

all k € N.

Assume now that |G(z)| < |z| for all z € R and there exists an a > 0 such
that |F(z)| < a|z| for all z € R. Then

Hfer"(x,y,w) - fm(xvyaw)n
m-+n

3 F(Gk,l(x,w))Mk(w)

k=m+1

= |Gimgn(7,w) — Gu(z,w)| +
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m+n n m+n k-1
<zl | I 1Ze@)+ [T 1Ze@)] ) +elz] Y M) ] 1Ziw)] (5.2)
k=1 k=1 k=m+1 i=1

for all m,n € N and (x,y,w) € R? x Q®, where L; : 2 — R is defined by
L;(w) = L(w;) for all i € N. According to the Kolmogorov law of large numbers
the first summand in (5.2) converges to zero provided P(L = 0) = 0 and —oco <
Elog|L| < 0. If additionally Elog max{|M]|,1} < 400, then we get the desired
convergence of (f™(x,y,-))men (see [13]; cf. [8]). It is not difficult to check that
the convergence is locally uniform and that the limit function in not constant in
(z,y). Proposition 5.1 now shows that the equation

o(z,y) = /Q o(G(x)L, F(x)M + y)dP

has a bounded, continuous and non-constant solution ¢ : R? — R.

Remark 5.3. Assume additionally that in Example 5.2 functions L, M : Q — R
are in LP. Then f is LP-continuous, and, by Corollary 4.7, we conclude that
(f™(x,y,"))men is LP-continuous. Moreover, if E|L|? < 1, then (f™(x,y,))men
converges in LP (see [19]; cf. [1]); this convergence is locally uniform. Corollary 3.4
now implies LP-continuity of the limit function.
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