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On selections of general linear inclusions

By KAZIMIERZ NIKODEM (Bielsko-BiaÃla) and DORIAN POPA (Cluj-Napoca)

Dedicated to Professor Zoltán Daróczy on his 70th birthday

Abstract. In this paper we prove that a set-valued map with closed, convex and

uniformly bounded values in a Banach space, which satisfy a general linear inclusion,

admits a selection that satisfies a general linear equation.

1. Introduction

The main notions of set-valued analysis as linearity, convexity, subadditivity,
superadditivity, affinity are defined by functional inclusions. An important prob-
lem in set-valued analysis is to find selections of set-valued maps satisfying some
conditions as continuity, measurability, integrability, etc (see e.g. [3]).

In the theory of functional equations one of the main topics is Hyers–Ulam
stability (cf. e.g. [5], [8], [2] and the references therein). A first result on this topic
was given by D. H. Hyers [7] who obtained the following result for the Cauchy
functional equation:

Let X be a linear normed space, Y a Banach space and ε > 0. Then for
every f : X → Y satisfying the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε, x, y ∈ X, (1.1)

there exists a unique additive function g : X → Y such that

‖f(x)− g(x)‖ ≤ ε, x ∈ X. (1.2)

Mathematics Subject Classification: 39B62, 39B82, 54C65.
Key words and phrases: general linear inclusion, selection.



240 Kazimierz Nikodem and Dorian Popa

An interesting connection between the stability of the Cauchy equation and
subadditive set-valued maps was established by W. Smajdor [14] and by R. Ger

and Z. Gajda [6]. They observed that if f is a solution of (1.1), then the set-
valued map F : X → P0(Y ) (P0(X) denotes the collection of all nonempty subsets
of Y ) defined by the relation

F (x) = f(x) + B(0, ε), x ∈ X, (1.3)

where B(0, ε) is the closed ball of center 0 and radius ε in Y , is subadditive and
the function g from (1.2) is an additive selection of F , i.e. g(x) ∈ F (x) for every
x ∈ X.

Now one may ask under what conditions a subadditive set-valued map admits
an additive selection. An answer to this question is given in [6]. Furthermore
this result was generalized by D. Popa [12], [13], who considered multifunctions
satisfying a general linear inclusion instead a subadditive set-valued map.

The transposition of the general linear equation, considered, among others,
by J. Aczél, Z. Daróczy and L. Losonczi (cf. [1] and the references therein),
for set-valued maps leads to the study of the following two linear inclusions:

F (αx + βy + c) ⊆ γF (x) + δF (y) + C (1.4)

αF (x) + βF (y) ⊆ F (γx + δy + c) + C (1.5)

where α, β, γ, δ are real numbers F : X → P0(Y ), X, Y are real vector spaces,
c ∈ X and C ∈ P0(Y ).

Subadditive and superadditive set-valued functions, defined by particular
cases of the linear inclusions (1.4) and (1.5) were studied by W. Smajdor [14],
[15] and A. Smajdor [16].

D. Popa proved that a set valued map satisfying the general linear inclusion
(1.4), in appropriate conditions, admits a selection f satisfying the general linear
equation

f(αx + βy + c) = γf(x) + δf(y), x, y ∈ X. (1.6)

The goal of this paper is to obtain an analogous result for the general linear
inclusion (1.5). This result is in connection with the results of convex analysis
for set-valued maps. Indeed if in (1.5) one take α = γ = 1− t, β = δ = t, where
t ∈ [0, 1] is fixed, c = 0X , and C is a convex cone, then F is called (t, C)-convex
set-valued map (if C = {0Y } then F is called t-convex set valued map) (see [9]
and the references therein). If α = γ, β = δ are positive fixed numbers, c = 0X ,
and C = {0Y } then F is a generalized convex process [3].
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2. Main result

Throughout this section we denote by X a real linear space and by Y a real
Banach space with the zero vectors denoted by 0X and 0Y , the collection of all
nonempty subsets of Y is denoted by P0(Y ) and ccl(Y ) denotes the family of all
nonempty convex and closed subsets of Y . For A,B ∈ P0(Y ) and λ, µ ∈ R we
define the sets A + B and λA by

A + B = {x | x = a + b, a ∈ A, b ∈ B}
λA = {x | x = λa, a ∈ A}.

(2.1)

The next properties will be used often in the sequel

λ(A + B) = λA + λB

(λ + µ)A ⊆ λA + µA
(2.2)

If A is a convex set and λµ ≥ 0, then we have

(λ + µ)A = λA + µA. (2.3)

For a set A ∈ P0(Y ) we denote by d(A) the diameter of A, i.e.

d(A) = sup{‖x− y‖ : x, y ∈ A}. (2.4)

A selection of a set-valued map F : X → P0(Y ) is a single valued map
f : X → Y with the property f(x) ∈ F (x) for all x ∈ X. Given a point
z ∈ X, z 6= 0, denote by Lz the half-line with the origin 0X containing z, i.e.
Lz = {tz : t ≥ 0}.

The main result of this paper is contained in the next theorem.

Theorem 2.1. Let K be a convex cone in X containing 0X , α, β, γ, δ be

positive numbers α + β 6= 1.

i) If α + β < 1, then for every solution F : K → ccl(Y ) of the linear inclusion

αF (x) + βF (y) ⊆ F (γx + δy), x, y ∈ K, (2.5)

satisfying sup{d(F (x)) : x ∈ Lz} < ∞, for every z ∈ K, there exists a

unique selection f : K → Y of F satisfying the general linear equation

αf(x) + βf(y) = f(γx + δy), x, y ∈ K. (2.6)
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ii) If α+β > 1, then every solution F : K → P0(Y ) of the linear inclusion (2.5),
satisfying sup{d(F (x)) : x ∈ Lz} < ∞, for every z ∈ K, is single-valued.

Proof. i) Existence. Suppose that α+β < 1 and (2.5) is satisfied. Following
the method used by Gajda and Ger in [6], we put y = x in (2.5) and taking
account that F has convex values we get

(α + β)F (x) ⊆ F ((γ + δ)x), x ∈ K. (2.7)

Replacing x by x
(γ+δ)n+1 , in (2.7) and multiplying by (α+β)n, n ∈ N, we get

(α + β)n+1F

(
x

(γ + δ)n+1

)
⊆ (α + β)nF

(
x

(γ + δ)n

)
. (2.8)

Fix x ∈ K and denote

Fn(x) = (α + β)nF

(
x

(γ + δ)n

)
, n ≥ 0. (2.9)

By (2.8) follows that (Fn(x))n≥0 is a decreasing sequence of closed subsets
of the Banach space Y and

lim
n→∞

d(Fn(x)) = lim
n→∞

(α + β)nd

(
F

(
x

(γ + δ)n

))
= 0, (2.10)

in view of the uniform boundedness of the values of F on the half-line Lx.
Hence the

⋂
n≥0 Fn(x) is a singleton and we denote

f(x) =
⋂

n≥0

Fn(x), x ∈ K. (2.11)

Thus we have obtained a single-valued mapping f : K → Y satisfying the
condition f(x) ∈ F0(x) = F (x), i.e. a selection of F .

Let x, y ∈ K be fixed. By (2.5) and (2.9) we have

αFn(x) + βFn(y) = (α + β)n

(
αF

(
x

(γ + δ)n

)
+ βF

(
y

(γ + δ)n

))

⊆ (α + β)nF

(
γx + δy

(γ + δ)n

)
= Fn(γx + δy), n ≥ 0,

and, taking account that (Fn(x))n≥0 is decreasing, it follows

αf(x) + βf(y) = α
⋂

n≥0

Fn(x) + β
⋂

n≥0

Fn(y) ⊆
⋂

n≥0

(αFn(x) + βFn(y))

⊆
⋂

n≥0

Fn(γx + δy) = f(γx + δy).
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Therefore
αf(x) + βf(y) = f(γx + δy), x, y ∈ K. (2.12)

The existence is proved.
Uniqueness. Suppose that there exist two selections f1, f2 : K → Y of F

satisfying the equation (2.6). The following relations hold

(α + β)nfk(x) = fk((γ + δ)nx), k ∈ {1, 2}, (2.13)

for every positive integer n and all x ∈ K, in view of the relation (2.6). We have

1
(α + β)n

‖f1(x)− f2(x)‖ =
∥∥∥∥f1

(
x

(γ + δ)n

)
− f2

(
x

(γ + δ)n

)∥∥∥∥

≤ d

(
F

(
x

(γ + δ)n

))
(2.14)

for every x ∈ K and every n ≥ 0. The uniform boundedness of F on the half-line
Lx leads to f1(x) = f2(x) for every x ∈ K. The uniqueness is proved.

ii) Suppose that α + β > 1 and F satisfies (2.5). Then (2.7) holds and
replacing x in (2.7) by (γ + δ)nx, dividing by (α + β)n+1, n ∈ N, we get

F ((γ + δ)nx)
(α + β)n

⊆ F ((γ + δ)n+1x)
(α + β)n+1

, x ∈ K. (2.15)

Let x ∈ K be fixed. Taking account of (2.15) it follows that the sequence of
sets (F ′n(x))n≥0 given by

F ′n(x) =
F ((γ + δ)nx)

(α + β)n
, n ≥ 0,

is increasing, hence the sequence of real numbers (d(F ′n(x)))n≥0 is increasing too.
But

lim
n→∞

d(F ′n(x)) = lim
n→∞

1
(α + β)n

d(F ((γ + δ)nx) = 0, (2.16)

in view of the uniform boundedness of F on the half-line Lx.
Thus d(F ′n(x)) = 0 for every n ∈ N, hence F is single valued and satisfies the

equation
αF (x) + βF (y) = F (γx + δy), x, y ∈ K. (2.17)

The theorem is proved. ¤

The following result is a simple consequence of Theorem 2.1.
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Corollary 2.1. Let K be a convex cone in X containing 0X , C a nonempty

compact and convex subset of Y , α, β, γ, δ > 0, α + β < 1, γ + δ 6= 1, c ∈ K

and x0 = c
1−γ−δ . Suppose that F : K + x0 → ccl(Y ) satisfies the general linear

inclusion

αF (x) + βF (y) ⊆ F (γx + δy + c) + C, x, y ∈ K + x0 (2.18)

and sup{d(F (x)) : x ∈ Lz + x0} < ∞ for every z ∈ K. Then there exists a

unique single valued mapping f : K + x0 → Y satisfying the equation

αf(x) + βf(y) = f(γx + δy + c), x, y ∈ K + x0 (2.19)
and

f(x) ∈ F (x) +
1

1− α− β
C, x ∈ K + x0. (2.20)

Proof. Let G : K → ccl(Y ) be defined by the relation

G(x) = F (x + x0) +
1

1− α− β
C, x ∈ K. (2.21)

The definition of G is correct since the sum of a closed set and a compact
set is closed and the sum of two convex sets is a convex set. We will prove that
G satisfies the following relation

αG(x) + βG(y) ⊆ G(γx + δy), x, y ∈ K. (2.22)
Indeed,

αG(x) + βG(y) = αF (x + x0) + βF (y + x0) +
α + β

1− α− β
C

⊆ F (γ(x + x0) + δ(y + x0) + c) + C +
α + β

1− α− β
C

= F (γx + δy + x0) +
1

1− α− β
C

= G(γx + δy), x, y ∈ K.

Taking account of Theorem 2.1 it follows that there exists a unique selection g

of G satisfying
αg(x) + βg(y) = g(γx + δy), x, y ∈ K. (2.23)

Now let f : K + x0 → Y be defined by the relation

f(x) = g(x− x0), x ∈ K + x0. (2.24)
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Then
αf(x) + βf(y) = f(γx + δy + c), x, y ∈ K + x0 (2.25)

and
f(x) ∈ F (x) +

1
1− α− β

C, x ∈ K + x0. (2.26)

¤

Corollary 2.1 leads to the following result on the stability of the general linear
equation.

Corollary 2.2. Let K be a convex cone in X containing 0X , α, β, γ, δ,

ε > 0, α + β < 1, γ + δ 6= 1, c ∈ K, k ∈ Y and x0 = c
1−γ−δ . Suppose that

f : K + x0 → Y satisfies the following relation

‖f(γx + δy + c)− αf(x)− βf(y)− k‖ ≤ ε, x, y ∈ K + x0. (2.27)

Then there exists a unique function g : K + x0 → Y satisfying:

g(γx + δy + c) = αg(x) + βg(y) + k, x, y ∈ K + x0 (2.28)

and

‖f(x)− g(x)‖ ≤ ε

1− α− β
, x ∈ K + x0. (2.29)

Proof. Define the function h : K + x0 → Y by the relation

h(x) = f(x) +
k

α + β − 1
, x ∈ K + x0. (2.30)

Then h satisfies the inequality

‖h(γx + δy + c)− αh(x)− βh(y)‖ ≤ ε, x, y ∈ K + x0. (2.31)

Now we consider the set-valued map F : K + x0 → ccl(Y ) given by

F (x) = h(x) +
1

1− α− β
B(0, ε), x ∈ K + x0. (2.32)

We have

αF (x) + βF (y) = αh(x)+
α

1− α− β
B(0, ε) + βh(y)+

β

1− α− β
B(0, ε)

= αh(x) + βh(y) +
α + β

1− α− β
B(0, ε)
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⊆ h(γx + δy + c) + B(0, ε) +
α + β

1− α− β
B(0, ε)

= h(γx + δy + c) +
1

1− α− β
B(0, ε)

= F (γx + δy + c), x, y ∈ K + x0.

Then, in view of Corollary 2.1, there exists a unique function g1 : K + x0 → Y

g1(γx + δy + c) = αg1(x) + βg1(y), x, y ∈ K + x0,

with the property

g1(x) ∈ F (x) = h(x) +
1

1− α− β
B(0, ε), x ∈ K + x0.

Finally it follows that the function g : K + x0 → Y , given by

g(x) = g1(x) +
k

1− α− β
, x ∈ K + x0, (2.33)

satisfies the relations (2.28) and (2.29). The corollary is proved. ¤
Remark 2.1. The result obtained in Corollary 2.2 is a particular case of a

general result obtained by Z. Páles for the stability of the Cauchy functional
equation on square-symmetric grupoids [11]. It also crosses with the result on
stability of general linear equation on restricted domain obtained recently by
J. Brzdȩk and A. Pietrzyk [4].

Finally, we consider the selection problem for set-valued maps satisfying (1.5)
with α + β = 1. In the special case α = β = γ = δ = 1/2 the next theorem gives
conditions under which midconvex set-valued maps have Jensen selections. For
α = γ and β = δ = 1 − α we get a result on affine selections of convex set-
valued maps. Under other assumptions results of this type were obtained by
K. Nikodem [10] and by A. Smajdor and W. Smajdor [17].

Theorem 2.2. Let α ∈ (0, 1), γ, δ > 0, C a nonempty compact and convex

subset of Y containing 0Y and K a convex cone in X containing 0X . Suppose

that F : K → ccl(Y ) satisfies

(1− α)F (x) + αF (y) ⊆ F (γx + δy) + C, x, y ∈ K (2.34)

and sup{d(F (x)) : x ∈ K} < ∞. Then there exists a function f : K → Y

satisfying

(1− α)f(x) + αf(y) = f(γx + δy), x, y ∈ K (2.35)

and

f(x) ∈ F (x) +
1
α

C, x ∈ K. (2.36)
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Proof. Take p ∈ F (0X) and consider the set-valued map G : K → ccl(Y )
given by

G(x) = F (x)− p, x ∈ K. (2.37)
Then

(1− α)G(x) + αG(y) ⊆ G(γx + δy) + C, x, y ∈ K, (2.38)

and 0Y ∈ G(0X). Put y = 0X in (2.38) to get

(1− α)G(x) + αG(0X) ⊆ G(γx) + C, x ∈ K. (2.39)

Replacing x by x
γn+1 and multiplying (2.39) by (1− α)n it follows

(1−α)n+1G

(
x

γn+1

)
+α(1−α)nG(0X) ⊆ (1−α)nG

(
x

γn

)
+(1−α)nC (2.40)

and adding (1−α)n+1

α C to both sides of (2.40) one gets

(1− α)n+1G

(
x

γn+1

)
+

(1− α)n+1

α
C + α(1− α)nG(0X)

⊆ (1− α)nG

(
x

γn

)
+

(1− α)n

α
C. (2.41)

Since 0Y ∈ G(0X) the following relation holds

(1− α)n+1G

(
x

γn+1

)
+

(1− α)n+1

α
C

⊆ (1− α)n+1G

(
x

γn+1

)
+

(1− α)n+1

α
C + α(1− α)nG(0X). (2.42)

Now from (2.42) and (2.41) it follows that (Gn(x))n≥0 defined by

Gn(x) = (1− α)nG

(
x

γn

)
+

(1− α)n

α
C (2.43)

is a decreasing sequence of closed sets with

lim
n→∞

d(Gn(x)) = 0. (2.44)

Then
⋂

n≥0 Gn(x) is a singleton. Put

g(x) =
⋂

n≥0

Gn(x), x ∈ K. (2.45)
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Replacing x by x
γn , y by y

δn , adding 1
αC to both sides of (2.38) and multiplying

by (1− α)n one gets

(1− α)Gn(x) + αGn(y) ⊆ Gn(γx + δy) + (1− α)nC. (2.46)

Now observe that ((1 − α)nC)n≥0 is a decreasing sequence of compact sets.
Indeed, taking account of 0Y ∈ C it follows that for every c ∈ C

(1− α)c = (1− α)c + α · 0Y ∈ C, (2.47)

thus (1−α)C ⊆ C and forward (1−α)n+1C ⊆ (1−α)nC for every positive integer
n. It is known that if (An)n≥0, (Bn)n≥0 are decreasing sequences of closed sets
in a topological vector space and B1 is compact then

⋂

n≥0

(An + Bn) =
⋂

n≥0

An +
⋂

n≥0

Bn (2.48)

(see Lemma 5.3 from [9]). Using this result we get

(1− α)g(x) + αg(y) = (1− α)
⋂

n≥0

Gn(x) + α
⋂

n≥0

Gn(y)

⊆
⋂

n≥0

((1− α)Gn(x) + αGn(y)) ⊆
⋂

n≥0

(Gn(γx + δy) + (1− α)nC)

=
⋂

n≥0

Gn(γx + δy) +
⋂

n≥0

(1− α)nC = g(γx + δy), x, y ∈ K. (2.49)

The function f : K → Y , f(x) = g(x) + p, x ∈ K, satisfies the relation

(1− α)f(x) + αf(y) = f(γx + δy), x ∈ K. (2.50)

On the other hand g(x) ∈ G0(x) = G(x) + 1
αC. It follows

f(x) ∈ F (x) +
1
α

C, x ∈ K. (2.51)
The theorem is proved. ¤

Remark 2.2. The selection f from Theorem 2.2 is not uniquely determined.
For instance, the set valued map F : K → ccl(Y ), F (x) = C, x ∈ K, is a solution
of the linear inclusion (2.34) and the function f : K → Y , f(x) = c, where c ∈ C

is an arbitrary element, satisfies (2.35) and (2.36).
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[10] K. Nikodem, A characterization of midconvex set-valued functions, Acta Univ. Carolin.
Math. Phys. 30 (1989), 125–129.
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