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Open problems originated in our research work
with Zoltan Daréczy

By IMRE KATAI (Budapest)

Dedicated to my friend, Zoltan Dardczy on his 70th anniversary

Abstract. Some open problems on Rényi—Parry and other expansions are pre-
sented

§1. Introduction

In this paper I shall pose some research problems, the largest part of which
were formulated in some of our joint papers written by Dardczy. Some problems
are stated here in more general form than they were formulated originally.

§ 2. Rényi—Parry expansions, additive functions

A. RENYI [1] and W. PARRY [2] investigated the following expansion. Let
g>1, g #integer, k=1[q], 0 =1/q, Ay ={0,1...,k}, I =[0,1); I = (0,1].

Regular expansion of z € I1. Let €1(z) = [qz] (€ Ag), and 1 = {qz} (€ ).
Then x = ¢1(x)0 + 6z1, and this procedure can be continued:

r=¢e1(z)0 +ea(x)0? +...,ej(x) € A, jEN. (2.1)

(2.1) is the regular expansion of x.

Mathematics Subject Classification: 11K65, 11A63, 11K55, 37A45.
Key words and phrases: Rényi—Parry expansions.
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Quasi regular expansion of = € I>. Let

[qz], if {gz} #0
[gz] — 1, if {gz} =0

51 (SU) =

Then x = §1(x)0 + 0x1, 61(x) € Ag, 1 € Io.
Continuing,
x=01(x)0 + 52 (x)0* + ... (2.2)

is the quasi regular expansion of x.

Let e(x) = e1(x)ea(x) .. .; 8(x) = 61(x)da(x) ... be the sequences of digits in
the regular, resp. quasi regular expansion of x. It is clear that e(z) = §(z) if e(x)
is of “infinite type}i.e. if £,(z) # 0 holds for infinitely many n. Thus the equality
holds for all but countable many x € (0, 1).
Since 1 = k6 + 0{q}, {¢} € (0,1), therefore {¢} has regular, and quasi regular
expansion, also.

Let

1:l19+1292+..., ll,:&/(l),

I=0ls... (2.3)

be the regular, and
1 =110 +1t0%+ ...

t=tita... (2.4)

be the quasi regular expansion of 1.
Let o be the shift operator over Al,j, ie. if a = aras..., a, € Ag, then
o(a) = azagz.... W. PARRY [2] proved that for a € AY there exists z € I; such

that g(x) = a, if and only if
o"(a) <t (n€No), (2.5)

where ¢ is defined in (2.4), and “<” is the lexicographic ordering.
Additive functions with respect to the Rényi—Parry (RP) expansions

Let F: I; — C (or I; — R). We say that F is additive with respect to the
RP expansion, if

F0)=0, Y > |F(at")| < oo,

=1 a=1
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and for each x € [0,1),

F(z) =Y Flea(x)o").
n=1

In our paper [14] we tried to give all the continuous additive functions. We
considered only the case 6 € (%, 1). The result obtained in [14] can be formulated
for each 6 € (0,1). Namely the next assertion can be proved.

Theorem 1. If F': I; — C is a continuous additive function, then F(j0™) =
JE©O™) (j € Ak, n € N). The sequence u, € C (n = 1,2,...) generates a
continuous additive function such that u, = F(0™), if and only if

U = t1Umt1 + tolmia +... (M €N). (2.6)

Let G(z) =1 —t1z —te2% —.... Then G(z) is analytic in |2| < 1. Let o be a
root of G(z) = 01in |z| < 1, and let m be its multiplicity, i.e. G(z) = (z—0)" H(z),
H(p) # 0. Tt is clear that u, = 179" (v € N) generates continuous additive
functions for j = 0,...,m — 1. Such types of continuous additive functions, and
even the elements of the closed space generated by such functions called to be
elementary continuous additive functions, also.

We formulated our conjecture that every continuous additive function is el-
ementary. We present this conjecture in a more general form in § 5.

Theorem 2. Let F' be a continuous additive function which is differentiable
in some point. Then F(x) = cx, ¢ is constant.

This theorem is proved in the case 6 € (3, 1) in [14]. We shall return to this
question in § 3.

§3. On a subspace in [

Let C* be the space of sequences ¢ = (co, c1,...) where ¢g,c1,... € C. The
shift operator o : C*° — C* is defined by o(c) = (¢1,¢a, ... ).

Let to =1,t, € C (v =1,...) be bounded, t = (tg,t1,...). Let I3 be the
linear space of the sequences b € C* for which > |b,| < co. The scalar product
of a bounded sequence ¢ and a b € [; is defined by
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Let
Hy={bel |d(b)t=0,1=0,1,2,...}. (3.1)

It is clear that H; is a closed linear subspace of ;.
Let HL(O)(Q H,) be the set of those b € H; for which

b,| < C(e,b)e" (v >0) (3.2)

holds with suitable constants e > 0 and C(e, b) < 0.
Let
R(Z) :t(]+t12+..., (33)

|tu| be bounded. Then R(z) is regular in |z| < 1. Assume that g is a root of
R of multiplicity m, |o| < 1. Then b, = vig" (v = 0,1,...) satisfies o(b)t = 0

(1=0,1,...)if j=0,...,m—1; therefore b € Hi(o). Let Ht(e) be the space of the

finite linear combinations of such solutions, furthermore let Fie) be the closure

of Hl(e).
It is obvious that ﬁf

',

Theorem 3. We have
H = H".

PROOF. It is clear that Hé(e) - HE(O). We shall prove that HE(O) - Hz(e)7 ie.
that if o'(b)t = 0 (I = 0,1,2,...), and (3.2) holds, then there exist o, ..., ok

suitable roots of R(z), |os| < e ® (s=1,...,k), such that

k
by =Y p(v)el (¥=0,1,2,...),
s=1

ps are polynomials, degps; < ms — 1, where my is the multiplicity of the root g
of R(z2).
Let b be a solution of

d®t=0 (1=0,1,2,...), satisfying (3.2). (3.4)

Let €1 > 0 be an arbitrary small number, p1,...,0, be all the roots of R(z)
in the disc |z| < e=¢ +¢;. Let my be the multiplicity of oy, i.e. RY)(p,) = 0,
§=0,...,ms—1, RU™)(g,) #0.

Let
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Then
R(2)B(z) = (Ztuz“> (Zbﬂ”) = Z Kr2",
u=0 v=0 r=—00

where

Ky = Z tuby-

u—v=r
u,v>0

Let us observe that x, =0, if r < 0, and &, = O(1) for r > 0. Thus
R(2)B(z) = K(z) =ko+ K12+ ...,

the right hand side is regular in |z| < 1. Tt is clear that B(z) is regular in |z| > e~¢,
and it is bounded in |z| > e™¢ + &9, where 0 < g5 < £ is an arbitrary constant.

Let ¢(z) = ?:1(2 — 0j)™. Then }‘gg is bounded in |z| < e7¢ + 5. Thus

q(z)
»(z)
immediately follows. O

)

where ¢ is a polynomial of degree < deg . Thus B(z) = whence Theorem 3

Conjecture 1. ﬁf = H,.

A weaker form of it is

Conjecture 2. Assume that R(z) # 0 in |z| < 1. Then H, = {0}.

§4. A variant of the Rényi—Parry expansion

Let ¢ > 1,0 =1/q, q # integer, B={...,q",...,q,1,0,0% ... }. Let k = [q].
We expand a nonnegative number x according to the following rules. If z = 0,
then let €,(0) = 0, (v € Z). Let > 0. Let ny be that integer for which
g <x < gmtl Lete,(z) =0forv>ny+1, e, (x) = [qffl}. Then e, (z) < k.
Write © = €, (2)¢™ + x1. Then 27 < ¢™, and we continue this process. This

expansion is the so called regular expansion of z.
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Let ® be the set of double infinite sequences a = {a, }32 __ for which a, €

— 00
Ag, and a, = 0 if v > ng with a suitable integer ng. Sometimes we write
a=...0np...01000-1 ... Q—pp - ...
Let o be the shift operator defined over ®. Namely o(a) = &’ if a], = ap—1
(neZ).

Let e(z) = {e,(2)}32 _, € ® be the sequence of the digits of .

It is clear that g(fx) = o(g(x)), thus we can assert that a sequence a € @
represents an x > 0 in the form a = g(x) if an,—1an,—2 - - - = a satisfies the Parry
condition 07 (a) <t (j = 0,1,...), where ng is so defined that a, = 0 for v > ng.
The quasi regular expansion is defined similarly.

We say that a function F : [0,00) — C (or R) is additive with respect to this
expansion, if

Iy
F(0) =0, ngrllanIF(Jq )| < o0,

Loy

and for z € [0, 00)

F(z)= ) Flen(z)q").
One can characterize the continuous additive functions as follows:

If F is continuous and additive, then F(j¢") = jF(¢") (j = 0,...,k). Let
{en}5_ o be a sequence of complex numbers, such that >~ |e,| < co. Then
the additive function F, generated by F(0) = 0; F(j¢™) = jF(q¢") = je_n (j = 1,
..., k; n € Z) is continuous if and only if

En = t1€n+1 + t26n+2 + ... (41)n

holds for every n € Z. t = tyt5 ... is the quasi regular expansion of 1.

Let us assume that (4.1),, holds for every n > m. Then there is a unique e,
for which (4.1),, holds true.

Consequently, if F' is a continuous additive function over [0,1), then it can
be extended uniquely as a continuous additive function over [0,00).

8§ 5. Smooth interval filling sequences

Let Ay > Ao > ... be a sequence of real numbers, Ly = Any1 +Anqi2+....
Assume that Ly < oo. Let k > 0 be a fixed integer. We say that \,, is an interval
filling sequence of order k if each x € [0, kL] can be written as x = > -

n=1 En)\’ru
where e, € {1,...,k} (= Ax).
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One can see that {\,} is an interval filling sequence of order k if and only if
A <EkL, (n=1,2,...) (5.1)

holds. We define the digits €, (x) of the regular expansion and the digits d, () of
the quasi regular expansion of z according to the following rules.

Let x € [0, kL], and £1(x) be the largest integer among the elements of Ay,
for which 0 <z — ey ()1 (=: x1).

Then 0 < x; < kL;. Let ea(x) be the largest integer in Ay for which
0 <zq —ea(x)A2 (=: 2). Then 0 < x9 < kLs.

Let us continue this process:

xr = 61($)>\1 —|—82(.Z‘))\2 + ...,

The number 0 does not have quasi regular expansion. Let 0 < y < kL,
and d1(y) be the largest integer among the elements of Ay, for which 0 < y—
01(y)M1 = y1. Then 0 < y; < kLq, and we can continue this process.

We shall say that a function F' : [0,kLg] — C is “additive” if F(0) = 0,
oo ymaxj<y | F(jAn)| < oo, furthermore

F(z) = F(en(x)An).

We proved: the additive function F' is continuous if and only if
a) F(jA,) =3F(\) (G =1,...,k)
F(0) =0,
b) F(An) =322 0npi(An) F(Ant1)
hold true.

This assertion is an easy modification of our theorem proved in [15].

We say that {\,} is a smooth sequence if there exists an integer T for which
Atr < 21X, (n € N). In [15] we proved: Let {\,} be a smooth, interval filling
sequence of order k. Let F be a continuous additive function with respect to {\,}.
Assume that F is differentiable on a set of positive Lebesgue measure. Then
F(z) = cx with some constant c.

In the same paper we formulated our

Conjecture 3. Let {\,} be a smooth, interval filling sequence of order k.
Let F be a continuous additive function with respect to {\,}. Assume that F is
differentiable in one arbitrary chosen point. Then F(x) = cx, ¢ is a constant.
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Let 0 < & < 1, x be fixed, A\, = log(1 + z™).
Let g =1/z, k = [q].
It is clear that
(oo}
1+z< H(1+x")k,
n=2
and in general that
142" < H (1+a™)*,
n=h+1
which guarantees that A, is an interval filling sequence of order k. It is a smooth

An (n — o0). Let Ly = > A,. We have that if

Tn

sequence also, since
y € [0, kLg], then
Y= Z en(Y)An,

i.e. if u € [1,e*L0], then it can be written as
u= H(l + 2™ e (u) € Ay

Let G be a function defined on [1, e¥£0] taking positive real values such that
G(0)=1, 3,5, [logG(1 4+ 2")| < oo, and assume that

G(u) = H G+ x")a"(“).
n=1

We say that G is multiplicative. It is clear that G is multiplicative if and only if
log G(u) = F(logu) is additive, and G is continuous if and only if F' is continuous.
Thus, if G is continuous and multiplicative and it is differentiable on a set of
positive measure, then F(logu) = clogu, i.e. G(u) = u¢, ¢ € R.

§ 6. On completely additive functions

Let {A,} be a sequence of positive numbers for which A, > Aq1 (n € N),
and Ly := Ap41 + Ang2 + - < 00 (n € N) holds true.
We say that the function F' : [0, Lo] — R is completely additive, if F'(0) = 0,

F(Zen/\n) = ienF(/\n) (6.1)
n=1

for every e, € {0,1}, n =1,2,.... We assume furthermore that > |F(\,)| < oo.

and
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In our joint paper with Z. DAROCzY and T. SzAaBO [16] we proved that only
the linear functions are completely additive.

We note that in our paper [16] we assumed that the sequence {\,} is strictly
monotonic, but this assumption is unimportant. The argumentation remains valid
under the condition “A\,, > A\,41”.

We think that a similar theorem can be proved under some condition on {\,}
weaker than “interval filling”.

Conjecture 4. Let {\,} be a sequence of positive numbers for which X,, >
Ans1 (n = 1,2,...) such that L, = Apy1 + --- < co. Assume that H = {z |
z =3 e, en € {0,1}} contains an interval. Assume furthermore, that
{an}52, €1y is such a sequence for which

D udn =0 6, €{-1,0,1}
always implies that

[e.e]
Z Onay = 0.
n=1

Then a,, /X, = constant (n=1,2,...).

Let A\, := 0", % <O0<1l,Log=A+X+---= %. Let ¢ be defined on the
set {—1,0,1} : ¢(0) = 2, t(1) = ¢t(—1) = 1.
For some sequence ¢1,...,ex € {—1,0,1} let

N
7(61,...,6]\[) = Ht(Sj).

We say that a sequence €1, ...,y is continuable if
|619 + -t €N9N| < QNL(].

Let my(0) = > 7(e1,...,en), where the summation is extended over the con-
tinuable sequences. One can easily see that

my(6) > 0(49)N,

¢ > 0 constant.

Let F be a set of sequences £ = e€1e3..., &, € {—1,0,1}. Let Fxn be the set
of those sequences 61, ...,0xy € {—1,0,1}" which can be continued by suitable
e, €{-1,0,1} (v=N+1,N+2,...)such that 6, ...,0yent1EN2 - - € F. Let
N (O, F) = #(Fn).
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Conjecture 5. Let F be such a set of ¢ € {—1,0,1}, for which nnx (0 | F) —
00 (N — o). Let a = ajaq--- € 11 be such a sequence for which

Zenan =0

whenever € € F.
Then a,, /0™ = constant.

8§ 7. A modification of the Rényi—Parry expansion

Let 1<q<2 6=1/q, A ={0,1}. Let

ne [97 19_29] ; (7.1)

Y =0,qn), I = (0, q1).

Regular expansion of level 7 :
Let o € I\"). Then

x=¢e1(x)f +0x1, e1(x) € Ay, x1 € 17(71);

0, ifzel0,n)
ei(z) =
1, ifxz€n,qn)

z= en(x)f". (7.2)

Quasi regular expansion of level 7 :
Let o € I\”). Then

2 =51(@)0+0x1, 61(x) € Ay, € I,

0, ifx e (0,7]
51(58) =
L, ifz € (n,qn]

z = dn(x)0". (7.3)

Remark. The regular expansion of level n of 1 is defined now as follows: Write
gn=1-0+0z. Then 0 < z < qn. Let

Z:t29+t392+...

be the regular expansion of level 7 of z.



Open problems originated in our research work with Zoltdan Daréczy 159

We say that qn = 10 4+ t20% + ..., t; = 1 is the regular expansion of level
nof gn. Let t = tity.... Let n = m0 + 0% 4 ... be the regular expansion
of n, # = mymo.... Observe that the quasi regular expansion of level n of 7 is
0-0+t10% +1203+.... Thus g(qn) =t, e(n) = =, 6(n) = Ot.

Let £ :={e(x) | z € [0,qn)}.

Let furthermore F be the set of those sequences f = fifa... € {0,1}* for
which

(1) o?(f) <t (j=0,1,2,...),

(2) if f, =1, then oV 1(f) = fofoi1- > 7.

Theorem 4. We have £ = F.

PRrROOF. The relation & C F is obvious. Let © = g1(z)0 + ..., z € Lgl).
If y1,y2 € If,l), 0 <y < y2 < gn, then £(y1) < £(y2), thus g(x) < t. Since
Ty = Eny1(x)0 + -+ < gn, therefore o™ (e(x)) < t. If e,(x) = 1, then z,_; =
en(2)0 + -+ >, consequently o™ 1(z) > w. Thus £ C F.

Let f € F,y= fi0 + f20% 4+ .... We shall prove that y < ¢n, and that,
if fp = 1, then fp6 + --- > 7. Hence it would follow that (y) = f. Let y, =
Sh10 4 fri26? + ...

Let fj =t; j=1,....,k1 — 1), fi, =0, ty, = 1, where ky = 1 is allowed.
There exists such a finite ky. Furthermore, let fi,4; =1¢; for j =1,..., ks — 1,
fro =0, tg, = 1, and so on. We allow the choice k, = 1. In this case j =1,...,
k, — 1 is an empty condition.

Thus we have

Y= (104 +tp 10" )+ O (110 + -+t 1077
MR (10 4ty g 0F T

If t, = 1, then ¢3,0 + t,10% + --- > 7, and so
810+ + o105 < qn— 0"y = qn(1 - 0").
Thus

y < an(l—6")+ (g0 (1 - 0") +--- = qn.

Since qn — y = tg, 0% + t5, 0% 7*2 ... > 0, therefore y < qn.

The estimation from below is similar.

Let fj =m; (j=1,...,k1 = 1), fi, =1, m, =0 (ky = 1 is allowed). Let
fodj =7 (G=1,...,ka—1), fry+k, =1, mg, = 0 (k2 = 1 is allowed), and so on.
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If k is such an integer for which 7, = 0, then 1 = 70 + - - 4+ 7_10%~1 + 9+~ 1¢,
& < n, and so
mO+ -+ w1057 > n(l — Hk_l).

Therefore
y>n(1 =07 4 oMt (1 =0 4>,

Hence the assertion easily follows. O
It is highly probable, that the following assertion is true:

Conjecture 6. Let 1 < 12, n1,m2 € [0,0L]. Let H(n,n2) be the set of
those x € [0, L] for which their expansions of level ), and of level o are the same.
Then the Lebesgue measure of H(ny,n2) is zero.

8. Univoque numbers in numeration systems
q Yy
generated by Rényi—Parry expansions

Let 6 € (0,1), ¢ = 1/0, q # integer, k = [q], A = {0,...,k}. We shall use
the notation: j =k —j (j € A).

Let 1 =10 +156% 4 ... be the quasi regular expansion of 1.

The sequence {G,,}52 , of positive integers is defined by recursion:

G =1, Gn+1 =0LG,+ -+ 1,G1+1 (HEN) (81)

Let
H, =G+ -+ Gp. (8.2)

Then every n < Gy,+1 — 1 can be expanded by the greedy algorithm as
n=¢enGm+ - +e1Gr. (8.3)

Furthermore the digits €, € A.

Such kind of numeration systems have been investigated by PETHO and
TicHY [6], and GRABNER and TICHY [7].

One can prove easily that the sequence (e,,,...,¢1) represents an integer
n < G4 in the form (8.3) if and only if £,,0 + -+ - +£:0™ =1 < 1, and if

€1...6,m0% is the regular expansion of 7.

Corollary 1. The number of regular sequences of type ey ...enN0% is Gy 1.
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Let us define H(z) =1 —1l;z—.... Then H(f) =0, H is regular in |z| < 1,
and H(z) #01in |z| < 0 +¢, if z # 0, and € > 0 is sufficiently small. From (8.1)
we get easily that

— eV +OUY), A=-1 4
Gy =eg™+O(AY), A= (34)
€1 > 0 is a suitable constant.
LetU(Z):G1+G2~Z+G3~Z2+....Thel’l
. 1
U(2)H(2) = Gil + (G2 = hG)z + (G3 = hiGy = 1bGr)2" 4+ = 1— o
and so
1 1

z—0
" He -

Since H'(#) # 0, therefore n(2) is regular in |z| < 6 + . Hence (8.4) immediately
follows.

Let A* be the set of finite sequences (words) over A, ® : Ng — A* be the
mapping defined as follows: ®(0) = empty word = A; if n € [Gn, Grg1 — 1),
then ®(n) = &, ...e1, according to (8.3). Let R = {®(n) | n € Ny} be the set of
the so called regular sequences.

As we mentioned earlier, the following assertion holds true.

Lemma 1. A non-empty sequence &, ...c1 € A™ belongs to R, if and only
if ey # 0, and
€J€1§l1l] (]21,,77’1) (85)

Characterization of the univoque numbers

Let £ be the set of those n € Ny which have only one expansion as n =
e;G;, e; € A. We say that & is the set of univoque numbers.
7G55 €5

The lazy algorithm is defined as follows. Let n € (kH,_1,kH,], and §, be the
smallest integer for which n; := n —§,G, < kH,_;. Clearly, 6, € A. Continue
this process with n; instead of n, and iterate. Finally we obtain

n=0,.Gr + -+ 0G.
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Let t be the smallest integer for which I; # k. Then Iy = -+ = l;_1 = k,
consequently

Gi=1, Go=(k+1), ..., Gi=(k+1)"" (8.6)

This implies easily that n is univoque, if n < Gy41.

We can see also that kH; = Gj41 —1 (j = 1,...,t = 1), Gy < kHy,
Gsy1 < kHy, if s > t.

Let m > t, n be an element of £ in the interval [G,,,Gpmy1 — 1). If n €
Gy kH 1], then e,,(n) > 1, d,n(n) = 0, where &, is the coefficient of G,,
in the regular expansion of n, and ¢, is the same in the lazy expansion of n.
Continuing, n should belong to one of the intervals:

(kHpo1,2Gm)s (G + kHue1,3Gm)s - -+ ((k — )G + kHypy, Gonsn), (8.7)

where some interval above is considered to be empty, if the left-end point is larger
than or equal to the right-end point.

Example. Tt is easy to see that if 6 € (\/52_1 , 1)7 then all of the intervals in
(8.7) are empty at least for every large m. As a conclusion we obtain that £ is a

finite set.

Let n € £, n € [Gm, Gmt1), €m(n) # 0 its first digit (n = e, (n)Gpy + -+ +
€1(n)G1). Then ny := n —ep(n)Gy € € as well. Since kH,, > n > kH, 1,
therefore

kHp, —n=(k—¢e,(n)Gpn+- -+ (k—e1(n))G;y (8.8)

is the regular expansion of kH,, —n, if we ignore on the right hand side the formal
Em(n)Gm + -+ + Em—n(n) G

sum, if ,,(n) = -+ =&p_n(n) = 0.
Hence we obtain that if n € £, n € (G, Gmy1), then

should be satisfied.
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Lete=¢p...e0 € A™, e, # 0 be such a sequence for which

Ej...élgll...lj (810)
(] = ]-7 . 7m)
are satisfied.
Let
n:e’rnG7n+"'+elG1~ (811)

We shall prove that n € £.
(8.11) is the regular expansion of n. Consider

kH,, —n=¢,G, + - +e1Gy. (812)

From the second inequality of (8.10) it is clear that the right hand side of (8.12)
is the regular expansion of (8.12), and so (8.11) is also the lazy expansion of n.
We proved the following.

Theorem 5. The sequence e, ...e1(€ A™), e, # 0 generates a univoque
number by (8.11) if and only if the relations (8.10) hold true.

Some simple cases:

8.1. The case 0 € (01,1), where 01 := @
Then there exists some integer s such that I = --- =lys_1 =1, 1o =--- =
los =0, las+1 = 0. Here, as everywhere in this paper, [, are the digits in the
quasi regular expansion of 1 with the base 6.
We can see that the sequence e, ...e1(€ A,), e # 0 can not generate
univoque number n (n = €, Gy, + -+ + €1G1) if m > 2s 4+ 2. This is clear,
since (8.10) can not be satisfied.
We have F = {1; (10)"1 (h=0,...,s—1); (10)" (h=1,...,5)}.

8.2. The case 0 = 61 = %
Then F = {1, (10), (10)*1, s = 1,2,...}.
The proof is obvious.

8.3. The case k > 2, 0, < 0 < 1/k, where 6} = @.
In this case, if [y = k, then I = 0. If [, =k, then [,41 = 0 due to the Parry
condition, that 0%~ 1(I) < (u=2,3,...). Since [ # (k0)*>°, therefore

li... l23+1 = (k0)5123+1, l25+1 < k.
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8.4.

8.5

il
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First we observe that e = e,, . ..e; with e, = k cannot be in F, if m > 2s+2.
Indeed, e,, = k implies €,,—1 =0 =k, &n_o = 0, i.e. em_o = k, and so on.
Thus e = k0kO ..., but this contradicts to (8.10), if m > 2s + 2.

Let e € F be a sequence of length m with leading term e, # 0,k. Let h
be the largest index for which e, = 0. Then € ...€; € R, €, = k, therefore
h<2s+1.

Theorem 6. Let Ay = {1,...,k—1}, Ay be the set of finite words over
Ay, the empty word is excluded. There exists a finite set

K={8i=¢uy ...€1, ey =k}

such that

F:={0} UK UAU (AK) U (4AyK)

where K = {3 | 3 € K}.
Furthermore, the length of the 3; in KC are not larger than 2s + 1.
The theorem is obvious.

The case k> 2, 0 = 0,
Then, obviously

F = AoH,
H = {(k0)*, (k0)°k, (0k)*, (0K)®0, s =0,1,2,... },

where Ay, Ay are defined in 8.3.

The casely ... lplpp1 ... lprg =KP0?, g > p+1.

Ife=en...e1€F,and €y, = €p—1 =+ = €m—pt1 = k, then m < 2p.

Let F71 be the set of those regular sequences with leading digit e,, # 0, in
which no p consecutive k, and no p consecutive 0 occur. Then F; C F, and

F=FURT,
where
7T = {kP0°,0Pk*, s=0,...,p}
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