Publ. Math. Debrecen
75/1-2 (2009), 191-202

On a decomposition of the plane for a flow of free mappings

By ZBIGNIEW LESNIAK (Krakéw)

Dedicated to Professor Zoltan Dardéczy on the occasion of his 70th birthday

Abstract. We consider a flow of the plane which has no fixed points. We present
a method for finding a countable family of maximal parallelizable regions of the flow
which cover the plane. Moreover, we describe the relations between parallelizing home-
omorphisms defined on the maximal parallelizable regions using solutions of appropriate
functional equations.

1. Introduction

Let {f*:t € R} be a flow such that f* for t € R\ {0} is a free mapping, i.e.
a homeomorphism of the plane onto itself without fixed points which preserves
orientation. It follows from the Jordan theorem that each orbit C of {f*: ¢ € R}
divide the plane into two simply connected regions. Note that each of them is
invariant under f* for ¢ € R. Thus two different orbits C}, and Cj, of points p and
q, respectively, divide the plane into three simply connected invariant regions, one
of which contains both C, and Cj; in its boundary. We will call this region by the
strip between C), and Cj; and denote by D,,.

For any distinct orbits Cp,, Cp,, Cp, of {f* : t € R} one of the following two
possibilities must be satisfied: exactly one of the orbits Cp,, C,, Cp, is contained
in the strip between the other two or each of the orbits C,,,, Cp,, Cp, is contained
in the strip between the other two. In the first case if C, is the orbit which lies
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in the strip between C), and C,, , we will write Cy, |Cy,|Cyp, (i, j, k € {1,2,3}
and 4, j, k are different). In the second case we will write |C),, Cp,, Cp, | (see [2]).
Put

JT(q) := {p € R? : there exist a sequence (¢, )nen and a sequence (t,)nen

such that g, — g, t, — +00, ['*(gn) — p as n — o0},

J7(q) := {p € R? : there exist a sequence (g, )nen and a sequence (t,)nen

such that ¢, — ¢, t, — —00, f'"(g,) — p as n — +oo}.

The set J(q) := J*(q)UJ(q) is called the first prolongational limit set of q. Let
us observe that p € J(q) if and only if ¢ € J(p) for any p,q € R2. For a subset
H C R? we define
J(H) = | J(q).
qeH

One can observe that for each p € R? the set J(p) is invariant.

An invariant region M C R? is said to be parallelizable if there exists a
homeomorphism % mapping M onto R? such that

fi(z) =~ ((x) + (t,0)) forz € M, t € R.

The homeomorphism 1 occurring in this equality will be called a parallelizing
homeomorphism of M. It is known that a region M is parallelizable if and only
if there exists a topological line K (i.e. a homeomorphic image of a straight line)
that is a closed set in M such that K has exactly one common point with every
orbit of {f* : t € R} contained in M (see [1], p. 49 and e.g. [6]). Such a set K we
will call a section in M.

It is known that a region M is parallelizable if and only if J(M)N M = 0
(see [1], p. 46 and 49). Hence for every parallelizable region M we have J(M) C
fr M. If M is a maximal parallelizable region (i.e. M is not contained properly in
any parallelizable region), then J(M) = fr M (see [8]).

Now we collect the results from [5] and [7] which are needed in this paper.

Proposition 1.1 (see [7]). Let M be a parallelizable region of { f* : t € R}.
Then fr M is invariant.

Proposition 1.2 (see [5]). Let M be a parallelizable region and let q € fr M.
Then cl M \ C, is contained in one of the components of R? \ Cy.

Proposition 1.3 (see [7]). Let M be a parallelizable region of { ' : t € R}.
Let p € M and H be a component of R? \ C,,. Then for all distinct orbits Cy,,
Cy, contained in fr M N H the relation |Cy,, Cy,, Cp| holds.
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Proposition 1.4 (see [7]). Let M be a parallelizable region of { f* : t € R}.
Let p € fr M and q1,q2 € M. Assume that qi,q2 € J(p). Then Cy, = C,.

2. The form of flows of free mappings

In this section we describe the form of an arbitrary flow of free mappings.
The proof of the theorem of this section is based on the idea of W. KAPLAN
(see [2]).

Let @ = (p1,...,pn) be a sequence of integers. Then, for any integer k by
a x k will be denoted the concatenation of the sequences a and the one-element
sequence k (for one-element sequences we omit parentheses), i.e the sequence
(P1,- s Pny k).

A class AT of finite sequences « of positive integers will be termed admissible
if the following conditions hold:

(1) A™ contains the sequence: 1, and no other one-element sequence;
(2) if axkisin AT and k > 1, then so also is a * (k — 1);
(3) if ax1isin AT, then so also is a.
A class A~ of finite sequences « of negative integers will be termed admissible
if the following conditions hold:
(1) A~ contains the sequence: —1, and no other one-element sequence;
(2) f axkisin A~ and k < —1, then so also is a * (k + 1);
(3) if ax —1isin A™, then so also is a.
The set A := At U A~, where AT, A~ are some admissible classes of finite

sequences of positive, negative integers, respectively, will be said to be admissible
class of finite sequences.

Lemma 2.1. Let {f' : t € R} be a flow of free mappings. Let p € R?.
Then there exists an at most countable family of maximal parallelizable regions
{M; : j € J}, where J is the set of all positive integers or J = {1,...,N} for
some positive integer N, such that p € M, and for each positive integer n the set
cl B(p,n), where B(p,n) is the ball centered at p with radius n, is covered by a
finite subfamily {M, ..., M, } of {M; : j € J}. Moreover, j, < jn41 for every n.

PROOF. On account of the Whitney—Bebutov Theorem (see [1], p. 52), for
each ¢ € R? there exists a parallelizable region M{ containing g. Then there
exists a maximal parallelizable region M? such that M C MY (see [8]). Thus for
each ¢ € R? we can choose a maximal parallelizable region MY containing q.
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Consider the ball B(p, 1) centered at p with radius 1. Then the family {M? :
q € clB(p,1)} cover the set cl B(p,1). By the Heine-Borel Theorem we can
choose a finite number of elements of the family {M? : g € cl B(p, 1)} which cover
cl B(p,1). Denote these regions by M, ..., M, , where j; is a positive integer.
Without loss of generality we can assume that p € Mj.

Suppose that we have chosen a finite sequence My, ..., M;,,..., M; of dis-
tinct elements of the family {M? : ¢ € R?} such that for every positive integer
k<n

Jk
B(p,k) C | M;
j=1

and the sequence ji,jo,...,Jn is nondecreasing. If the regions M,,..., M;,,
.., Mj, cover the set cl B(p,n + 1), then we put j,41 = jn. Otherwise, we
consider the family
Jn
{Mj:j=1,....5,} U{M?: g€ B(p,n+1)\ | J M}
j=1

By compactness of cl B(p,n+1) we can choose from this family a finite number of
distinct maximal parallelizable regions M; t1,...,M;, ., € {M;:j=1,...,j.}
such that

jn+1

cdB(p,n+1) C U M;.
j=1

Therefore we have the finite sequence My, ..., M;, ., covering cl B(p,n + 1) such
that My,...,M;,, ..., M, are its initial elements. Hence j, < jn41. [l

Theorem 2.2. Let {f* :t € R} be a flow of free mappings. Then there exist
a family of orbits {C,, : a € A} and a family of maximal parallelizable regions
{M, : a € A}, where A = AT U A~ is an at most countable admissible class of
finite sequences, such that

Co, C M, foracA, LJMa:IR{2
acA

and
i) = ¢ (Yalz) + (¢,0)) forz e M, t€R

for arbitrarily chosen parallelizing homeomorphism v, of M,. Moreover, the
families can be constructed in such a way that

MoNMywi 0 foraxie A,
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Cosi C J(My,) foraxie€ A,
|Ca,0a*i1,0a*i2\ for axij,axis € A, i 7é 12,

Co|Coni|Conini foraxixl e A.

Remark 2.5. The construction of the set of indices A and the families {C, :
a € A} and {M, : a € A} occurring in Theorem 2.2 starts from the orbit
Cy = C_; of an arbitrary point p € R? and the maximal parallelizable region
M; occurring in Lemma 2.1 (we take M_; = M; and the same parallelizing
homeomorphism ¢; = ¥_; of M;). Having constructed an o € A and C,, M,,
we index bijectively the set of all orbits contained in

fr Mo, N H,,

where Hy, H_ are components of R?\ C and for all a = 3*l € A the set H, is the
component of R?\ C\, which has no common point with Mg, by sequences of the
form a* k starting from k = 1 and taking subsequent positive integers k if « € AT
and starting from k& = —1 and taking subsequent negative integers k if « € A™.
We enlarge the set A by all these sequences «a * k and for each orbit Cg.j indexed
by a * k we take as My, an element of the subfamily {M; : j = 1,..., jm...}
of the family occurring in Lemma 2.1 that contains C,.x, Wwhere mq. is the
smallest integer which is greater or equal to the distance of the orbit C, . from
p. Moreover, we only consider such parallelizing homeomorphism v, : M, — R?
that 1, (Cy) = R x {0} and

YoMy N Hy) =R x (0,+00) ifaec AT
and
Vo (Mo NHy) =R x (—00,0) ifaeA.

Ezample 2.4. The flow {f* : ¢t € R} depicted in Figure 1 is the one of
the simplest flows of free mappings for which the set of indices A occurring in
Theorem 2.2 is not uniquely determined. The topological lines pictured in Figure
1 are invariant under the flow. The free mapping f' moves points one unit of arc
length along these lines.

The lines denoted by C1, C(1,1), C(1,1,1) are contained in the maximal paral-
lelizable regions My = M_1, M1y, M(1,1,1), where M; is the open half-plane
which consists of all points that lie above the line C(y 1), M 1) is the strip
bounded by C; and C(y1,1), M(1,1,1) is the open half-plane which consists of
all points that lie below the line C(1 1y. In this case AT = {1,(1,1),(1,1,1)} and
A- ={-1}.
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Ci=C,
Ce1,1)
Ci,1,1)

Figure 1. A flow of free mappings with three maximal parallelizable regions

Another possibility of choosing AT and A~ is the following: (A™) = {1, (1,1)},
(A7) = {-1,(=1,-1)}. Then taking (C1)" = Cu), (Ca,n) = Car),
(C(-1,-1)) =C1, we have (M) =M 1), (M(1,1))" =M1y, (M(—1,-1))" =M.

PrRoOOF oF THEOREM 2.2. We will show that the construction described in
Remark 2.3 gives families {C,, : @ € A} and {M,, : @ € A} that satisfy all relations
in the assertion of Theorem 2.2. Since Cy = C), p € My and M; is invariant, the
inclusion C; C M holds. Moreover, by the fact that C_; = C; and M_; = My,
we have C_1 C M_4. From the Jordan theorem we obtain that the set RQ\CP has
exactly two components (we denote these components by Hy and H_1). For the
set C; U H; we will construct an admissible class AT of finite sequences of positive
integers and a subfamily {M, : a« € AT} of {M; : j € J}, where {M, : j € J} is
the family occurring in Lemma 2.1, such that Cy U Hy C UaeAJr M. The same
procedure can be applied to C_; U H_1, to obtain an admissible class A~ of finite
sequences of negative integers and a subfamily {M, : « € A7} of {M; : j € J}
such that C_1 UH_1 C U,ca- Ma-

Assume that for an n > 1 we have constructed the set of admissible sequences
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of positive integers A, of length n, the set of admissible sequences of negative
integers A_,, of length n, the orbits C,, and the maximal parallelizable regions
M, for a € A, UA_,, such that C, C M, and M, € {M; : j € J}. Consider the
maximal parallelizable region M, for an a € A, U A_,,. From Proposition 1.1,
we obtain that fr M,, is a union of orbits. Moreover, by Propositions 1.2 and 1.3,
for all ¢1,q2 € fr My, N H, such that Cy, # Cy, the relation |Cy, Cy,, Cy,| holds
and the components R?\ C,,, R?\ C,, which do not contain M, are disjoint open
sets. Hence fr M, N H, consists of at most countable many of orbits, since for
each ¢ € fr M, N H,, the component of R?\ C; which has no common points with
M., contains a point with rational coordinates.

Let (Cuxi)ier,,, where I, = {1,...,k,} for some ky € Z, or I, = Z; if
a€ A, and I, ={-1,...,ks} for some ko, € Z_or I, =7Z_ if a € A_,, be a
sequence of all orbits contained in fr M, N H, (the orbits contained in fr M, N H,
are indexed bijectively by sequences of the form «*i). For each i € I, denote by
H,.; the component of R? \ Cax; which has no common points with M,. It can
happen that fr M, N H, = (. In such a case we have I, = ().

For each i € I, we take a point ga«; € Cqxi- Then there exists a positive
integer m such that gu«; € clB(p,m). Since Cuy; N clB(p,m) is a compact
set, there exists a point pa«; € Coxi Necl B(p, m) such that the Euclidean distance
d(p, Paxi) between p and py.4; is the minimum of the distances between the point p
and those in the orbit Cj4;. Denote by mq4; the minimum of the set of all positive
integers m such that d(p, paxi) < m. Let M,.; be an element of the subfamily
{M; :j5=1,...,jm,..} of the family {M, : j € J} that contains py+;. Then
Cosxi C My, since payi € Cosi and M, is invariant. Thus we have constructed
an admissible class of finite sequences A, a family of orbits {C, : @ € A} and a
family of maximal parallelizable regions {M, : « € A} such that C, C M, for
a € A.

Now we will prove that A is at most contable. To this end we show by
induction that for each positive integer n the set A, U A_,, is at most contable.
Since A; = {1} and A_; = {—1}, the statement holds for n = 1. Assume that
the set A,, U A_,, is at most contable for some n. Since for each o« € A, U A_,,
the set I, is at most contable, so is A,41 = {axi : a € A,,i € I,} and
A1 ={axi:a € A_,,i € I,}. Thus for each positive integer n the set
A, UA_, is at most contable and consequently so is A = UnEZ+ A, UA_,.

Fix a sequence o * i € A. We will show that M, N Ma.; # 0. Let g € Cuui.
Then there exists a ball B(g,¢) for some € > 0 such that B(q,e) C M., since
Cosi C Myy; and M,,; is an open set. By the fact that C,.; C fr M, we obtain
that there exists a point r € B(q,e) N M,. Thus r € My N My.;. Fix an a € A.
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Since M, is a maximal parallelizable region, we have fr M, = J(M,). Hence by
the fact that Cy.; C fr M, we obtain that Cy.; C J(M,).

Fix axiy, a*is € A such that iy # is. By Proposition 1.3 |Cq, Couiy s Cois|s
since Cyxi; and Cyyi, are contained in fr M, N H,. Take a sequence axix 1 € A.
Since the orbit Cyuix is contained in the component of R? \ Cy.; which does not
contain any point from M, and C, C M,, the relation Cy|Clyui|Counirs holds.

Now we shall show that for every point ¢ € R? there exists an o € A such
that ¢ € M,,. Fix a point ¢ € R?. Let ¢ € Hy (for ¢ € H_; the proof runs in the
same way). Suppose, on the contrary, that ¢ € (J,c 4+ Mo Then ¢ ¢ M;. Hence
there exists exactly one ki € Iy such that ¢ € Hiy.g,. Since ¢ € My, , there
exists exactly one ko € Iy, such that ¢ € Hywg sk, If ¢ € Hy g,y i, _,) for some
(1,k1...,k,_1) € AT, then there exists exactly one k, € I1 gy ... kn_y) such that
q € Hu ky... ky1,kn)» Since otherwise ¢ € My g, .. k,_,)- In such a way we obtain
a sequence (kp)nez, such that ¢ € Hy i, . k) for every n € Z,. Put oy := 1 and
ap = (1,k1,..., ky_1) for n > 2. Thus we get the sequence (a, )nez, of elements
of A* such that ¢ € H,, for n € Z; and the sequence of orbits (Co,)nez,
such that and C,, | C, | Co
Qo = Qp % Ky % kpiq.

for n € Z4, since apy1 = an * ky, and

n+1 n+2

Now we prove that the elements of the sequence (M, )nez, are distinct. Fix
ann € Z;. Then by the definition of H,, ,,, we have M,, C R*\(C,,,,UH,,.,).
Let k be a positive integer such that £ > n+ 1. Then M, contains a point from

n4+1)

H,, ., since Cy, C H,,,, and C,, C M,,. Hence M,, # M,,. Moreover,
M., # M., ., since Cy,,, C M,,,, and Cq, ., N M,, = 0. If k is a positive

integer such that k < n, then M,, C R*\ (C,,,, U Ha,,,). Hence M,, C
R%\ (C,, UH,,). Thus M, # M,,, since C,, C M, .

Since ¢ € H,, for every n € Z, the segment with endpoints p and ¢ has
a common point with C,, for each n € Z;. Denote by p the distance between
p and ¢ and by m, the smallest positive integer m such that m > p. For each
n € Z4 consider the point p,, € C,, such that the Euclidean distance d(p, pa,,)
between p and p,,, is the minimum of the distances between the point p and those
in the orbit C,,, and the number m,, being the minimum of the set of all positive
integers m such that d(p, ps,) < m.

Fix an n € Z4. By the construction the region M,, is an element of the
subfamily {M; : j = 1,...,jm,, } of the family {M; : j € J}. Since C,, has
a common point with the segment with endpoints p and g, we have m,, < m,.
Hence M, is an element of the subfamily {M; : j = 1,...,j,, } of the family
{M; : j € J} for each n € Z,. Thus we get a contradiction, since the elements of
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the sequence (M, )nez, are distinct and the subfamily {M; : j =1,...,jm,} is

n

finite. O

Corollary 2.5. Let {f' : t € R} be a flow of free mappings. Then there
exists a family of connected subsets of the plane {U,, : o € A}, where A = ATUA™
is an admissible class of finite sequences, such that

U . =R2,

acA

U, = C, UN, for an orbit C, and a parallelizable region N, frU, = C, U
Uasica Caxis Nay N No, = 0 for distinct a1,00 € A, Co C J(R?) for a €
A\ {-1,1}, C, = C_y, C,, # C,, for distinct oy, as € A satisfying at least one
of the conditions oy & {—1,1}, as & {—1,1} and

F'(@) = 05 (palx) + (,0)), w€Ua, tER
for some homeomorphisms

Qo 1 Uy R x [0, +00) for a € AT,

onto

Yo 1 Uy — R x(—00,0] forae A™.

PROOF. Putting No = My N Hy, Uy = Co U Ny and o = v, for all
o € A, where M,,, H,, ¥, and A are those occuring Theorem 2.2, we obtain our
assertion directly from Theorem 2.2. O

3. Dependence on common regions

In this section we describe the relations between parallelizing homeomor-
phisms defined on the common parts of the maximal parallelizable regions of the
family constructed in the previous section.

Proposition 3.1. Let {M, : o € A"} and {¢), : « € A"} be the families of
maximal parallelizable regions and homeomorphisms, respectively, occurring in
Theorem 2.2. Then for each a.xi € AT

wa*i(Ma N Ma*i) =R x (Ca*i70)7
'L/)a(Ma N Ma*i) =R x (Cou da)7



200 Zbigniew Lesniak

where ¢, € RU {—o0}, dy € RU {400} and ¢, € [—00,0) are some constants
such that ¢, < d, and at least one of the constants c,, d, Is finite, and there
exist a continuous function figw; : (Casda) — R and a homeomorphism vy :
(Carda) — (Caxi, 0) such that the homeomorphism

P Qﬁa(Ma N Ma*i) - "/Ja*i(Ma N Ma*i)

given by the relation howi = Yaxi © (Yol —1 has the form

ﬁI\/IaM)
haxi(t, s) = (Na*i (S) +1, Va*i(s))
for allt € R and s € (cq,dqy)-

PROOF. Fix an o *i € AT. Then, by Theorem 2.2, M, N M,; # () and

Vo (Wa(@) + (0) = Yaui(Yaxi(@) + (£,0))
for all x € M, N M,4; and t € R. This means that for all t € R
Yot oT othy = L 0 T 0 o
on My N M., where T is given by
T'(x) =z + (t,0) for x € R%

Hence
Yari 0y 0T =T 0 9hgui 0t (1)
on Yo (M N M)

Define a function hgsi @ Yo (Ma N Mawi) = Yawi(Ma N May;) by the rela-
tion fgwi = Yaxi © (Yalpronr,. )~ - From the proof of Theorem 2.2 we get that
Vari(Ma N Masi) = R X (Coxi, 0) for some cqy; € [—00,0) and 1o (Mo N Mysi) =
R X (cq,dy) for some ¢, € RU {—o0} and d, € RU {400} such that ¢, < dq.
Moreover, at least one of the constants c, do, is finite, since J(Cuxi) N My # 0.
Thus haxi : R X (co,do) — R X (caui, 0).

To obtain the form of hq.; we consider the functions g : R X (¢q,ds) — R
and Vgui @ R X (Ca,do) — (Caxi, 0) such that hywi = (Yaxi, Vaxi). From (1) we get

(ha*i o Tt)(yla y2) = (Tt o ha*i)(yh y2)

for all (y1,y2) € R X (ca,ds) and t € R, since TH(R X (ca,dn)) = R X (ca,dq).
Hence for all (y1,y2) € R X (¢q,dq) and t € R

hasi(y1 +t,y2) = hasi(y1,y2) + (£,0),
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which means that
Uasi (Y1 + 1, Y2) = Uaxi(Y1, y2) +1
and
Vasi (Y1 +1,Y2) = Vaxi(Y1,Y2)-
Putting y; = 0 and yo = s we obtain

ua*i(t’ S) = ua*i(o, 3) +t

and
Ua*i(tv S) = Vaxi (07 S)

for all t € R and s € (¢4, ds). Consequently

ha*i(t7 5) = (Ma*i (3) +t, Voé*i(s))

for allt € R and s € (cq,dy), Where faui($s) = Uaxi(0,8) and Veui($) = Vaxi(0, s).

The functions pg.; and v,.; are continuous, since so are Uqg.; and vqs;. 1o
prove that v,.; is one-to-one, let us fix s1,82 € (cqa,dq) such that s; # so.
Let t1,to € R. Then the orbits of C,, ;) and C(y, 4,) of (s1,t1) and (s2,12),
respectively, of the flow {TﬁRX(Cm 4 " t€ R} are distinct, since each orbit of the
flow {T* : t € R} is a horizontal line. From (1) and the definition of hg.; we get

hasi (T (8,)) = T (hawi(8, 1))
for all (s,t) € R X (cq,ds) and t € R. Hence
howi(Cs,t)) = Chani(s,t)

for all (s,t) € Rx(ca,dq), where C,__, (s 1) denotes the orbit of the point hq.i(s, 1)
of the flow {TﬁRx(ca*i,O) :t € R} Thus Ch,i(s1,t1) # Chevisarts)s SINCE o
is a homeomorphism. Consequently, the second coordinates of hgui(s1,t1) and
haxi(s2,t2) are distinct, which means that va.;(s1) # Vaxi(s2). Using the in-
variance of domain theorem we obtain that v,.; is a homeomorphism, since
(Casda) C R, Vaui : (Cayda) — R is injective continuous map and va.;((¢a,ds)) =
(Caxi, 0). O

Remark 3.2. The homeomorphisms v,.; occurring in Proposition 3.1 can be
either increasing or decreasing. Let us denote by C¢, . the unique orbit contained

Qk1

in My N J(Cuui) (see Proposition 1.4). From the construction described in The-
orem 2.2 we obtain that, in the case where C,|C%,;|Coxi or C, = C%,;, the

*1 i)

homeomorphism v,.; is decreasing and ¢, > 0 or ¢, = 0, respectively. However,
in case |Cy, C2,;, Coxi|, the homeomorphism v,.; is increasing and d, > 0.

a1
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