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Open problems originated in our research work
with Zoltán Daróczy

By IMRE KÁTAI (Budapest)

Dedicated to my friend, Zoltán Daróczy on his 70th anniversary

Abstract. Some open problems on Rényi–Parry and other expansions are pre-

sented

§ 1. Introduction

In this paper I shall pose some research problems, the largest part of which
were formulated in some of our joint papers written by Daróczy. Some problems
are stated here in more general form than they were formulated originally.

§ 2. Rényi–Parry expansions, additive functions

A. Rényi [1] and W. Parry [2] investigated the following expansion. Let
q > 1, q 6= integer, k = [q], θ = 1/q, Ak = {0, 1 . . . , k}, I1 = [0, 1); I2 = (0, 1].

Regular expansion of x ∈ I1. Let ε1(x) = [qx] (∈ Ak), and x1 = {qx} (∈ I1).
Then x = ε1(x)θ + θx1, and this procedure can be continued:

x = ε1(x)θ + ε2(x)θ2 + . . . , εj(x) ∈ Ak, j ∈ N. (2.1)

(2.1) is the regular expansion of x.

Mathematics Subject Classification: 11K65, 11A63, 11K55, 37A45.
Key words and phrases: Rényi–Parry expansions.
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Quasi regular expansion of x ∈ I2. Let

δ1(x) =





[qx], if {qx} 6= 0

[qx]− 1, if {qx} = 0

Then x = δ1(x)θ + θx1, δ1(x) ∈ Ak, x1 ∈ I2.
Continuing,

x = δ1(x)θ + δ2(x)θ2 + . . . (2.2)

is the quasi regular expansion of x.
Let ε(x) = ε1(x)ε2(x) . . . ; δ(x) = δ1(x)δ2(x) . . . be the sequences of digits in

the regular, resp. quasi regular expansion of x. It is clear that ε(x) = δ(x) if ε(x)
is of “infinite type”, i.e. if εν(x) 6= 0 holds for infinitely many n. Thus the equality
holds for all but countable many x ∈ (0, 1).
Since 1 = kθ + θ{q}, {q} ∈ (0, 1), therefore {q} has regular, and quasi regular
expansion, also.

Let
1 = l1θ + l2θ

2 + . . . , lν = εν(1),

l = l1l2 . . . (2.3)

be the regular, and
1 = t1θ + t2θ

2 + . . .

t = t1t2 . . . (2.4)

be the quasi regular expansion of 1.
Let σ be the shift operator over ANk , i.e. if a = a1a2 . . . , an ∈ Ak, then

σ(a) = a2a3 . . . . W. Parry [2] proved that for a ∈ ANk there exists x ∈ I1 such
that ε(x) = a, if and only if

σn(a) < t (n ∈ N0), (2.5)

where t is defined in (2.4), and “<” is the lexicographic ordering.

Additive functions with respect to the Rényi–Parry (RP) expansions

Let F : I1 → C (or I1 → R). We say that F is additive with respect to the
RP expansion, if

F (0) = 0,

∞∑

l=1

k∑
a=1

|F (aθl)| < ∞,
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and for each x ∈ [0, 1),

F (x) =
∞∑

n=1

F (εn(x)θn).

In our paper [14] we tried to give all the continuous additive functions. We
considered only the case θ ∈ (

1
2 , 1

)
. The result obtained in [14] can be formulated

for each θ ∈ (0, 1). Namely the next assertion can be proved.

Theorem 1. If F : I1 → C is a continuous additive function, then F (jθn) =
jF (θn) (j ∈ Ak, n ∈ N). The sequence un ∈ C (n = 1, 2, . . . ) generates a

continuous additive function such that un = F (θn), if and only if

um = t1um+1 + t2um+2 + . . . (m ∈ N). (2.6)

Let G(z) = 1− t1z− t2z
2 − . . . . Then G(z) is analytic in |z| < 1. Let % be a

root of G(z) = 0 in |z| < 1, and let m be its multiplicity, i.e. G(z) = (z−%)mH(z),
H(%) 6= 0. It is clear that uν = νj%ν (ν ∈ N) generates continuous additive
functions for j = 0, . . . , m − 1. Such types of continuous additive functions, and
even the elements of the closed space generated by such functions called to be
elementary continuous additive functions, also.

We formulated our conjecture that every continuous additive function is el-
ementary. We present this conjecture in a more general form in § 5.

Theorem 2. Let F be a continuous additive function which is differentiable

in some point. Then F (x) = cx, c is constant.

This theorem is proved in the case θ ∈ (
1
2 , 1

)
in [14]. We shall return to this

question in § 3.

§ 3. On a subspace in l1

Let C∞ be the space of sequences c = (c0, c1, . . . ) where c0, c1, . . . ∈ C. The
shift operator σ : C∞ → C∞ is defined by σ(c) = (c1, c2, . . . ).

Let t0 = 1, tν ∈ C (ν = 1, . . . ) be bounded, t = (t0, t1, . . . ). Let l1 be the
linear space of the sequences b ∈ C∞ for which

∑
ν |bν | < ∞. The scalar product

of a bounded sequence c and a b ∈ l1 is defined by

c b = b c =
∞∑

ν=0

bνcν .
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Let
Ht = {b ∈ l1 | σl(b)t = 0, l = 0, 1, 2, . . . }. (3.1)

It is clear that Ht is a closed linear subspace of l1.
Let H

(0)
t (⊆ Ht) be the set of those b ∈ Ht for which

|bν | ≤ C(ε, b)ė−εν (ν ≥ 0) (3.2)

holds with suitable constants ε > 0 and C(ε, b) < ∞.
Let

R(z) = t0 + t1z + . . . , (3.3)

|tν | be bounded. Then R(z) is regular in |z| < 1. Assume that % is a root of
R of multiplicity m, |%| < 1. Then bν = νj%ν (ν = 0, 1, . . . ) satisfies σl(b)t = 0
(l = 0, 1, . . . ) if j = 0, . . . , m− 1; therefore b ∈ H

(0)
t . Let H

(e)
t be the space of the

finite linear combinations of such solutions, furthermore let H
(e)

t be the closure

of H
(e)
t .

It is obvious that H
(e)

t ⊆ Ht.

Theorem 3. We have

H
(e)
t = H

(0)
t .

Proof. It is clear that H
(e)
t ⊆ H

(0)
t . We shall prove that H

(0)
t ⊆ H

(e)
t , i.e.

that if σl(b)t = 0 (l = 0, 1, 2, . . . ), and (3.2) holds, then there exist %1, . . . , %k

suitable roots of R(z), |%s| ≤ e−ε (s = 1, . . . , k), such that

bν =
k∑

s=1

ps(ν)%ν
s (ν = 0, 1, 2, . . . ),

ps are polynomials, deg ps ≤ ms − 1, where ms is the multiplicity of the root %s

of R(z).
Let b be a solution of

σl(b)t = 0 (l = 0, 1, 2, . . . ), satisfying (3.2). (3.4)

Let ε1 > 0 be an arbitrary small number, %1, . . . , %p be all the roots of R(z)
in the disc |z| < e−ε + ε1. Let ms be the multiplicity of %s, i.e. R(j)(%s) = 0,
j = 0, . . . , ms − 1, R(ms)(%s) 6= 0.

Let

B(z) =
∞∑

ν=0

bν

zν
.
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Then

R(z)B(z) =

( ∞∑
u=0

tuzu

)( ∞∑
v=0

bvz−v

)
=

∞∑
r=−∞

κrz
r,

where
κr =

∑
u−v=r
u,v≥0

tubv.

Let us observe that κr = 0, if r < 0, and κr = O(1) for r > 0. Thus

R(z)B(z) = K(z) = κ0 + κ1z + . . . ,

the right hand side is regular in |z| < 1. It is clear that B(z) is regular in |z| > e−ε,
and it is bounded in |z| > e−ε + ε2, where 0 < ε2 < ε1 is an arbitrary constant.

Let ϕ(z) =
∏p

j=1(z − %j)mj . Then ϕ(z)
R(z) is bounded in |z| ≤ e−ε + ε2. Thus

ϕ(z)B(z) =
κ(z)ϕ(z)

R(z)

is bounded in |z| ≤ e−ε + ε2, and it is O(|ϕ(z)|) as z →∞. It means that

ϕ(z)B(z) = q(z),

where q is a polynomial of degree ≤ deg ϕ. Thus B(z) = q(z)
ϕ(z) whence Theorem 3

immediately follows. ¤

Conjecture 1. H
(e)

t = Ht.

A weaker form of it is

Conjecture 2. Assume that R(z) 6= 0 in |z| < 1. Then Ht = {0}.

§ 4. A variant of the Rényi–Parry expansion

Let q > 1, θ = 1/q, q 6= integer, B = {. . . , qn, . . . , q, 1, θ, θ2, . . . }. Let k = [q].
We expand a nonnegative number x according to the following rules. If x = 0,
then let εν(0) = 0, (ν ∈ Z). Let x > 0. Let n1 be that integer for which
qn1 ≤ x < qn1+1. Let εν(x) = 0 for ν ≥ n1 +1, εn1(x) =

[
x

qn1

]
. Then εn1(x) ≤ k.

Write x = εn1(x)qn1 + x1. Then x1 < qn1 , and we continue this process. This
expansion is the so called regular expansion of x.
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Let Φ be the set of double infinite sequences a = {aν}∞ν=−∞ for which aν ∈
Ak, and aν = 0 if ν ≥ n0 with a suitable integer n0. Sometimes we write
a = . . . an . . . a1a0a−1 . . . a−m . . . .

Let σ be the shift operator defined over Φ. Namely σ(a) = a′ if a′n = an−1

(n ∈ Z).
Let ε(x) = {εν(x)}∞ν=−∞ ∈ Φ be the sequence of the digits of x.
It is clear that ε(θx) = σ(ε(x)), thus we can assert that a sequence a ∈ Φ

represents an x ≥ 0 in the form a = ε(x) if an0−1an0−2 · · · = ã satisfies the Parry
condition σj(ã) < t (j = 0, 1, . . . ), where n0 is so defined that aν = 0 for ν ≥ n0.
The quasi regular expansion is defined similarly.

We say that a function F : [0,∞) → C (or R) is additive with respect to this
expansion, if

F (0) = 0,

−1∑
−∞

max
j=1,...,k

|F (jql)| < ∞,

and for x ∈ [0,∞)

F (x) =
∞∑

n=−∞
F (εn(x)qn).

One can characterize the continuous additive functions as follows:
If F is continuous and additive, then F (jqn) = jF (qn) (j = 0, . . . , k). Let

{en}∞n=−∞ be a sequence of complex numbers, such that
∑∞

n=1 |en| < ∞. Then
the additive function F , generated by F (0) = 0; F (jqn) = jF (qn) = je−n (j = 1,
. . . , k; n ∈ Z) is continuous if and only if

en = t1en+1 + t2en+2 + . . . (4.1)n

holds for every n ∈ Z. t = t1t2 . . . is the quasi regular expansion of 1.
Let us assume that (4.1)n holds for every n > m. Then there is a unique em

for which (4.1)m holds true.
Consequently, if F is a continuous additive function over [0, 1), then it can

be extended uniquely as a continuous additive function over [0,∞).

§ 5. Smooth interval filling sequences

Let λ1 > λ2 > . . . be a sequence of real numbers, LN = λN+1 + λN+2 + . . . .
Assume that L0 < ∞. Let k > 0 be a fixed integer. We say that λn is an interval
filling sequence of order k if each x ∈ [0, kL0] can be written as x =

∑∞
n=1 εnλn,

where εn ∈ {1, . . . , k} (= Ak).
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One can see that {λn} is an interval filling sequence of order k if and only if

λn ≤ kLn (n = 1, 2, . . . ) (5.1)

holds. We define the digits εn(x) of the regular expansion and the digits δn(x) of
the quasi regular expansion of x according to the following rules.

Let x ∈ [0, kL0], and ε1(x) be the largest integer among the elements of Ak,
for which 0 ≤ x− ε1(x)λ1 (=: x1).

Then 0 ≤ x1 ≤ kL1. Let ε2(x) be the largest integer in Ak for which
0 ≤ x1 − ε2(x)λ2 (=: x2). Then 0 ≤ x2 ≤ kL2.

Let us continue this process:

x = ε1(x)λ1 + ε2(x)λ2 + . . . .

The number 0 does not have quasi regular expansion. Let 0 < y ≤ kL0,
and δ1(y) be the largest integer among the elements of Ak, for which 0 < y−
δ1(y)λ1 = y1. Then 0 < y1 ≤ kL1, and we can continue this process.

We shall say that a function F : [0, kL0] → C is “additive” if F (0) = 0,∑∞
n=0 maxj≤k |F (jλn)| < ∞, furthermore

F (x) =
∞∑

n=1

F (εn(x)λn).

We proved: the additive function F is continuous if and only if

a) F (jλn) = jF (λn) (j = 1, . . . , k)
F (0) = 0,

b) F (λn) =
∑∞

l=1 δn+l(λn)F (λn+l)

hold true.
This assertion is an easy modification of our theorem proved in [15].
We say that {λn} is a smooth sequence if there exists an integer T for which

λn+T ≤ 1
2λn (n ∈ N). In [15] we proved: Let {λn} be a smooth, interval filling

sequence of order k. Let F be a continuous additive function with respect to {λn}.
Assume that F is differentiable on a set of positive Lebesgue measure. Then
F (x) = cx with some constant c.

In the same paper we formulated our

Conjecture 3. Let {λn} be a smooth, interval filling sequence of order k.

Let F be a continuous additive function with respect to {λn}. Assume that F is

differentiable in one arbitrary chosen point. Then F (x) = cx, c is a constant.
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Let 0 < x < 1, x be fixed, λn = log(1 + xn).
Let q = 1/x, k = [q].
It is clear that

1 + x <

∞∏
n=2

(1 + xn)k,

and in general that

1 + xh <

∞∏

n=h+1

(1 + xn)k,

which guarantees that λn is an interval filling sequence of order k. It is a smooth
sequence also, since λn

xn → 1 (n → ∞). Let L0 =
∑

λn. We have that if
y ∈ [0, kL0], then

y =
∑

en(y)λn,

i.e. if u ∈ [1, ekL0 ], then it can be written as

u =
∏

(1 + xn)εn(u), εn(u) ∈ Ak.

Let G be a function defined on [1, ekL0 ] taking positive real values such that
G(0) = 1,

∑
n≥1 | log G(1 + xn)| < ∞, and assume that

G(u) =
∞∏

n=1

G(1 + xn)εn(u).

We say that G is multiplicative. It is clear that G is multiplicative if and only if
log G(u) = F (log u) is additive, and G is continuous if and only if F is continuous.
Thus, if G is continuous and multiplicative and it is differentiable on a set of
positive measure, then F (log u) = c log u, i.e. G(u) = uc, c ∈ R.

§ 6. On completely additive functions

Let {λn} be a sequence of positive numbers for which λn ≥ λn+1 (n ∈ N),
and Ln := λn+1 + λn+2 + · · · < ∞ (n ∈ N) holds true.

We say that the function F : [0, L0] → R is completely additive, if F (0) = 0,
and

F
( ∑

εnλn

)
=

∞∑
n=1

εnF (λn) (6.1)

for every εn ∈ {0, 1}, n = 1, 2, . . . . We assume furthermore that
∑ |F (λn)| < ∞.
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In our joint paper with Z. Daróczy and T. Szabó [16] we proved that only
the linear functions are completely additive.

We note that in our paper [16] we assumed that the sequence {λn} is strictly
monotonic, but this assumption is unimportant. The argumentation remains valid
under the condition “λn ≥ λn+1”.

We think that a similar theorem can be proved under some condition on {λn}
weaker than “interval filling”.

Conjecture 4. Let {λn} be a sequence of positive numbers for which λn ≥
λn+1 (n = 1, 2, . . . ) such that Ln = λn+1 + · · · < ∞. Assume that H =

{
x |

x =
∑∞

n=1 εnλn, εn ∈ {0, 1}} contains an interval. Assume furthermore, that

{an}∞n=1 ∈ l1 is such a sequence for which

∑
δnλn = 0 δn ∈ {−1, 0, 1}

always implies that
∞∑

n=1

δnan = 0.

Then an/λn = constant (n = 1, 2, . . . ).

Let λn := θn, 1
2 < θ < 1, L0 = λ1 + λ2 + · · · = θ

1−θ . Let t be defined on the
set {−1, 0, 1} : t(0) = 2, t(1) = t(−1) = 1.

For some sequence ε1, . . . , εN ∈ {−1, 0, 1} let

τ(ε1, . . . , εN ) =
N∏

j=1

t(εj).

We say that a sequence ε1, . . . , εN is continuable if

|ε1θ + · · ·+ εNθN | ≤ θNL0.

Let mN (θ) =
∑

τ(ε1, . . . , εN ), where the summation is extended over the con-
tinuable sequences. One can easily see that

mN (θ) ≥ c(4θ)N ,

c > 0 constant.
Let F be a set of sequences ε = ε1ε2 . . . , εν ∈ {−1, 0, 1}. Let FN be the set
of those sequences δ1, . . . , δN ∈ {−1, 0, 1}N which can be continued by suitable
εν ∈ {−1, 0, 1} (ν = N +1, N +2, . . . ) such that δ1 . . . , δNεN+1εN+2 · · · ∈ F . Let
πN (Θ,F) = #(FN ).
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Conjecture 5. Let F be such a set of ε ∈ {−1, 0, 1}N, for which πN (θ | F) →
∞ (N →∞). Let a = a1a2 · · · ∈ l1 be such a sequence for which

∑
εnan = 0

whenever ε ∈ F .

Then an/θn = constant.

§ 7. A modification of the Rényi–Parry expansion

Let 1 < q < 2, θ = 1/q, A1 = {0, 1}. Let

η ∈
[
θ,

θ2

1− θ

]
, (7.1)

I
(1)
η = [0, qη), I

(2)
η = (0, qη].

Regular expansion of level η :
Let x ∈ I

(1)
η . Then

x = ε1(x)θ + θx1, ε1(x) ∈ A1, x1 ∈ I(1)
η ;

ε1(x) =





0, if x ∈ [0, η)

1, if x ∈ [η, qη)

x =
∑

εn(x)θn. (7.2)

Quasi regular expansion of level η :
Let x ∈ I

(2)
η . Then

x = δ1(x)θ + θx1, δ1(x) ∈ A1, x1 ∈ I(2)
η ;

δ1(x) =





0, if x ∈ (0, η]

1, if x ∈ (η, qη]

x =
∑

δn(x)θn. (7.3)

Remark. The regular expansion of level η of 1 is defined now as follows: Write
qη = 1 · θ + θz. Then 0 < z < qη. Let

z = t2θ + t3θ
2 + . . .

be the regular expansion of level η of z.
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We say that qη = t1θ + t2θ
2 + . . . , t1 = 1 is the regular expansion of level

η of qη. Let t = t1t2 . . . . Let η = π1θ + π2θ
2 + . . . be the regular expansion

of η, π = π1π2 . . . . Observe that the quasi regular expansion of level η of η is
0 · θ + t1θ

2 + t2θ
3 + . . . . Thus ε(qη) = t, ε(η) = π, δ(η) = 0t.

Let E := {ε(x) | x ∈ [0, qη)}.
Let furthermore F be the set of those sequences f = f1f2 . . . ∈ {0, 1}∞ for

which

(1) σj(f) < t (j = 0, 1, 2, . . . ),

(2) if fν = 1, then σν−1(f) = fνfν+1 · · · ≥ π.

Theorem 4. We have E = F .

Proof. The relation E ⊆ F is obvious. Let x = ε1(x)θ + . . . , x ∈ I
(1)
η .

If y1, y2 ∈ I
(1)
η , 0 ≤ y1 < y2 ≤ qη, then ε(y1) < ε(y2), thus ε(x) < t. Since

xn = εn+1(x)θ + · · · < qη, therefore σn(ε(x)) < t. If εn(x) = 1, then xn−1 =
εn(x)θ + · · · ≥ η, consequently σn−1(x) ≥ π. Thus E ⊆ F .

Let f ∈ F , y = f1θ + f2θ
2 + . . . . We shall prove that y < qη, and that,

if fk = 1, then fkθ + · · · ≥ η. Hence it would follow that ε(y) = f . Let yh =
fh+1θ + fh+2θ

2 + . . . .
Let fj = tj (j = 1, . . . , k1 − 1), fk1 = 0, tk1 = 1, where k1 = 1 is allowed.

There exists such a finite k1. Furthermore, let fk1+j = tj for j = 1, . . . , k2 − 1,
fk2 = 0, tk2 = 1, and so on. We allow the choice kν = 1. In this case j = 1, . . . ,
kν − 1 is an empty condition.

Thus we have

y = (t1θ + · · ·+ tk1−1θ
k1−1) + θk1(t1θ + · · ·+ tk2−1θ

k2−1)

+ θk1+k2(t1θ + · · ·+ tk3−1θ
k3−1) + . . . .

If tk = 1, then tkθ + tk+1θ
2 + · · · ≥ η, and so

t1θ + · · ·+ tk−1θ
k−1 ≤ qη − θk−1η = qη(1− θk).

Thus
y ≤ qη(1− θk1) + (qη)θk1(1− θk2) + · · · = qη.

Since qη − y = tk1θ
k1 + tk2θ

k1+k2 + · · · > 0, therefore y < qη.
The estimation from below is similar.
Let fj = πj (j = 1, . . . , k1 − 1), fk1 = 1, πk1 = 0 (k1 = 1 is allowed). Let

fk1+j = πj (j = 1, . . . , k2−1), fk1+k2 = 1, πk2 = 0 (k2 = 1 is allowed), and so on.
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If k is such an integer for which πk = 0, then η = π1θ + · · ·+ πk−1θ
k−1 + θk−1ξ,

ξ < η, and so
π1θ + · · ·+ πk−1θ

k−1 > η(1− θk−1).

Therefore
y > η(1− θk1−1) + ηθk1−1(1− θk2−1) + · · · > η.

Hence the assertion easily follows. ¤

It is highly probable, that the following assertion is true:

Conjecture 6. Let η1 < η2, η1, η2 ∈ [θ, θL]. Let H(η1, η2) be the set of

those x ∈ [0, L] for which their expansions of level η1 and of level η2 are the same.

Then the Lebesgue measure of H(η1, η2) is zero.

§ 8. Univoque numbers in numeration systems
generated by Rényi–Parry expansions

Let θ ∈ (0, 1), q = 1/θ, q 6= integer, k = [q], A = {0, . . . , k}. We shall use
the notation: j = k − j (j ∈ A).

Let 1 = l1θ + l2θ
2 + . . . be the quasi regular expansion of 1.

The sequence {Gn}∞n=1, of positive integers is defined by recursion:

G1 = 1, Gn+1 = l1Gn + · · ·+ lnG1 + 1 (n ∈ N). (8.1)

Let
Hm = G1 + · · ·+ Gm. (8.2)

Then every n ≤ Gm+1 − 1 can be expanded by the greedy algorithm as

n = εmGm + · · ·+ ε1G1. (8.3)

Furthermore the digits εν ∈ A.
Such kind of numeration systems have been investigated by Pethő and

Tichy [6], and Grabner and Tichy [7].
One can prove easily that the sequence (εm, . . . , ε1) represents an integer

n < Gm+1 in the form (8.3) if and only if εmθ + · · ·+ ε1θ
m = η < 1, and if

ε1 . . . εm0∞ is the regular expansion of η.

Corollary 1. The number of regular sequences of type ε1 . . . εN0∞ is GN+1.
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Let us define H(z) = 1− l1z − . . . . Then H(θ) = 0, H is regular in |z| < 1,
and H(z) 6= 0 in |z| ≤ θ + ε, if z 6= θ, and ε > 0 is sufficiently small. From (8.1)
we get easily that

GN = cqN +O(ΛN ), Λ =
q

1 + ε1
(8.4)

ε1 > 0 is a suitable constant.
Let U(z) = G1 + G2 · z + G3 · z2 + . . . . Then

U(z)H(z) = G11̇ + (G2 − l1G1)z + (G3 − l1G2 − l2G1)z2 + · · · = 1
1− z

,

and so

U(z) =
1

H(z)(1− z)
=

1
(z − θ)

η(z),

η(z) =
z − θ

H(z)(1− z)
.

Since H ′(θ) 6= 0, therefore η(z) is regular in |z| ≤ θ + ε. Hence (8.4) immediately
follows.

Let A∗ be the set of finite sequences (words) over A, Φ : N0 → A∗ be the
mapping defined as follows: Φ(0) = empty word = Λ; if n ∈ [Gm, Gm+1 − 1),
then Φ(n) = εm . . . ε1, according to (8.3). Let R = {Φ(n) | n ∈ N0} be the set of
the so called regular sequences.

As we mentioned earlier, the following assertion holds true.

Lemma 1. A non-empty sequence εm . . . ε1 ∈ Am belongs to R, if and only

if εm 6= 0, and

εj . . . ε1 ≤ l1 . . . lj (j = 1, . . . , m). (8.5)

Characterization of the univoque numbers

Let E be the set of those n ∈ N0 which have only one expansion as n =∑
ejGj , ej ∈ A. We say that E is the set of univoque numbers.

The lazy algorithm is defined as follows. Let n ∈ (kHr−1, kHr], and δr be the
smallest integer for which n1 := n − δrGr ≤ kHr−1. Clearly, δr ∈ A. Continue
this process with n1 instead of n, and iterate. Finally we obtain

n = δrGr + · · ·+ δ1G1.
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Let t be the smallest integer for which lt 6= k. Then l1 = · · · = lt−1 = k,
consequently

G1 = 1, G2 = (k + 1), . . . , Gt = (k + 1)t−1. (8.6)

This implies easily that n is univoque, if n < Gt+1.
We can see also that kHj = Gj+1 − 1 (j = 1, . . . , t − 1), Gt+1 ≤ kHt,

Gs+1 < kHs, if s > t.
Let m > t, n be an element of E in the interval [Gm, Gm+1 − 1). If n ∈

[Gm, kHm−1], then εm(n) ≥ 1, δm(n) = 0, where εm is the coefficient of Gm

in the regular expansion of n, and δm is the same in the lazy expansion of n.
Continuing, n should belong to one of the intervals:

(kHm−1, 2Gm), (Gm + kHm−1, 3Gm), . . . , ((k − 1)Gm + kHm, Gm+1), (8.7)

where some interval above is considered to be empty, if the left-end point is larger
than or equal to the right-end point.

Example. It is easy to see that if θ ∈ (√
5−1
2 , 1

)
, then all of the intervals in

(8.7) are empty at least for every large m. As a conclusion we obtain that E is a
finite set.

Let n ∈ E , n ∈ [Gm, Gm+1), εm(n) 6= 0 its first digit (n = εm(n)Gm + · · ·+
ε1(n)G1). Then n1 := n − εm(n)Gm ∈ E as well. Since kHm > n > kHm−1,
therefore

kHm − n = (k − εm(n))Gm + · · ·+ (k − ε1(n))G1 (8.8)

is the regular expansion of kHm−n, if we ignore on the right hand side the formal

εm(n)Gm + · · ·+ εm−h(n)Gm−h

sum, if εm(n) = · · · = εm−h(n) = 0.
Hence we obtain that if n ∈ E , n ∈ (Gm, Gm+1), then





εj(n) . . . ε1(n) ≤ l1 . . . lj

εj(n) . . . ε1(n) ≤ l1 . . . lj

(j = 1, . . . ,m)

(8.9)

should be satisfied.
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Let e = em . . . e1 ∈ Am, em 6= 0 be such a sequence for which




ej . . . e1 ≤ l1 . . . lj

ej . . . e1 ≤ l1 . . . lj

(j = 1, . . . ,m)

(8.10)

are satisfied.
Let

n = emGm + · · ·+ e1G1. (8.11)

We shall prove that n ∈ E .
(8.11) is the regular expansion of n. Consider

kHm − n = emGm + · · ·+ e1G1. (8.12)

From the second inequality of (8.10) it is clear that the right hand side of (8.12)
is the regular expansion of (8.12), and so (8.11) is also the lazy expansion of n.

We proved the following.

Theorem 5. The sequence em . . . e1(∈ Am), em 6= 0 generates a univoque

number by (8.11) if and only if the relations (8.10) hold true.

Some simple cases:

8.1. The case θ ∈ (θ1, 1), where θ1 :=
√

5−1
2 .

Then there exists some integer s such that l1 = · · · = l2s−1 = 1, l2 = · · · =
l2s = 0, l2s+1 = 0. Here, as everywhere in this paper, lν are the digits in the
quasi regular expansion of 1 with the base θ.
We can see that the sequence em . . . e1(∈ Am), em 6= 0 can not generate
univoque number n (n = emGm + · · · + e1G1) if m ≥ 2s + 2. This is clear,
since (8.10) can not be satisfied.
We have F = {1; (10)h1 (h = 0, . . . , s− 1); (10)h (h = 1, . . . , s)}.

8.2. The case θ = θ1 =
√

5−1
2

Then F = {1, (10)s, (10)s1, s = 1, 2, . . . }.
The proof is obvious.

8.3. The case k ≥ 2, θk < θ < 1/k, where θk =
√

k2+4−k
2 .

In this case, if l1 = k, then l2 = 0. If lu = k, then lu+1 = 0 due to the Parry
condition, that σu−1(l) < l (u = 2, 3, . . . ). Since l 6= (k0)∞, therefore

l1 . . . l2s+1 = (k0)sl2s+1, l2s+1 < k.
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First we observe that e = em . . . e1 with em = k cannot be in F , if m ≥ 2s+2.
Indeed, em = k implies em−1 = 0 = k, em−2 = 0, i.e. em−2 = k, and so on.
Thus e = k0k0 . . . , but this contradicts to (8.10), if m ≥ 2s + 2.
Let e ∈ F be a sequence of length m with leading term em 6= 0, k. Let h

be the largest index for which eh = 0. Then eh . . . e1 ∈ R, eh = k, therefore
h ≤ 2s + 1.

Theorem 6. Let A0 = {1, . . . , k−1}, Ã0 be the set of finite words over

A0, the empty word is excluded. There exists a finite set

K = {βl = εul
. . . ε1, εul

= k}

such that

F := {0} ∪ K ∪ Ã0 ∪ (Ã0K) ∪ (Ã0K)

where K = {β | β ∈ K}.
Furthermore, the length of the βl in K are not larger than 2s + 1.

The theorem is obvious.

8.4. The case k ≥ 2, θ = θk

Then, obviously

F = Ã0H,

H = {(k0)s, (k0)sk, (0k)s, (0k)s0, s = 0, 1, 2, . . . },

where A0, Ã0 are defined in 8.3.

8.5 The case l1 . . . lp lp+1 . . . lp+q = kp0q, q ≥ p + 1.
If e = em . . . e1 ∈ F , and em = em−1 = · · · = em−p+1 = k, then m ≤ 2p.
Let F1 be the set of those regular sequences with leading digit em 6= 0, in
which no p consecutive k, and no p consecutive 0 occur. Then F1 ⊆ F , and

F = F1 ∪ F1T ,

where
T = {kp0s, 0pks, s = 0, . . . , p}.
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