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On a decomposition of the plane for a flow of free mappings

By ZBIGNIEW LEŚNIAK (Kraków)

Dedicated to Professor Zoltán Daróczy on the occasion of his 70th birthday

Abstract. We consider a flow of the plane which has no fixed points. We present

a method for finding a countable family of maximal parallelizable regions of the flow

which cover the plane. Moreover, we describe the relations between parallelizing home-

omorphisms defined on the maximal parallelizable regions using solutions of appropriate

functional equations.

1. Introduction

Let {f t : t ∈ R} be a flow such that f t for t ∈ R \ {0} is a free mapping, i.e.
a homeomorphism of the plane onto itself without fixed points which preserves
orientation. It follows from the Jordan theorem that each orbit C of {f t : t ∈ R}
divide the plane into two simply connected regions. Note that each of them is
invariant under f t for t ∈ R. Thus two different orbits Cp and Cq of points p and
q, respectively, divide the plane into three simply connected invariant regions, one
of which contains both Cp and Cq in its boundary. We will call this region by the
strip between Cp and Cq and denote by Dpq.

For any distinct orbits Cp1 , Cp2 , Cp3 of {f t : t ∈ R} one of the following two
possibilities must be satisfied: exactly one of the orbits Cp1 , Cp2 , Cp3 is contained
in the strip between the other two or each of the orbits Cp1 , Cp2 , Cp3 is contained
in the strip between the other two. In the first case if Cpj is the orbit which lies
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in the strip between Cpi
and Cpk

, we will write Cpi
|Cpj

|Cpk
(i, j, k ∈ {1, 2, 3}

and i, j, k are different). In the second case we will write |Cpi , Cpj , Cpk
| (see [2]).

Put

J+(q) := {p ∈ R2 : there exist a sequence (qn)n∈N and a sequence (tn)n∈N

such that qn → q, tn → +∞, f tn(qn) → p as n → +∞},
J−(q) := {p ∈ R2 : there exist a sequence (qn)n∈N and a sequence (tn)n∈N

such that qn → q, tn → −∞, f tn(qn) → p as n → +∞}.
The set J(q) := J+(q)∪ J−(q) is called the first prolongational limit set of q. Let
us observe that p ∈ J(q) if and only if q ∈ J(p) for any p, q ∈ R2. For a subset
H ⊂ R2 we define

J(H) :=
⋃

q∈H

J(q).

One can observe that for each p ∈ R2 the set J(p) is invariant.
An invariant region M ⊂ R2 is said to be parallelizable if there exists a

homeomorphism ψ mapping M onto R2 such that

f t(x) = ψ−1(ψ(x) + (t, 0)) for x ∈ M, t ∈ R.

The homeomorphism ψ occurring in this equality will be called a parallelizing
homeomorphism of M . It is known that a region M is parallelizable if and only
if there exists a topological line K (i.e. a homeomorphic image of a straight line)
that is a closed set in M such that K has exactly one common point with every
orbit of {f t : t ∈ R} contained in M (see [1], p. 49 and e.g. [6]). Such a set K we
will call a section in M .

It is known that a region M is parallelizable if and only if J(M) ∩ M = ∅
(see [1], p. 46 and 49). Hence for every parallelizable region M we have J(M) ⊂
fr M . If M is a maximal parallelizable region (i.e. M is not contained properly in
any parallelizable region), then J(M) = fr M (see [8]).

Now we collect the results from [5] and [7] which are needed in this paper.

Proposition 1.1 (see [7]). Let M be a parallelizable region of {f t : t ∈ R}.
Then frM is invariant.

Proposition 1.2 (see [5]). Let M be a parallelizable region and let q ∈ frM .

Then clM \ Cq is contained in one of the components of R2 \ Cq.

Proposition 1.3 (see [7]). Let M be a parallelizable region of {f t : t ∈ R}.
Let p ∈ M and H be a component of R2 \ Cp. Then for all distinct orbits Cq1 ,

Cq2 contained in fr M ∩H the relation |Cq1 , Cq2 , Cp| holds.



On a decomposition of the plane for a flow of free mappings 193

Proposition 1.4 (see [7]). Let M be a parallelizable region of {f t : t ∈ R}.
Let p ∈ frM and q1, q2 ∈ M . Assume that q1, q2 ∈ J(p). Then Cq1 = Cq2 .

2. The form of flows of free mappings

In this section we describe the form of an arbitrary flow of free mappings.
The proof of the theorem of this section is based on the idea of W. Kaplan

(see [2]).
Let α = (p1, . . . , pn) be a sequence of integers. Then, for any integer k by

α ∗ k will be denoted the concatenation of the sequences α and the one-element
sequence k (for one-element sequences we omit parentheses), i.e the sequence
(p1, . . . , pn, k).

A class A+ of finite sequences α of positive integers will be termed admissible
if the following conditions hold:

(1) A+ contains the sequence: 1, and no other one-element sequence;

(2) if α ∗ k is in A+ and k > 1, then so also is α ∗ (k − 1);

(3) if α ∗ 1 is in A+, then so also is α.

A class A− of finite sequences α of negative integers will be termed admissible
if the following conditions hold:

(1) A− contains the sequence: −1, and no other one-element sequence;

(2) if α ∗ k is in A− and k < −1, then so also is α ∗ (k + 1);

(3) if α ∗ −1 is in A−, then so also is α.

The set A := A+ ∪ A−, where A+, A− are some admissible classes of finite
sequences of positive, negative integers, respectively, will be said to be admissible
class of finite sequences.

Lemma 2.1. Let {f t : t ∈ R} be a flow of free mappings. Let p ∈ R2.

Then there exists an at most countable family of maximal parallelizable regions

{Mj : j ∈ J}, where J is the set of all positive integers or J = {1, . . . , N} for

some positive integer N , such that p ∈ M1 and for each positive integer n the set

clB(p, n), where B(p, n) is the ball centered at p with radius n, is covered by a

finite subfamily {M1, . . . , Mjn} of {Mj : j ∈ J}. Moreover, jn ≤ jn+1 for every n.

Proof. On account of the Whitney–Bebutov Theorem (see [1], p. 52), for
each q ∈ R2 there exists a parallelizable region Mq

0 containing q. Then there
exists a maximal parallelizable region Mq such that Mq

0 ⊂ Mq (see [8]). Thus for
each q ∈ R2 we can choose a maximal parallelizable region Mq containing q.
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Consider the ball B(p, 1) centered at p with radius 1. Then the family {Mq :
q ∈ clB(p, 1)} cover the set cl B(p, 1). By the Heine–Borel Theorem we can
choose a finite number of elements of the family {Mq : q ∈ clB(p, 1)} which cover
clB(p, 1). Denote these regions by M1, . . . , Mj1 , where j1 is a positive integer.
Without loss of generality we can assume that p ∈ M1.

Suppose that we have chosen a finite sequence M1, . . . , Mj1 , . . . ,Mjn of dis-
tinct elements of the family {Mq : q ∈ R2} such that for every positive integer
k ≤ n

clB(p, k) ⊂
jk⋃

j=1

Mj

and the sequence j1, j2, . . . , jn is nondecreasing. If the regions M1, . . . ,Mj1 ,
. . . ,Mjn cover the set cl B(p, n + 1), then we put jn+1 = jn. Otherwise, we
consider the family

{Mj : j = 1, . . . , jn} ∪ {Mq : q ∈ cl B(p, n + 1) \
jn⋃

j=1

Mj}.

By compactness of cl B(p, n+1) we can choose from this family a finite number of
distinct maximal parallelizable regions Mjn+1, . . . , Mjn+1 6∈ {Mj : j = 1, . . . , jn}
such that

clB(p, n + 1) ⊂
jn+1⋃

j=1

Mj .

Therefore we have the finite sequence M1, . . . , Mjn+1 covering cl B(p, n + 1) such
that M1, . . . , Mj1 , . . . , Mjn are its initial elements. Hence jn ≤ jn+1. ¤

Theorem 2.2. Let {f t : t ∈ R} be a flow of free mappings. Then there exist

a family of orbits {Cα : α ∈ A} and a family of maximal parallelizable regions

{Mα : α ∈ A}, where A = A+ ∪ A− is an at most countable admissible class of

finite sequences, such that

Cα ⊂ Mα for α ∈ A,
⋃

α∈A

Mα = R2

and

f t(x) = ψ−1
α (ψα(x) + (t, 0)) for x ∈ Mα, t ∈ R

for arbitrarily chosen parallelizing homeomorphism ψα of Mα. Moreover, the

families can be constructed in such a way that

Mα ∩Mα∗i 6= ∅ for α ∗ i ∈ A,
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Cα∗i ⊂ J(Mα) for α ∗ i ∈ A,

|Cα, Cα∗i1 , Cα∗i2 | for α ∗ i1, α ∗ i2 ∈ A, i1 6= i2,

Cα|Cα∗i|Cα∗i∗l for α ∗ i ∗ l ∈ A.

Remark 2.3. The construction of the set of indices A and the families {Cα :
α ∈ A} and {Mα : α ∈ A} occurring in Theorem 2.2 starts from the orbit
C1 = C−1 of an arbitrary point p ∈ R2 and the maximal parallelizable region
M1 occurring in Lemma 2.1 (we take M−1 = M1 and the same parallelizing
homeomorphism ψ1 = ψ−1 of M1). Having constructed an α ∈ A and Cα, Mα,
we index bijectively the set of all orbits contained in

frMα ∩Hα,

where H1, H−1 are components of R2\C1 and for all α = β∗l ∈ A the set Hα is the
component of R2 \Cα which has no common point with Mβ , by sequences of the
form α∗k starting from k = 1 and taking subsequent positive integers k if α ∈ A+

and starting from k = −1 and taking subsequent negative integers k if α ∈ A−.
We enlarge the set A by all these sequences α ∗k and for each orbit Cα∗k indexed
by α ∗ k we take as Mα∗k an element of the subfamily {Mj : j = 1, . . . , jmα∗k

}
of the family occurring in Lemma 2.1 that contains Cα∗k, where mα∗k is the
smallest integer which is greater or equal to the distance of the orbit Cα∗k from
p. Moreover, we only consider such parallelizing homeomorphism ψα : Mα → R2

that ψα(Cα) = R× {0} and

ψα(Mα ∩Hα) = R× (0, +∞) if α ∈ A+

and
ψα(Mα ∩Hα) = R× (−∞, 0) if α ∈ A−.

Example 2.4. The flow {f t : t ∈ R} depicted in Figure 1 is the one of
the simplest flows of free mappings for which the set of indices A occurring in
Theorem 2.2 is not uniquely determined. The topological lines pictured in Figure
1 are invariant under the flow. The free mapping f1 moves points one unit of arc
length along these lines.

The lines denoted by C1, C(1,1), C(1,1,1) are contained in the maximal paral-
lelizable regions M1 = M−1, M(1,1), M(1,1,1), where M1 is the open half-plane
which consists of all points that lie above the line C(1,1), M(1,1) is the strip
bounded by C1 and C(1,1,1), M(1,1,1) is the open half-plane which consists of
all points that lie below the line C(1,1). In this case A+ = {1, (1, 1), (1, 1, 1)} and
A− = {−1}.
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C(1,1)

C1 = C-1

C(1,1,1)

Figure 1. A flow of free mappings with three maximal parallelizable regions

Another possibility of choosing A+ and A− is the following: (A+)′ = {1, (1, 1)},
(A−)′ = {−1, (−1,−1)}. Then taking (C1)′ = C(1,1), (C(1,1))′ = C(1,1,1),
(C(−1,−1))′= C1, we have (M1)′=M(1,1), (M(1,1))′= M(1,1,1), (M(−1,−1))′=M1.

Proof of Theorem 2.2. We will show that the construction described in
Remark 2.3 gives families {Cα : α ∈ A} and {Mα : α ∈ A} that satisfy all relations
in the assertion of Theorem 2.2. Since C1 = Cp, p ∈ M1 and M1 is invariant, the
inclusion C1 ⊂ M1 holds. Moreover, by the fact that C−1 = C1 and M−1 = M1,
we have C−1 ⊂ M−1. From the Jordan theorem we obtain that the set R2\Cp has
exactly two components (we denote these components by H1 and H−1). For the
set C1∪H1 we will construct an admissible class A+ of finite sequences of positive
integers and a subfamily {Mα : α ∈ A+} of {Mj : j ∈ J}, where {Mj : j ∈ J} is
the family occurring in Lemma 2.1, such that C1 ∪H1 ⊂

⋃
α∈A+ Mα. The same

procedure can be applied to C−1∪H−1, to obtain an admissible class A− of finite
sequences of negative integers and a subfamily {Mα : α ∈ A−} of {Mj : j ∈ J}
such that C−1 ∪H−1 ⊂

⋃
α∈A− Mα.

Assume that for an n ≥ 1 we have constructed the set of admissible sequences
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of positive integers An of length n, the set of admissible sequences of negative
integers A−n of length n, the orbits Cα and the maximal parallelizable regions
Mα for α ∈ An ∪A−n such that Cα ⊂ Mα and Mα ∈ {Mj : j ∈ J}. Consider the
maximal parallelizable region Mα for an α ∈ An ∪ A−n. From Proposition 1.1,
we obtain that fr Mα is a union of orbits. Moreover, by Propositions 1.2 and 1.3,
for all q1, q2 ∈ frMα ∩Hα such that Cq1 6= Cq2 the relation |Cα, Cq1 , Cq2 | holds
and the components R2 \Cq1 , R2 \Cq2 which do not contain Mα are disjoint open
sets. Hence fr Mα ∩ Hα consists of at most countable many of orbits, since for
each q ∈ fr Mα ∩Hα the component of R2 \Cq which has no common points with
Mα contains a point with rational coordinates.

Let (Cα∗i)i∈Iα
, where Iα = {1, . . . , kα} for some k1 ∈ Z+ or Iα = Z+ if

α ∈ An and Iα = {−1, . . . , kα} for some kα ∈ Z− or Iα = Z− if α ∈ A−n, be a
sequence of all orbits contained in fr Mα∩Hα (the orbits contained in fr Mα∩Hα

are indexed bijectively by sequences of the form α ∗ i). For each i ∈ Iα denote by
Hα∗i the component of R2 \ Cα∗i which has no common points with Mα. It can
happen that fr Mα ∩Hα = ∅. In such a case we have Iα = ∅.

For each i ∈ Iα we take a point qα∗i ∈ Cα∗i. Then there exists a positive
integer m such that qα∗i ∈ clB(p,m). Since Cα∗i ∩ clB(p,m) is a compact
set, there exists a point pα∗i ∈ Cα∗i ∩ clB(p,m) such that the Euclidean distance
d(p, pα∗i) between p and pα∗i is the minimum of the distances between the point p

and those in the orbit Cα∗i. Denote by mα∗i the minimum of the set of all positive
integers m such that d(p, pα∗i) ≤ m. Let Mα∗i be an element of the subfamily
{Mj : j = 1, . . . , jmα∗i} of the family {Mj : j ∈ J} that contains pα∗i. Then
Cα∗i ⊂ Mα∗i, since pα∗i ∈ Cα∗i and Mα∗i is invariant. Thus we have constructed
an admissible class of finite sequences A, a family of orbits {Cα : α ∈ A} and a
family of maximal parallelizable regions {Mα : α ∈ A} such that Cα ⊂ Mα for
α ∈ A.

Now we will prove that A is at most contable. To this end we show by
induction that for each positive integer n the set An ∪ A−n is at most contable.
Since A1 = {1} and A−1 = {−1}, the statement holds for n = 1. Assume that
the set An ∪ A−n is at most contable for some n. Since for each α ∈ An ∪ A−n

the set Iα is at most contable, so is An+1 = {α ∗ i : α ∈ An, i ∈ Iα} and
A−n−1 = {α ∗ i : α ∈ A−n, i ∈ Iα}. Thus for each positive integer n the set
An ∪A−n is at most contable and consequently so is A =

⋃
n∈Z+

An ∪A−n.
Fix a sequence α ∗ i ∈ A. We will show that Mα ∩Mα∗i 6= ∅. Let q ∈ Cα∗i.

Then there exists a ball B(q, ε) for some ε > 0 such that B(q, ε) ⊂ Mα∗i, since
Cα∗i ⊂ Mα∗i and Mα∗i is an open set. By the fact that Cα∗i ⊂ fr Mα we obtain
that there exists a point r ∈ B(q, ε) ∩Mα. Thus r ∈ Mα ∩Mα∗i. Fix an α ∈ A.
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Since Mα is a maximal parallelizable region, we have fr Mα = J(Mα). Hence by
the fact that Cα∗i ⊂ fr Mα, we obtain that Cα∗i ⊂ J(Mα).

Fix α ∗ i1, α ∗ i2 ∈ A such that i1 6= i2. By Proposition 1.3 |Cα, Cα∗i1 , Cα∗i2 |,
since Cα∗i1 and Cα∗i2 are contained in fr Mα ∩Hα. Take a sequence α ∗ i ∗ l ∈ A.
Since the orbit Cα∗i∗l is contained in the component of R2 \Cα∗i which does not
contain any point from Mα and Cα ⊂ Mα, the relation Cα|Cα∗i|Cα∗i∗l holds.

Now we shall show that for every point q ∈ R2 there exists an α ∈ A such
that q ∈ Mα. Fix a point q ∈ R2. Let q ∈ H1 (for q ∈ H−1 the proof runs in the
same way). Suppose, on the contrary, that q 6∈ ⋃

α∈A+ Mα. Then q 6∈ M1. Hence
there exists exactly one k1 ∈ I1 such that q ∈ H1∗k1 . Since q 6∈ M1∗k1 , there
exists exactly one k2 ∈ I1∗k1 such that q ∈ H1∗k1∗k2 . If q ∈ H(1,k1...,kn−1) for some
(1, k1 . . . , kn−1) ∈ A+, then there exists exactly one kn ∈ I(1,k1...,kn−1) such that
q ∈ H(1,k1...,kn−1,kn), since otherwise q ∈ M(1,k1...,kn−1). In such a way we obtain
a sequence (kn)n∈Z+ such that q ∈ H(1,k1...,kn) for every n ∈ Z+. Put α1 := 1 and
αn := (1, k1, . . . , kn−1) for n ≥ 2. Thus we get the sequence (αn)n∈Z+ of elements
of A+ such that q ∈ Hαn for n ∈ Z+ and the sequence of orbits (Cαn)n∈Z+

such that and Cαn | Cαn+1 | Cαn+2 for n ∈ Z+, since αn+1 = αn ∗ kn and
αn+2 = αn ∗ kn ∗ kn+1.

Now we prove that the elements of the sequence (Mαn)n∈Z+ are distinct. Fix
an n ∈ Z+. Then by the definition of Hαn+1 , we have Mαn ⊂ R2\(Cαn+1∪Hαn+1).
Let k be a positive integer such that k > n + 1. Then Mαk

contains a point from
Hαn+1 , since Cαk

⊂ Hαn+1 and Cαk
⊂ Mαk

. Hence Mαn 6= Mαk
. Moreover,

Mαn 6= Mαn+1 , since Cαn+1 ⊂ Mαn+1 and Cαn+1 ∩ Mαn = ∅. If k is a positive
integer such that k < n, then Mαk

⊂ R2 \ (Cαk+1 ∪ Hαk+1). Hence Mαk
⊂

R2 \ (Cαn ∪Hαn). Thus Mαn 6= Mαk
, since Cαn ⊂ Mαn .

Since q ∈ Hαn for every n ∈ Z+, the segment with endpoints p and q has
a common point with Cαn for each n ∈ Z+. Denote by ρ the distance between
p and q and by mq the smallest positive integer m such that m ≥ ρ. For each
n ∈ Z+ consider the point pαn ∈ Cαn such that the Euclidean distance d(p, pαn)
between p and pαn is the minimum of the distances between the point p and those
in the orbit Cαn and the number mαn being the minimum of the set of all positive
integers m such that d(p, pαn) ≤ m.

Fix an n ∈ Z+. By the construction the region Mαn is an element of the
subfamily {Mj : j = 1, . . . , jmαn

} of the family {Mj : j ∈ J}. Since Cαn has
a common point with the segment with endpoints p and q, we have mαn ≤ mq.
Hence Mαn is an element of the subfamily {Mj : j = 1, . . . , jmq} of the family
{Mj : j ∈ J} for each n ∈ Z+. Thus we get a contradiction, since the elements of
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the sequence (Mαn
)n∈Z+ are distinct and the subfamily {Mj : j = 1, . . . , jmq

} is
finite. ¤

Corollary 2.5. Let {f t : t ∈ R} be a flow of free mappings. Then there

exists a family of connected subsets of the plane {Uα : α ∈ A}, where A = A+∪A−

is an admissible class of finite sequences, such that

⋃

α∈A

Uα = R2,

Uα = Cα ∪ Nα for an orbit Cα and a parallelizable region Nα, frUα = Cα ∪⋃
α∗i∈A Cα∗i, Nα1 ∩ Nα2 = ∅ for distinct α1, α2 ∈ A, Cα ⊂ J(R2) for α ∈

A \ {−1, 1}, C1 = C−1, Cα1 6= Cα2 for distinct α1, α2 ∈ A satisfying at least one

of the conditions α1 6∈ {−1, 1}, α2 6∈ {−1, 1} and

f t(x) = ϕ−1
α (ϕα(x) + (t, 0)), x ∈ Uα, t ∈ R

for some homeomorphisms

ϕα : Uα
onto→ R× [0, +∞) for α ∈ A+,

ϕα : Uα
onto→ R× (−∞, 0] for α ∈ A−.

Proof. Putting Nα = Mα ∩ Hα, Uα = Cα ∪ Nα and ϕα = ψα|Uα
for all

α ∈ A, where Mα, Hα, ψα and A are those occuring Theorem 2.2, we obtain our
assertion directly from Theorem 2.2. ¤

3. Dependence on common regions

In this section we describe the relations between parallelizing homeomor-
phisms defined on the common parts of the maximal parallelizable regions of the
family constructed in the previous section.

Proposition 3.1. Let {Mα : α ∈ A+} and {ψα : α ∈ A+} be the families of

maximal parallelizable regions and homeomorphisms, respectively, occurring in

Theorem 2.2. Then for each α ∗ i ∈ A+

ψα∗i(Mα ∩Mα∗i) = R× (cα∗i, 0),

ψα(Mα ∩Mα∗i) = R× (cα, dα),
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where cα ∈ R ∪ {−∞}, dα ∈ R ∪ {+∞} and cα∗i ∈ [−∞, 0) are some constants

such that cα < dα and at least one of the constants cα, dα is finite, and there

exist a continuous function µα∗i : (cα, dα) → R and a homeomorphism να∗i :
(cα, dα) → (cα∗i, 0) such that the homeomorphism

hα∗i : ψα(Mα ∩Mα∗i) → ψα∗i(Mα ∩Mα∗i)

given by the relation hα∗i = ψα∗i ◦ (ψα|Mα∩Mα∗i
)−1 has the form

hα∗i(t, s) = (µα∗i(s) + t, να∗i(s))

for all t ∈ R and s ∈ (cα, dα).

Proof. Fix an α ∗ i ∈ A+. Then, by Theorem 2.2, Mα ∩Mα∗i 6= ∅ and

ψ−1
α (ψα(x) + (t, 0)) = ψ−1

α∗i(ψα∗i(x) + (t, 0))

for all x ∈ Mα ∩Mα∗i and t ∈ R. This means that for all t ∈ R

ψ−1
α ◦ T t ◦ ψα = ψ−1

α∗i ◦ T t ◦ ψα∗i

on Mα ∩Mα∗i, where T t is given by

T t(x) = x + (t, 0) for x ∈ R2.

Hence
ψα∗i ◦ ψ−1

α ◦ T t = T t ◦ ψα∗i ◦ ψ−1
α (1)

on ψα(Mα ∩Mα∗i).
Define a function hα∗i : ψα(Mα ∩ Mα∗i) → ψα∗i(Mα ∩ Mα∗i) by the rela-

tion hα∗i = ψα∗i ◦ (ψα|Mα∩Mα∗i
)−1. From the proof of Theorem 2.2 we get that

ψα∗i(Mα ∩Mα∗i) = R× (cα∗i, 0) for some cα∗i ∈ [−∞, 0) and ψα(Mα ∩Mα∗i) =
R × (cα, dα) for some cα ∈ R ∪ {−∞} and dα ∈ R ∪ {+∞} such that cα < dα.
Moreover, at least one of the constants cα, dα is finite, since J(Cα∗i) ∩Mα 6= ∅.
Thus hα∗i : R× (cα, dα) → R× (cα∗i, 0).

To obtain the form of hα∗i we consider the functions uα∗i : R× (cα, dα) → R
and vα∗i : R× (cα, dα) → (cα∗i, 0) such that hα∗i = (uα∗i, vα∗i). From (1) we get

(hα∗i ◦ T t)(y1, y2) = (T t ◦ hα∗i)(y1, y2)

for all (y1, y2) ∈ R × (cα, dα) and t ∈ R, since T t(R × (cα, dα)) = R × (cα, dα).
Hence for all (y1, y2) ∈ R× (cα, dα) and t ∈ R

hα∗i(y1 + t, y2) = hα∗i(y1, y2) + (t, 0),
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which means that
uα∗i(y1 + t, y2) = uα∗i(y1, y2) + t

and
vα∗i(y1 + t, y2) = vα∗i(y1, y2).

Putting y1 = 0 and y2 = s we obtain

uα∗i(t, s) = uα∗i(0, s) + t

and
vα∗i(t, s) = vα∗i(0, s)

for all t ∈ R and s ∈ (cα, dα). Consequently

hα∗i(t, s) = (µα∗i(s) + t, να∗i(s))

for all t ∈ R and s ∈ (cα, dα), where µα∗i(s) = uα∗i(0, s) and να∗i(s) = vα∗i(0, s).
The functions µα∗i and να∗i are continuous, since so are uα∗i and vα∗i. To

prove that να∗i is one-to-one, let us fix s1, s2 ∈ (cα, dα) such that s1 6= s2.
Let t1, t2 ∈ R. Then the orbits of C(s1,t1) and C(s2,t2) of (s1, t1) and (s2, t2),
respectively, of the flow {T t

|R×(cα,dα) : t ∈ R} are distinct, since each orbit of the
flow {T t : t ∈ R} is a horizontal line. From (1) and the definition of hα∗i we get

hα∗i(T t(s, t)) = T t(hα∗i(s, t))

for all (s, t) ∈ R× (cα, dα) and t ∈ R. Hence

hα∗i(C(s,t)) = Chα∗i(s,t)

for all (s, t) ∈ R×(cα, dα), where Chα∗i(s,t) denotes the orbit of the point hα∗i(s, t)
of the flow {T t

|R×(cα∗i,0)
: t ∈ R}. Thus Chα∗i(s1,t1) 6= Chα∗i(s2,t2), since hα∗i

is a homeomorphism. Consequently, the second coordinates of hα∗i(s1, t1) and
hα∗i(s2, t2) are distinct, which means that να∗i(s1) 6= να∗i(s2). Using the in-
variance of domain theorem we obtain that να∗i is a homeomorphism, since
(cα, dα) ⊂ R, να∗i : (cα, dα) → R is injective continuous map and να∗i((cα, dα)) =
(cα∗i, 0). ¤

Remark 3.2. The homeomorphisms να∗i occurring in Proposition 3.1 can be
either increasing or decreasing. Let us denote by Cα

α∗i the unique orbit contained
in Mα ∩ J(Cα∗i) (see Proposition 1.4). From the construction described in The-
orem 2.2 we obtain that, in the case where Cα|Cα

α∗i|Cα∗i or Cα = Cα
α∗i, the

homeomorphism να∗i is decreasing and cα > 0 or cα = 0, respectively. However,
in case |Cα, Cα

α∗i, Cα∗i|, the homeomorphism να∗i is increasing and dα > 0.
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