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On selections of general linear inclusions

By KAZIMIERZ NIKODEM (Bielsko-Biata) and DORIAN POPA (Cluj-Napoca)

Dedicated to Professor Zoltdn Dardczy on his 70" birthday

Abstract. In this paper we prove that a set-valued map with closed, convex and
uniformly bounded values in a Banach space, which satisfy a general linear inclusion,
admits a selection that satisfies a general linear equation.

1. Introduction

The main notions of set-valued analysis as linearity, convexity, subadditivity,
superadditivity, affinity are defined by functional inclusions. An important prob-
lem in set-valued analysis is to find selections of set-valued maps satisfying some
conditions as continuity, measurability, integrability, etc (see e.g. [3]).

In the theory of functional equations one of the main topics is Hyers—Ulam
stability (cf. e.g. [5], [8], [2] and the references therein). A first result on this topic
was given by D. H. HYERS [7] who obtained the following result for the Cauchy
functional equation:

Let X be a linear normed space, Y a Banach space and € > 0. Then for
every f: X — Y satisfying the inequality

[f(x+y)—fl@) - fll <e, =zyeX, (1.1)
there exists a unique additive function g : X — 'Y such that
[f(z) —g(z)l <&, zeX. (1.2)
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An interesting connection between the stability of the Cauchy equation and
subadditive set-valued maps was established by W. SMAJDOR [14] and by R. GER
and Z. GAJDA [6]. They observed that if f is a solution of (1.1), then the set-
valued map F' : X — Py(Y) (Po(X) denotes the collection of all nonempty subsets
of V) defined by the relation

F(z) = f(z) + B(0,e), z€X, (1.3)

where B(0, ¢) is the closed ball of center 0 and radius € in Y, is subadditive and
the function g from (1.2) is an additive selection of F, i.e. g(z) € F(x) for every
z e X.

Now one may ask under what conditions a subadditive set-valued map admits
an additive selection. An answer to this question is given in [6]. Furthermore
this result was generalized by D. Popa [12], [13], who considered multifunctions
satisfying a general linear inclusion instead a subadditive set-valued map.

The transposition of the general linear equation, considered, among others,
by J. AczEL, Z. DAROCZY and L. LosoNcz (cf. [1] and the references therein),
for set-valued maps leads to the study of the following two linear inclusions:

Flax+ By+c) CyF(z)+0F(y) + C (1.4)
aF(z)+ BF(y) C F(yz +dy+¢) +C (1.5)

where «, 3,7, are real numbers F : X — Py(Y), X, Y are real vector spaces,
ceXand C € Po(Y)

Subadditive and superadditive set-valued functions, defined by particular
cases of the linear inclusions (1.4) and (1.5) were studied by W. SMAJDOR [14],
[15] and A. SMAJDOR [16].

D. Popa proved that a set valued map satisfying the general linear inclusion
(1.4), in appropriate conditions, admits a selection f satisfying the general linear
equation

flaz+ By +c) = vf(x) +6f(y), a,y€X. (L6)

The goal of this paper is to obtain an analogous result for the general linear
inclusion (1.5). This result is in connection with the results of convex analysis
for set-valued maps. Indeed if in (1.5) one take a =y =1—1¢, =4 = ¢, where
t € 10,1] is fixed, ¢ = 0x, and C' is a convex cone, then F' is called (¢, C')-convex
set-valued map (if C = {0y} then F' is called t-convex set valued map) (see [9]
and the references therein). If & = v, = § are positive fixed numbers, ¢ = Ox,
and C = {0y} then F is a generalized convex process [3].
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2. Main result

Throughout this section we denote by X a real linear space and by Y a real
Banach space with the zero vectors denoted by 0x and 0Oy, the collection of all
nonempty subsets of Y is denoted by Py(Y") and ccl(Y') denotes the family of all
nonempty convex and closed subsets of Y. For A,B € Py(Y) and A\, u € R we
define the sets A + B and AA by

A+B={z|z=a+b, a€ A, be B}

(2.1)
M={z |z =X, a€ A}
The next properties will be used often in the sequel
AMA+B)=)MA+)\B
(2.2)
A+ u)ACAA+ uA
If A is a convex set and Ay > 0, then we have
A+ p)A = A+ uA. (2.3)
For a set A € Py(Y) we denote by d(A) the diameter of A, i.e.
a(A) = sup{ |}z — y| : 2,y € A}. (2.4)

A selection of a set-valued map F' : X — Py(Y) is a single valued map
f X — Y with the property f(z) € F(z) for all z € X. Given a point
z € X, z # 0, denote by L, the half-line with the origin Ox containing z, i.e.
L, ={tz:t >0}

The main result of this paper is contained in the next theorem.

Theorem 2.1. Let K be a convex cone in X containing Ox, «, 3, v, § be
positive numbers a + (3 # 1.

i) If « + 3 < 1, then for every solution F : K — ccl(Y') of the linear inclusion
aF(x) +fF(y) C Flye +0y), .,y €K, (2.5)

satisfying sup{d(F(z)) : = € L,} < oo, for every z € K, there exists a
unique selection f : K — Y of F satisfying the general linear equation

af(x)+8f(y) = flyx+dy), =ye€kK. (2.6)
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i) If a+ 3 > 1, then every solution F : K — Py(Y") of the linear inclusion (2.5),
satisfying sup{d(F'(z)): z € L,} < oo, for every z € K, is single-valued.

PROOF. i) Existence. Suppose that a4+ < 1 and (2.5) is satisfied. Following
the method used by GAIDA and GER in [6], we put y = x in (2.5) and taking
account that F' has convex values we get

(a+pB)F(x) C F((y+0)r), z€K. (2.7)

Replacing z by 5, in (2.7) and multiplying by (a4 3)", n € N, we get

oyt () ClatorF (i) @)

Fix z € K and denote

Fo(z) = (a+ B)"F <<7f(5>n> , n>0. (2.9)

By (2.8) follows that (F,,(x))n>0 is a decreasing sequence of closed subsets
of the Banach space Y and

Tim_ d(Fy(2)) = lim (@ + f)"d (F ((vfé)”» =0, (2.10)

in view of the uniform boundedness of the values of F' on the half-line L.
Hence the (1, Frn(x) is a singleton and we denote

n>01'n
f(z) = m F,(z), z€K. (2.11)
n>0

Thus we have obtained a single-valued mapping f : K — Y satisfying the
condition f(z) € Fy(x) = F(z), i.e. a selection of F.
Let z,y € K be fixed. By (2.5) and (2.9) we have

aFy(x) + fFu(y) = (o + B)" (“F (x) +8E ((y»

(y+o)" v+ o)
n vy + 0y B
Cla+p)"F (W) = Fu(yx +dy), n >0,

and, taking account that (F,,(x))n>0 is decreasing, it follows
af(@)+ 1) =a ) Fa(@) + 8 [ Faly) C ) (@Fu(2) + BFa(y))
n>0 n>0 n>0

C () Fulya +dy) = f(yz + by).

n>0
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Therefore
af(z) +Bf(y) = f(yz +dy), =,y€K. (2.12)

The existence is proved.
Uniqueness. Suppose that there exist two selections fy,fs : K — Y of F
satisfying the equation (2.6). The following relations hold

(a +/6)nfk(w) = fk((’Y + 5)nx)’ ke {172}, (213)

for every positive integer n and all € K, in view of the relation (2.6). We have

160 = 2ol =5 (g5 ) - £ (M)”

aelozp) e

for every x € K and every n > 0. The uniform boundedness of F' on the half-line

-
(a+p)"

L, leads to f1(z) = fa(z) for every x € K. The uniqueness is proved.

ii) Suppose that @ + f > 1 and F satisfies (2.5). Then (2.7) holds and
replacing z in (2.7) by (y + §)"a, dividing by (a + 8)"*!, n € N, we get

F((y +96)"z)
(a+ B

Let z € K be fixed. Taking account of (2.15) it follows that the sequence of
sets (F) (x))n>0 given by

F((y+96)" )
(a+ @)t 7

C zeK. (2.15)

F((y +6)"x)

Fi@) = g

n >0,

is increasing, hence the sequence of real numbers (d(F},(x)))n>0 is increasing too.
But

. N 1 .
Jim_d(Fy () = lim 7(a+ﬂ)nd(F((7+5)n )=0, (2.16)

in view of the uniform boundedness of F' on the half-line L.
Thus d(F),(z)) = 0 for every n € N, hence F is single valued and satisfies the
equation
aF(z) + BF(y) = F(yx + dy), =,y € K. (2.17)

The theorem is proved. (Il

The following result is a simple consequence of Theorem 2.1.
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Corollary 2.1. Let K be a convex cone in X containing 0x, C' a nonempty
compact and convex subset of Y, a,3,7,0 >0, a+ <1, v+dd #1,c e K

——5 - Suppose that F : K + z9 — ccl(Y) satisfies the general linear

and xg =
inclusion
aF(x)+BF(y) CF(yx+dy+c)+C, z,ye K+uxg (2.18)

and sup{d(F(z)) : = € L, + xo} < oo for every z € K. Then there exists a
unique single valued mapping f : K + xo — Y satisfying the equation

af(x)+Bf(y) = f(yz+dy+c), xyeK+mxg (2.19)
and
f(z) € Fx) + ﬁC, z € K + xo. (2.20)

PROOF. Let G : K — ccl(Y) be defined by the relation

1

—_— K. 2.21
1—a—5c’ ve (2:21)

G(z) = F(x + zg) +

The definition of G is correct since the sum of a closed set and a compact

set is closed and the sum of two convex sets is a convex set. We will prove that
G satisfies the following relation

aG(x) + BG(y) C G(yz +dy), x,y € K. (2.22)
Indeed,
a+ s
aG(x) + BG(y) = aF (x + x0) + BF(y + 20) + T=a—3
CF(y(x+x0)+6(y+a0) +c)+C+ %C
1
= F(yz + dy + z) + mc’

= G(yx + dy), =,y € K.

Taking account of Theorem 2.1 it follows that there exists a unique selection g
of G satisfying
ag(z) + Byg(y) = g(yx + dy), x,y € K. (2.23)

Now let f: K + 29 — Y be defined by the relation

flz) =g(x —x9), x€ K+ xo. (2.24)
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Then
af(z)+Bfly) = f(yx+dy+c), z,y€ K+ (2.25)
and 1
O

Corollary 2.1 leads to the following result on the stability of the general linear
equation.

Corollary 2.2. Let K be a convex cone in X containing Ox, «, 3, 7, 6,
e>0,a+8<1l,y+d#1,ce K, keY and xg = {—S—. Suppose that
f: K+ x9— Y satisfies the following relation

If (v + by +c) —af(z) = Bf(y) -kl <e, z,y€ K +xo. (2.27)
Then there exists a unique function g : K + xo — Y satisfying:
glyx+oy+c) =ag(x)+By9(y) +k, z,ye K+ (2.28)

and
€

If@) = 9@ < T——F+ =€ K+ (2.29)

ﬁ’
PROOF. Define the function h : K 4+ xg — Y by the relation
Then h satisfies the inequality
[h(yx + oy + ¢) — ah(x) — Bh(y)|| <&, z,y € K + xo. (2.31)

Now we consider the set-valued map F : K + xg — ccl(Y) given by

F(z) = h(z) + ﬁB(O,E), z € K+ xo. (2.32)
We have
aF(z) + BF(y) = ah(z)+ ﬁB(O, £) + Bhly)+ %3(07 o)
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C h(yx + 6y +c) + B(0,¢) + L6B(0,£)
l—a-p
1

=F(yzx+dy+e), z,y€K+ux.
Then, in view of Corollary 2.1, there exists a unique function g1 : K + 29 — Y

g1(yx + 0y +¢) = agi(z) + Bg1(y), x,y € K + o,

with the property

1
gl(l‘) EF(CE) :h(I)+mB(O,€), I€K+I0.
Finally it follows that the function g : K + zg — Y, given by
k
= P K 2.33
9(x) 91($)+17a757 x € K + o, (2.33)
satisfies the relations (2.28) and (2.29). The corollary is proved. O

Remark 2.1. The result obtained in Corollary 2.2 is a particular case of a
general result obtained by Z. Péles for the stability of the Cauchy functional
equation on square-symmetric grupoids [11]. It also crosses with the result on
stability of general linear equation on restricted domain obtained recently by
J. BrRzZDEK and A. PIETRZYK [4].

Finally, we consider the selection problem for set-valued maps satisfying (1.5)
with ao+ 8 = 1. In the special case « = 3 = =6 = 1/2 the next theorem gives
conditions under which midconvex set-valued maps have Jensen selections. For
a=+vand 0 =6 =1— «a we get a result on affine selections of convex set-
valued maps. Under other assumptions results of this type were obtained by
K. NIKODEM [10] and by A. SMAJDOR and W. SMAJDOR [17].

Theorem 2.2. Let a € (0,1), 7,8 > 0, C a nonempty compact and convex
subset of Y containing Oy and K a convex cone in X containing Ox. Suppose
that F : K — ccl(Y') satisfies

(1—-a)F(z)+aF(y) CFlyz+dy)+C, z,yeK (2.34)

and sup{d(F(z)) : = € K} < oo. Then there exists a function f : K — Y
satisfying
(1 —a)f(z)+afly) = fyx+0y), =yekK (2.35)
and
f(z) € F(z) + éa xz € K. (2.36)
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PROOF. Take p € F(0x) and consider the set-valued map G : K — ccl(Y)
given by
G(x)=F(x)—p, z€K. (2.37)
Then

(1—a)G(z)+aGy) CGyz+0y) +C, =z,ye€K, (2.38)
and Oy € G(0x). Put y = 0x in (2.38) to get
(1-a)G(z) +aG(0x) CG(yx)+C, z€K. (2.39)

Replacing x by ﬁ and multiplying (2.39) by (1 — a)™ it follows

,-YnJrl

(1-a)"*G ( “”” ) +a(l-a)"G(0x) C (1-a)"G <;‘;> +(1—a)"C (2.40)

and adding %C’ to both sides of (2.40) one gets

(1-a)"*a (%irl) + & 72)“1 C+a(l —a)"G(0x)

C(1-a)"G (ﬁ) + WG (2.41)

Since Oy € G(0x) the following relation holds
n z (1 — a)n+1
(1-a)""@ <’y”+1)+ C

(07

X
vt

C(1-a)tG ( 1) i G Z)W C +a(l —a)"G(0x). (2.42)

Now from (2.42) and (2.41) it follows that (G, (x))n>0 defined by

1— n
Gol@) = (1 — )G (x) L d=a), (2.43)
" o
is a decreasing sequence of closed sets with
lim d(G,(x))=0. (2.44)
Then (,,5( Gn(7) is a singleton. Put
glx) = ﬂ Gn(z), z€eK. (2.45)

n>0
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Replacing x by =%, y by +7, adding éC’ to both sides of (2.38) and multiplying
by (1 — a)™ one gets

(1—-a)Gy(z) + aGp(y) C Gp(yz + 0y) + (1 — a)C. (2.46)

Now observe that ((1 — a)"C),>0 is a decreasing sequence of compact sets.
Indeed, taking account of Oy € C' it follows that for every ¢ € C

(I-a)c=(1-a)c+a-0y €C, (2.47)
thus (1—a)C C C and forward (1—a)"*1C C (1—a)"C for every positive integer

n. It is known that if (Ay,)n>0, (Bn)n>0 are decreasing sequences of closed sets
in a topological vector space and B is compact then

n>0 n>0 n>0

(see Lemma 5.3 from [9]). Using this result we get

(1 - a)g(a) + agly) = (1 —a) () Gulw) +a [) Caly)

n>0 n>0

C (1 = a)Gu(@) + aGn(y)) € () (Galya +by) + (1 - a)"C)

n>0 n>0
=) Gnlyz+0y) + (1 —)"C =gz +dy), v,y K. (249
n>0 n>0

The function f: K =Y, f(z) = g(x) + p, x € K, satisfies the relation

(1-a)f(x)+af(y) = f(yx+dy), =z€ K. (2.50)

On the other hand g(z) € Go(z) = G(z) + 2C. It follows

1
f(z) € F(x) + aC, z € K. (2.51)
The theorem is proved. O

Remark 2.2. The selection f from Theorem 2.2 is not uniquely determined.
For instance, the set valued map F : K — ccl(Y), F(z) = C, x € K, is a solution
of the linear inclusion (2.34) and the function f: K — Y, f(z) = ¢, where c € C
is an arbitrary element, satisfies (2.35) and (2.36).
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