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Limits of random iterates

By RAFA L KAPICA (Katowice) and JANUSZ MORAWIEC (Katowice)

Dedicated to Professor Zoltán Daróczy on his 70th birthday

Abstract. Given a probability space (Ω,A, P ), a nonempty subset X of a separa-

ble Banach space Y and an rv-function f : X × Ω → X, we assume that the sequence

of iterates of f converges to a function ξ : X × Ω∞ → Y . We give conditions on f and

types of convergence which imply continuity of ξ with respect to the first variable. A

possible application of obtained results to iterative equations is presented.

1. Introduction

Throughout this paper we assume that (Ω,A, P ) is a probability space, X is

a non-empty subset of a separable Banach space (Y, ‖·‖). By B(X) we denote the

σ-algebra of all Borel subsets of X . Following [6] we say that f : X × Ω → X is

a random valued vector function (shortly an rv-function) if it is measurable with

respect to the product σ-algebra B(X) ⊗ A. Given an rv-function f define the

sequence (fm)m∈N of its iterates as follows (see [6]; cf. [7]):

f1(x, ω1, ω2, . . . ) = f(x, ω1), fm+1(x, ω1, ω2, . . . ) = f(fm(x, ω1, ω2, . . . ), ωm+1),

for all x ∈ X and (ω1, ω2, . . . ) ∈ Ω∞. Since, in fact, fm(·, ω) depends only on the

first m coordinates of ω = (ω1, ω2, . . . ), we may (and we do) consider this iterate
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as a function defined on X × Ω∞ or, alternatively, on X × Ωm. It may be shown

that these iterates form a random dynamical system (see [2]) and a homogeneous

Markov chain (see [18]). The basic property of iterates of rv-functions says that

they are rv-functions on the product probability space (Ω∞,A∞, P∞). Further

properties of iterates of rv-functions were studied in [3], [14] in the scalar case

and in [10], [12] in the vector case.

Iteration is one of the basic technique for solving functional equations in a

single variable which usually leads to solutions expressed by limits of iterates (see

[4], [15], [16]). It turns out that the above definition of iterates of rv-functions

can be successfully adopted in this technique (see [5]). However, we still do not

know much on regularity of limits of convergent iterates of rv-functions.

Assume that for every x ∈ X the sequence (fm(x, ·))m∈N of an rv-function

f converges, in some sense, to a function ξ(x, ·). In general ξ : X × Ω∞ → Y is

measurable with respect to the second variable. The problem is: What we need

assume on f and which type of convergence should holds to get an additional

information on ξ. In the present paper we focus on the problem of continuity of ξ

with respect to the first variable.

The paper is organized as follows. At the beginning we introduce definitions

of some types of continuity of rv-functions. In the third section we show that if

the sequence of iterates of a given rv-function consists of continuous functions,

then its limit function ξ so is, if suitable kind of convergence holds. Next, in the

section four, we study conditions under which continuity of a given rv-function

implies continuity of its sequence of iterates. In the last section we give a possible

application of obtained results to iterative equations.

2. Notation

In the remainder of this paper we assume that p ∈ [1,+∞) is fixed.

Let (fm)m∈N0
be a sequence of measurable functions, acting from Ω to X . By

P -limm→∞ fm = f0 we denote the convergence in probability P and, if moreover,

fm ∈ Lp(Ω,A, P ) for all m ∈ N0, then by Lp-limm→∞ fm = f0 we denote the

convergence in Lp. Here and later we consider integrability in the Bochner sense.

Motivated by [5] we introduce a few kinds of regularity of rv-functions.

We say that an rv-function f : X × Ω → X is:

– P -continuous at x0 ∈ X if P -limj→∞ f(xj , ·) = f(x0, ·) for every sequence

(xj)j∈N of points from X convergent to x0;

– P -continuous if f is P -continuous at every point from X ;
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– Uniformly P -continuous if for any ε, β > 0 there exists a δ > 0 such that

P (‖f(x, ·) − f(y, ·)‖ ≥ β) ≤ ε for all x, y ∈ X with ‖x− y‖ ≤ δ.

Assume that f : X×Ω → X is an rv-function such that f(x, ·) ∈ Lp for all x ∈ X .

We say that f is:

– Lp-continuous at x0 ∈ X if Lp-limj→∞ f(xj , ·) = f(x0, ·) for every sequence

(xj)j∈N of points from X convergent to x0;

– Lp-continuous if f is Lp-continuous at every point from X ;

– Uniformly Lp-continuous if for every ε > 0 there exists a δ > 0 such that∫
Ω
‖f(x, ·) − f(y, ·)‖pdP ≤ ε for all x, y ∈ X with ‖x− y‖ ≤ δ.

It is clear that every uniformly P -continuous rv-function is P -continuous, every

Lp-continuous at x0 rv-function is P -continuous at x0, and every uniformly Lp-

continuous rv-function is uniformly P -continuous and Lp-continuous.

Remark 2.1. Assume that f : X × Ω → X is an rv-function and there exists

an integrable function ψ : Ω → [0,+∞) such that ‖f(x, ·)‖p ≤ ψ for all x ∈ X .

(i) If f is P -continuous at x0 ∈ X , then f is Lp-continuous at x0.

(ii) If f is uniformly P -continuous, then f is uniformly Lp-continuous.

Proof. We will prove assertion (i) only. The proof of assertion (ii) is similar.

Fix ε > 0 and a sequence (xj)j∈N convergent to x0. By P -continuity of f

at x0 we choose a j0 ∈ N such that
∫
‖f(xj ,·)−f(x0,·)‖p≥ε

ψdP ≤ ε for all j ≥ j0.

Hence

∫

Ω

‖f(xj , ·) − f(x0, ·)‖
pdP ≤ 2p+1

∫

‖f(xj,·)−f(x0,·)‖p≥ε

ψdP + ε ≤ (2p+1 + 1)ε

for all j ≥ j0. �

We say that a sequence (fm)m∈N of rv-functions is P -continuous at x0, P -

continuous, etc., if fm is P -continuous at x0, P -continuous, etc., for all m ∈ N.

We finish this section with two examples. In both of them we assume that

(Ω,A, P ) = ((0, 1),B(0, 1), l1|B(0,1)).

Example 2.2. Consider a function g : (0,+∞) × (0, 1) → (0,+∞) given by

g(x, ω) = ω
x
. A simple verification shows that g is Lp-continuous, but gm(x, ·) 6∈

Lp for all x ∈ (0, 1) and m ≥ 2.

The second example shows that Lp-continuity is stronger than P -continuity.
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Example 2.3. Consider a function f : [0,+∞) × (0, 1) → [0,+∞) given by

f(x, ω) =





x−

1
pχ[0,x)(ω), if x 6= 0,

0, if x = 0.

It is easy to check that f is P -continuous at 0. Since
∫ 1

0
|f(x, ·)|pdP = 1 for

all x 6= 0, we conclude that f(x, ·) ∈ Lp for all x ∈ [0,+∞) and that f is not

Lp-continuous at 0.

For p = 1 we can get, by induction,

fm(x, ω1, . . . , ωm) =




x(−1)n

, if x 6= 0 and ωk < x(−1)k+1

for all k∈ {1, . . . , n},

0, otherwise,

for all m ∈ N. It follows easily that for every m ∈ N the iterate f2m+1 is not

L1-continuous at 0, whereas the sequence (f2m)m∈N is uniformly L1-continuous

and the sequence (fm)m∈N is P∞-continuous.

3. Continuity of limits

Throughout this section we assume that f : X×Ω → X and ξ : X×Ω∞ → Y

are rv-functions. We show that continuity of (fm)m∈N can be transferred to

continuity of its limit function if suitable local uniform convergence holds with

respect to the first variable; i.e., every point x ∈ X has a neighbourhood on which

convergence is uniform.

Proposition 3.1. Assume that (fm)m∈N is P∞-continuous at x0 ∈ X .

(i) If

for every ε, β > 0 and for each sequence xj →x0 there exist m, j0 ∈N

such that, for all j≥ j0, we have P∞(‖fm(xj , ·)− ξ(xj , ·)‖ ≥ β) ≤ ε,
(3.1)

then ξ is P∞-continuous at x0.

(ii) If ξ is P∞-continuous at x0 and if

for every ε, β > 0 there exists m such that P∞(‖fm(x0, ·) −

ξ(x0, ·)‖ ≥ β) ≤ ε,
(3.2)

then (3.1) holds.

Proof. Fix ε, β > 0 and a sequence (xj)j∈N convergent to x0.
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(i) Applying (3.1), to a sequence (yj)j∈N defined by y2n−1 = x0 and y2n = xn

for all n ∈ N, we conclude that there exist m, j0 ∈ N such that

P∞(‖fm(x0, ·) − ξ(x0, ·)‖ ≥ β) ≤ ε, (3.3)

P∞(‖fm(xj , ·) − ξ(xj , ·)‖ ≥ β) ≤ ε for all j ≥ j0. (3.4)

By P∞-continuity of fm at x0 we choose a j1 ≥ j0 such that

P∞(‖fm(xj , ·) − fm(x0, ·)‖ ≥ β) ≤ ε for all j ≥ j1. (3.5)

Now (3.4), (3.5) and (3.3) imply

P∞(‖ξ(xj , ·) − ξ(x0, ·)‖ ≥ 3β) ≤ P∞(‖ξ(xj , ·) − fm(xj , ·)‖ ≥ β)

+P∞(‖fm(xj , ·) − fm(x0, ·)‖ ≥ β) + P∞(‖fm(x0, ·) − ξ(x0, ·)‖ ≥ β) ≤ 3ε

for all j ≥ j1.

(ii) Applying (3.2) we choose an m ∈ N such that (3.3) holds. By P∞-

continuity of fm at x0 we choose a j1 ∈ N such that (3.5) holds, and by P∞-

continuity of ξ at x0 we choose a j2 ≥ j1 such that

P∞(‖ξ(xj , ·) − ξ(x0, ·)‖ ≥ β) ≤ ε for all j ≥ j2. (3.6)

From (3.5), (3.3) and (3.6) we conclude that P∞(‖fm(xj , ·)−ξ(xj , ·)‖ ≥ 3β) ≤ 3ε

for all j ≥ j2. �

If (fm)m∈N is P∞-continuous at x0 and if P∞-limm→∞ fm(x0, ·) = ξ(x0, ·),

then Proposition 3.1 shows that P∞-continuity of ξ at x0 is equivalent to condition

(3.1). Hence we have the following corollary.

Corollary 3.2. Assume that (fm)m∈N is P∞-continuous. If

P∞-limm→∞ fm(x, ·) = ξ(x, ·) locally uniformly, then ξ is P∞-continuous.

Note that in the case where X has an ordered structure the sequence

(fm(x, ·))m∈N forms a submartingale provided the mean m(x) = Ef(x, ·) satisfies

m(x) ≥ x for all x ∈ X (see [10]; cf. [5]). Consequently, convergence of iterates

follows from a submartingale convergence theorem (see [17]). However, a uni-

form convergence theorem holds only for positive parts of (fm(x, ·) − ξ(x, ·))m∈N

(see [9]).

The next proposition may be proved in the same way as Proposition 3.1.
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Proposition 3.3. Assume that (fm)m∈N is Lp-continuous at x0 ∈ X and

ξ(x, ·) ∈ Lp for all x ∈ X .

(i) If

for every ε > 0 and for each sequence xj → x0 there exist m, j0 ∈ N

such that, for all j ≥ j0, we have
∫
Ω∞

‖fm(xj , ·)−ξ(xj , ·)‖
pdP∞ ≤ ε,

(3.7)

then ξ is Lp-continuous at x0.

(ii) If ξ is Lp-continuous at x0 and if for every ε > 0 there exists an m ∈ N

such that
∫
Ω∞

‖fm(x0, ·) − ξ(x0, ·)‖
pdP∞ ≤ ε, then (3.7) holds.

Corollary 3.4. Assume that (fm)m∈N is Lp-continuous. If

Lp-limm→∞ fm(x, ·) = ξ(x, ·) locally uniformly, then ξ is Lp-continuous.

Concerning uniform continuity we have the following propositions.

Proposition 3.5. Assume that (fm)m∈N is uniformly P∞-continuous. If

P∞-limm→∞ fm(x, ·) = ξ(x, ·) uniformly, then ξ is uniformly P∞-continuous.

Proposition 3.6. Assume that (fm)m∈N is uniformly Lp-continuous. If

Lp-limm→∞ fm(x, ·) = ξ(x, ·) uniformly, then ξ is uniformly Lp-continuous.

4. Continuity of iterates

In this section we are interested in conditions under which sequences of iter-

ates of continuous rv-functions are continuous. For this purpose we will formulate

a more general problem.

Until the end we assume that (Ω̃, Ã, P̃ ) is a probability space, X̃ is a non-

empty subset of a separable Banach space (Ỹ , ‖ · ‖), f : X × Ω → X and g :

X̃ × Ω̃ → X̃ are rv-functions, Φ : X̃ → X is a continuous function. Define a

Φ-composition function f ◦Φg : X̃ × Ω̃ × Ω → X putting

f ◦Φg(x̃, ω̃, ω) = f(Φ(g(x̃, ω̃)), ω).

It is easy to check that f◦Φg is an rv-function with respect to the product space

(Ω̃ × Ω, Ã ⊗ A, P̃ ⊗ P ). Clearly, f ◦IdX
f coincides with the second iterate f2

of f . The problem reads: Under which assumptions the Φ-composition function

is continuous?

We begin with a result which can be proved by adapting the proof of Lem-

ma 2.2 from [5]; that lemma is just the first part of our Corollary 4.2 in the case

where X = [0, 1].
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Theorem 4.1. If g is P̃ -continuous at x̃0 ∈ X̃ and if f is P -continuous at

points of the set Φ ◦ g({x̃0} × Ω̃), then f ◦Φg is P̃ ⊗ P -continuous at x̃0.

If there exists a P̃ ⊗ P -integrable function ψ : Ω̃ × Ω → [0,+∞] such that

‖f◦Φg(x̃, ·)‖
p ≤ ψ for all x̃ ∈ X̃ , then from Remark 2.1(i) we conclude that P̃ ⊗P -

continuity in the assertion of Theorem 4.1 can be replaced by Lp-continuity. Note

that such a ψ exists if f is bounded, and in particular, if X is bounded.

Corollary 4.2. If f is P -continuous, then (fm)m∈N is P∞-continuous. More-

over, if f is bounded, then (fm)m∈N is Lp-continuous.

Concerning uniform continuity in probability we have the following result.

Theorem 4.3. Assume that there exists an a > 0 such that

‖Φ(x̃) − Φ(ỹ)‖ ≤ a‖x̃− ỹ‖ for all x̃, ỹ ∈ g(X̃ × Ω̃). (4.1)

If g is uniformly P̃ -continuous and if f is uniformly P -continuous, then f ◦Φg is

uniformly P̃ ⊗ P -continuous.

Proof. Fix ε, β > 0. By uniform P -continuity of f we choose a γ > 0 such

that P (‖f(x, ·)−f(y, ·)‖ ≥ β) ≤ ε for all x, y ∈ X with ‖x−y‖ ≤ aγ. This jointly

with (4.1) gives

P (‖f ◦Φg(x̃, ω̃, ·) − f ◦Φg(ỹ, ω̃, ·)‖ ≥ β) ≤ ε for all x̃, ỹ ∈ X̃, ω̃ ∈ Ω̃

with ‖g(x̃, ω̃) − g(ỹ, ω̃)‖ ≤ γ.

Now, by uniform P̃ -continuity of g we choose a δ ≤ γ such that

P̃ (‖g(x̃, ·) − g(ỹ, ·)‖ ≥ γ) ≤ ε for all x̃, ỹ ∈ X̃ with ‖x̃− ỹ‖ ≤ δ.

Fix x̃, ỹ ∈ X̃ such that ‖x̃− ỹ‖ ≤ δ. Then, by the Fubini theorem, we have

(P̃ ⊗ P )(‖f ◦Φg(x̃, ·) − f ◦Φg(ỹ, ·)‖ ≥ β)

=

∫

‖g(ex,eω)−g(ey,eω)‖≥γ

P (‖f ◦Φg(x̃, ω̃, ·) − f ◦Φg(ỹ, ω̃, ·)‖ ≥ β)dP̃ (ω̃)

+

∫

‖g(ex,eω)−g(ey,eω)‖<γ

P (‖f ◦Φg(x̃, ω̃, ·) − f ◦Φg(ỹ, ω̃, ·)‖ ≥ β)dP̃ (ω̃)

≤ P̃ (‖g(x̃, ·) − g(ỹ, ·)‖ ≥ γ) +

∫

‖g(ex,eω)−g(ey,eω)‖<γ

εdP̃ (ω̃) ≤ 2ε,

which completes the proof. �



144 Rafa l Kapica and Janusz Morawiec

As an immediate consequence of Theorem 4.3 and Remark 2.1(ii) we get the

following corollaries.

Corollary 4.4. Assume that (4.1) holds with some a > 0 and there exists

a P̃ ⊗ P -integrable function ψ : Ω̃ × Ω → [0,+∞] such that ‖f ◦Φg(x̃, ·)‖
p ≤ ψ

for all x̃ ∈ X̃. If g is uniformly P̃ -continuous and if f is uniformly P -continuous,

then f ◦Φg is uniformly Lp-continuous.

Corollary 4.5. If f is uniformly P -continuous, then (fm)m∈N is uniformly

P∞-continuous. Moreover, if f is bounded, then (fm)m∈N is uniformly Lp-

continuous.

Now we pass to Lp-continuity.

Theorem 4.6. Assume that there exist a, b, c, d, α, β ≥ 0 such that
∫

Ω

‖f(x, ·)‖pdP ≤ a‖x‖α + b for all x ∈ Φ ◦ g(X̃ × Ω̃), (4.2)

‖Φ(x̃)‖α ≤ c‖x̃‖β + d for all x̃ ∈ g(X̃ × Ω̃), (4.3)

and for every countable and bounded set K ⊂ X̃ the function

“Ω̃ ∋ ω̃ 7−→ sup
{
‖g(x̃, ω̃)‖β : x̃ ∈ K

}
∈ [0,+∞]” is P̃ -integrable. (4.4)

If g is P̃ -continuous at x̃0 ∈ X̃ and if f is Lp-continuous at points of the set

Φ ◦ g({x̃0} × Ω̃), then f ◦Φg is Lp-continuous at x̃0.

Proof. By (4.2), (4.3) and (4.4) we have f ◦Φg(x̃, ·) ∈ Lp for all x̃ ∈ X̃ .

Fix a sequence (x̃j)j∈N convergent to x̃0 and for every j ∈ N put

Ij =

∫eΩ×Ω

‖f ◦Φg(x̃j , ·) − f ◦Φg(x̃0, ·)‖
pd(P̃ ⊗ P ).

The proof will be completed if we show that every strictly increasing sequence

(jk)k∈N of positive integers has a subsequence (j ′
k)k∈N such that

lim
k→∞

Ij ′

k
= 0. (4.5)

Fix a strictly increasing sequence (jk)k∈N of positive integers. By P̃ -continuity

of g we choose its subsequence (j ′
k)k∈N such that g(x̃j ′

k
, ·) converges to g(x̃0, ·)

almost everywhere and put A = {ω̃ ∈ Ω̃ : limk→∞ g(x̃j ′

k
, ω̃) = g(x̃0, ω̃)}. Clearly,

P̃ (A) = 1. Next, for every k ∈ N define a function ψk : A→ [0,+∞] putting

ψk(ω̃) =

∫

Ω

‖f ◦Φg(x̃j ′

k
, ω̃, ·) − f ◦Φg(x̃0, ω̃, ·)‖

pdP.
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It is clear that

Ij ′

k
=

∫

A

ψkdP̃ . (4.6)

Continuity of Φ implies limk→∞ Φ(g(x̃j ′

k
, ω̃)) = Φ(g(x̃0, ω̃)) for all ω̃ ∈ A,

and then Lp-continuity of f yields

lim
k→∞

ψk(ω̃) = 0 for all ω̃ ∈ A. (4.7)

Put K = {x̃j ′

k
: k ∈ N} ∪ {x̃0}. Fix k ∈ N and ω̃ ∈ A. From (4.2) and (4.3)

we get

ψk(ω̃) ≤ 2p

∫

Ω

‖f ◦Φg(x̃j ′

k
, ω̃, ·)‖pdP + 2p

∫

Ω

‖f ◦Φg(x̃0, ω̃, ·)‖
pdP

≤ 2pac
(
‖g(x̃j ′

k
, ω̃)‖β + ‖g(x̃0, ω̃)‖β

)
+ 2p+1(ad+ b)

≤ 2p+1ac sup
{
‖g(x̃, ω̃)‖β : x̃ ∈ K

}
+ 2p+1(ad+ b).

This jointly with (4.4), (4.6) and (4.7) imply (4.5). �

Applying Theorem 4.6 to g = f with α = β = p we get the following corollary.

Corollary 4.7. Assume that there exist a, b ≥ 0 such that
∫
Ω ‖f(x, ·)‖pdP ≤

a‖x‖p+b for all x ∈ X and for every bounded setK ⊂ X there exists an integrable

function ψ : Ω → [0,+∞) such that ‖f(x, ·)‖p ≤ ψ for all x ∈ K. If f is Lp-

continuous, then (fm)m∈N is Lp-continuous.

Observe that if f and g are non expansive in Lp and if Φ is non expansive,

then f ◦Φg does. In particular, we have the following proposition.

Proposition 4.8. If f(x, ·) ∈ Lp for all x ∈ X and if there exists an a ≥ 0

such that
∫
Ω
‖f(x, ·)− f(y, ·)‖pdP ≤ a‖x− y‖p for all x, y ∈ X , then (fm)m∈N is

uniformly Lp-continuous.

5. Iterative equations

Fix an rv-function ξ : X × Ω∞ → X and define a function π : X × B(X) →

[0, 1] putting

π(x,B) = P∞(ξ(x, ·) ∈ B). (5.1)

It is easy to see that for every x ∈ X the function π(x, ·) is a probability

measure. Assume now that ξ is P∞-continuous at x0 ∈ X . Fix a contin-

uous and bounded function g : X → R and a sequence (xj)j∈N convergent
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to x0. Then P∞-limj→∞ g ◦ ξ(xj , ·) = g ◦ ξ(x0, ·) and g ◦ ξ is bounded. Hence

limj→∞

∫
X
g(x)π(xj , dx) =

∫
X
g(x)π(x0, dx), and in consequence, the sequence

(π(xj , ·))j∈N converges weakly to π(x0, ·). This jointly with Corollary 3.2 and [11,

Theorem 2] gives following proposition concerning solutions of iterative equations.

Proposition 5.1. Assume that f is P -continuous and for every x ∈ X the

sequence (fm(x, ·))m∈N converges locally uniformly in probability to a random

variable ξ(x, ·), and π(x, ·) is the measure given by (5.1). If π(x, ·) 6= π(y, ·) for

some x, y ∈ X , then there exists a continuous and bounded function g : X → R

such that the function ϕ : X → R defined by

ϕ(x) =

∫

X

g(y)π(x, dy)

is a bounded, continuous and non-constant solution of the equation

ϕ(x) =

∫

Ω

ϕ(f(x, ·))dP.

The next example shows a possible application of Proposition 5.1.

Example 5.2. Fix measurable functions L,M : Ω → R and continuous func-

tions F,G : R → R. Define a function f : R
2 × Ω → R

2 putting

f(x, y, ω) = (G(x)L(ω), F (x)M(ω) + y).

It is clear that f is P -continuous. Iterating f we get

fm(x, y, ω) =

(
Gm(x, ω),

m∑

k=1

F
(
Gk−1(x, ω)

)
Mk(ω) + y

)

for all (x, y, ω) ∈ R
2 × Ω∞, where Gk : R × Ω∞ → R and Mk : Ω∞ → R are

defined by G0(x, ω) = x, Gk(x, ω) = G(Gk−1(x, ω))L(ωk), Mk(ω) = M(ωk) for

all k ∈ N.

Assume now that |G(x)| ≤ |x| for all x ∈ R and there exists an α > 0 such

that |F (x)| ≤ α|x| for all x ∈ R. Then

‖fm+n(x, y, ω) − fm(x, y, ω)‖

= |Gm+n(x, ω) −Gm(x, ω)| +

∣∣∣∣∣

m+n∑

k=m+1

F
(
Gk−1(x, ω)

)
Mk(ω)

∣∣∣∣∣
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≤ |x|

(
m+n∏

k=1

|Lk(ω)| +

n∏

k=1

|Lk(ω)|

)
+ α|x|

m+n∑

k=m+1

|Mk(ω)|

k−1∏

i=1

|Li(ω)| (5.2)

for all m,n ∈ N and (x, y, ω) ∈ R
2 × Ω∞, where Li : Ω∞ → R is defined by

Li(ω) = L(ωi) for all i ∈ N. According to the Kolmogorov law of large numbers

the first summand in (5.2) converges to zero provided P (L = 0) = 0 and −∞ <

E log |L| < 0. If additionally E log max{|M |, 1} < +∞, then we get the desired

convergence of (fm(x, y, ·))m∈N (see [13]; cf. [8]). It is not difficult to check that

the convergence is locally uniform and that the limit function in not constant in

(x, y). Proposition 5.1 now shows that the equation

ϕ(x, y) =

∫

Ω

ϕ(G(x)L,F (x)M + y)dP

has a bounded, continuous and non-constant solution ϕ : R
2 → R.

Remark 5.3. Assume additionally that in Example 5.2 functions L,M : Ω→R

are in Lp. Then f is Lp-continuous, and, by Corollary 4.7, we conclude that

(fm(x, y, ·))m∈N is Lp-continuous. Moreover, if E|L|p < 1, then (fm(x, y, ·))m∈N

converges in Lp (see [19]; cf. [1]); this convergence is locally uniform. Corollary 3.4

now implies Lp-continuity of the limit function.
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