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On the stability of the translation equation

By BARBARA PRZEBIERACZ (Katowice)

Dedicated to Professor Zoltán Daróczy on his seventieth birthday

Abstract. In this paper the stability of the translation equation, F (t, F (s, x)) =

F (s + t, x), where F : (0,∞)× → I , and I is a real interval, is investigated.

1. Introduction

The translation equation, i.e. functional equation of the form

F (t, F (s, x)) = F (s + t, x), (1.1)

can be considered in a very general setting, t, s ∈ G, where G is a grupoid, and

x ∈ X , where X is an arbitrary space. This equation is of great importance

both in the theory of functional equations and iteration theory (see [4], [5] and

references there). If X is a metric space, with metric ρ, there arises a problem of

the stability of the functional equation (1.1), that is a question whether for every

ε > 0 there is a δ > 0 such that for every function H : G × X → X satisfying

“approximate translation equation”, up to δ, i.e. the inequality

ρ(H(t, H(s, x)), H(s + t, x)) < δ, (1.2)

we can find a solution F of (1.1), which is “close” to H , more precisely, such that

ρ(F (t, x), H(t, x)) < ε, (1.3)
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for every x ∈ X and t ∈ G. Actually, this is only one of the possible approaches

to the problem of stability of the functional equation, (see [6]), but in this paper

we restrict our attention to that definition of stability. Up to now, the problem

of stability of the translation equation was considered in few papers.

In [2] W. Jab loński and L. Reich obtained the stability of (1.1) in rings

of formal power series.

A. Mach and Z. Moszner in [3] investigated the stability of the translation

equation in two classes, CB and CI. More precisely, with G a monoid with unit

element 0 and X an arbitrary space, let

CB = {H : G × X → X ; H(·, α) is a bijection for a certain α ∈ X},

CI = {H : G × X → X ; H(·, α) is an injection for a certain α ∈ X,

and H(G, α) = H(0, X)}.

Theorem 1.1 ([3]). Let ρ : X × X → R be an arbitrary function.

1. For every function H ∈ CB there exist a function F ∈ CB satisfying

(1.1) such that for every ε > 0 if (1.2) with δ = ε holds, then (1.3) also is true.

2. If the function ρ satisfies the triangle inequality in X then for every

function H ∈ CI there exists a solution F ∈ CI of (1.1) such that for every ε > 0

if (1.2) is fulfilled with δ = ε
2
, we have (1.3).

J. Chudziak considered iteration groups on a real interval and obtained the

following result.

Theorem 1.2 ([1]). Let I be a real interval and ε > 0. Assume that H :

R × I → I satisfies the inequality

|H(s, H(t, x)) − H(t + s, x)| ≤ ε, x ∈ I, s, t ∈ R,

and for some x0 ∈ I the function H(·, x0) is a continuous surjection of R onto I.

Then there exists a homeomorphism f : R → I (and continuous iteration group

F (t, x) = f(t + f−1(x))) such that

|H(t, x) − f(t + f−1(x))| ≤ 9ε, x ∈ I, t ∈ R.

In this paper we restrict our attention to continuous iteration semigroups,

that is continuous solutions F : (0,∞)×I → I of (1.1), where I, as it was in paper

[1], is a real interval. Here without any assumption about surjectivity or injectiv-

ity, we get the approximation of H , by the exact solution F of (1.1), but not on

the whole interval I (see Theorem 3.2). However, if H satisfies some additional
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conditions, which are, after all, satisfied by any F ∈ F (see Remarks 2.1, 2.2, 2.3),

we can find a continuous iteration semigroup F such that |F (t, x)−H(t, x)| < ε,

for every x ∈ I and t ∈ (0,∞) (see Theorem 3.1).

In the next section we fix notation and prove some lemmas, the main theo-

rems will be formulated in the last section of this paper.

2. Preparatory work

Let I be a real interval. Denote by F the family of all continuous iteration

semigroups F : (0,∞)×I → I and by Fδ the family of all continuous approximate

solutions of (1.1), that is

F = {F : (0,∞) × I → I; F satisfies (1.1) and F is continuous},

Fδ = {H : (0,∞)× I → I; |H(t, H(s, x))−H(s + t, x)|< δ and H is continuous}.

Let me remind that continuity of F ∈ F is equivalent to continuity with respect

to each variable. By V = VH we mean the set of values of function H .

Lemma 2.1. Let H ∈ Fδ. The following assertions hold true:

(i) if x ∈ cl V then |H(t, x) − x| < 2δ, t < T , for some T > 0;

(ii) if H(a, x) = H(b, x), for some 0 < a < b < ∞ and x ∈ I, then |H(t+T, x)−

H(t, x)| < 2δ for t ≥ b and 0 ≤ T ≤ b − a;

(iii) for every t1 < t2 < t3 and for every x ∈ I, H(t1, x) = H(t3, x) implies

|H(t2, x) − H(t1, x)| < 4δ

Proof. The first assertion was proved in [8, Lemma 2.2] whereas the second

in [7, Lemma 2.1]. Last assertion follows from inequalities:

|H(t2, x) − H(t2 − t1 + t3, x)| ≤ |H(t2, x) − H(t2 − t1, H(t1, x))|

+|H(t2 − t1, H(t3, x)) − H(t2 − t1 + t3, x)| < 2δ

and

|H(t2 − t1 + t3, x) − H(t3, x)| < 2δ,

which results from (ii) with a = t1, b = t3, T = t2 − t1 and t = t3. �

Now we are going to differentiate points of I according to “monotonicity” of

their trajectories, i.e. functions H(·, x). Namely, for the given function H ∈ Fδ

and positive l, put

Il = {x ∈ I; there exist t1 < t2 such that H(t2, x) − H(t1, x) > l},
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Dl = {x ∈ I; there exist t1 < t2 such that H(t1, x) − H(t2, x) > l},

Cl = {x ∈ I; for every t1, t2 ∈ (0,∞) we have |H(t2, x) − H(t1, x)| ≤ l}.

It is quite obvious that I = Il ∪ Dl ∪ Cl, Il ∩ Cl = ∅, Dl ∩ Cl = ∅ and the sets Il,

Dl are open (in I). Moreover, as follows from Lemma 2.1 (iii),

I4δ ∩D4δ = ∅. (2.1)

Lemma 2.2. Let H ∈ Fδ and x0 ∈ V ∩ A, where A is a component of

Il ∪ Dl. For every t ∈ (0,∞) we have dist(H(t, x0), A) < 4δ + l.

Proof. We have x0 = H(t0, y) ∈ A for some t0 ∈ (0,∞) and y ∈ I. Either

H(t + t0, y) ∈ A for every t ∈ (0,∞) and then dist(H(t, x0), A) < δ, or there is

t̄ ∈ (0,∞) such that H(t + t0, y) ∈ A for every t ∈ (0, t̄) and H(t̄ + t0, y) =: z is

the endpoint of A (the case in which the endpoint of A belongs to A, and is, in

fact, the endpoint of interval I, can be easily considered separately). Therefore

z ∈ V ∩ Cl, which due to definition of Cl and part (i) of Lemma 2.1 results in

|H(t, z)−z| < l+2δ, t ∈ (0,∞). This together with |H(t, z)−H(t+ t̄+t0, y)| < δ,

t ∈ (0,∞), gives |z − H(t + t̄ + t0, y)| < l + 3δ, t ∈ (0,∞). Taking into account

|H(t, x0) − H(t + t0, y)| < δ we get the assertion. �

Now we can notice, as a corollary, that trajectories of points x ∈ V , which

are either in Cl or in components of Il ∪ Dl of “small” length, are “close” to x.

Corollary 2.1. Let H ∈ Fδ and x0 ∈ V .

(i) if x0 ∈ Cl then |H(t, x0) − x0| < l + 2δ;

(ii) if x0 ∈ A, where A is a component of Il∪Dl then |H(t, x0)−x0| < l+|A|+4δ.

Lemma 2.3. Let H ∈ Fδ and x0 ∈ A, where A is a component of I7δ [D7δ] of

length |A| > 11δ. Assume that inf A ∈ C7δ and (inf A, x0) ⊂ V [(x0, sup A) ⊂ V ,

resp.]. Then there exists y ∈ A, y < x0, such that [x0, sup A) ⊂ {H(t, y); t ∈

(0,∞)} [(inf A, x0]) ⊂ {H(t, y); t ∈ (0,∞)}, resp.].

Proof. We assume that A ⊂ I7δ. Notice that for every x ∈ A ∩ cl V we

have

sup{H(t, x); t ∈ (0,∞)} ≥ sup A. (2.2)

Indeed, fix an x ∈ A ∩ clV and suppose, on the contrary that

sup{H(t, x); t ∈ (0,∞)} < sup A. (2.3)
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From Lemma 2.1 (i), (2.1) and x ∈ I7δ we infer that sup{H(t, x); t ∈ (0,∞)} > x

which together with (2.3) gives sup{H(t, x); t ∈ (0,∞)} ∈ A. Choose H(t̄, x) =: x̄

such that sup{H(t, x); t ∈ (0,∞)} − δ
2

< x̄. We have |H(t, x̄) − H(t + t̄, x)| < δ,

for t ∈ (0,∞) and x̄ − 4δ < H(t + t̄, x), for t ∈ (0,∞), which follows again from

(2.1). These inequalities contradicts x̄ ∈ I7δ.

Now denote x̂ := inf A and we will prove that

H(t, x̂) = x̂, t ∈ (0,∞). (2.4)

Since x̂ ∈ C7δ ∩ cl V , we infer that

H(t, x̂) < x̂ + 9δ, t ∈ (0,∞). (2.5)

If H(t0, x̂) ∈ A for a t0 ∈ (0,∞), than, taking into account (2.2), we would have

a contradiction with (2.5). On the other hand, H(t0, x̂) < x̂, for a t0 ∈ (0,∞),

continuity of H , together with (2.2), implies that H(t, x) = x̂ for an x ∈ A and a

t ∈ (0,∞), which, due to (2.5), contradicts (2.2).

Finally, the assertion of this Lemma follows from (2.4), continuity of H

and (2.2). �

Now we pass to construction of a continuous iteration semigroup F which is

close to given H ∈ Fδ on the “almost whole” interval A, which is a component of

I7δ ∪ D7δ.

Construction 2.1. Let H ∈ Fδ, A be a component of I7δ [D7δ can be con-

sidered analogously], y ∈ A, y < H(s0, y) =: x0 ∈ A (if limt→0 H(t, y) = y it is

possible to consider x0 = y and put s0 = 0 in such case) and sup{H(t, y); t ∈

(0,∞)} ≥ supA.

Let t0 > s0 be the smallest such that H(t0, y) = supA, if such a point does

not exist, then we take t0 = ∞. Define F̃ (t, y) := max{H(l, y); s0 ≤ l ≤ t}

for t ∈ [s0, t0] and F̃ (t, y) := supA for t ≥ t0. Of course, F̃ is nondecreasing

with respect to first variable. Let f : [s0,∞) → cl A be a continuous function

with f ≥ F̃ (·, y), strictly increasing on interval [s0, t0], such that f(t) = F̃ (t, y) =

sup A, for t ≥ t0, and for every maximal interval J = (t1, t3) on which f 6= F̃ (·, y)

there exists t2 ∈ (t1, t3), such that F̃ (t1, y) = F̃ (t2, y) and t3 − t2 ≤ t2 − t1, (see

Figure 2.1).

Notice that f(t1) = F̃ (t1, y) and f(t3) = F̃ (t3, y). Put F (t, y) = f(t) for

t ∈ [s0, t0] and F (t, y) = supA for t ≥ t0. For every x ∈ A, x ≥ x0, there exists

only one tx ≥ s0 such that F (tx, y) = x. For such x and t ∈ (0,∞) we define

F (t, x) := F (tx + t, y).
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We have |F (t, y) − H(t, y)| < 10δ for t ≥ s0. Indeed, as a consequence of

Lemma 2.1 (ii), we get H(t, y)−H(t2, y) < 2δ, t ∈ [t2, t3], moreover (2.1) implies

H(t, y) > H(t1, y) − 4δ for t ∈ (t1, t3), which yields |F (t, y) − H(t, y)| < 6δ for

t ∈ [s0, t0]. For t > t0 we have estimations H(t, y) > sup A − 4δ (by (2.1)), and

H(t, y) < sup A + δ + 2δ + 7δ (similar reasoning as in Lemma 2.2), which ends

the proof of the desired inequality.

Now we will show that

|F (t, x) − H(t, x)| < 19δ, x ∈ A, x ≥ x0, t ∈ (0,∞). (2.6)

Fix such x and t and consider two possibilities. Either x = F (tx, y) = H(tx, y)

and then

|F (t, x) − H(t, x)| ≤ |F (t + tx, y) − H(t + tx, y)|

+|H(t + tx, y) − H(t, x)| < 10δ + δ.

Or x = F (tx, y) 6= H(tx, y) and then there exist t1, t2, t3, t1 < t2 < t3, such

that H(t1, y) = H(t2, y), t3 − t2 ≤ t2 − t1, tx ∈ (t1, t3), and t̂ ∈ (t2, t3) such that

x = H(t̂, y). Of course |H(t, x)−H(t+ t̂, y)| < δ, F (t, x) = F (t+ tx, y) and, what

was already shown, |F (t + tx, y) − H(t + tx, y)| < 10δ. So it is enough to prove

that |H(t + t̂, y) − H(t + tx, y)| < 8δ. If t + tx > t2, using twice Lemma 2.1 (ii)

we estimate

|H(t + t̂, y) − H(t + tx, y)| ≤

∣

∣

∣

∣
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However, if t + tx ≤ t2, using again twice Lemma 2.1 (ii) and (2.1), we conclude

that

|H(t + t̂, y) − H(t + tx, y)| ≤ |H(t + t̂, y) − H(t̂, y)| + |H(t̂, y) − H(t2, y)|

+|H(t2, y) − H(t + tx, y)| < 2δ + 2δ + 4δ,

which ends the proof of (2.6).

Now we are going to describe two sets of conditions, which, if satisfied by

trajectories of points of A, guarantee the possibility of extending defined earlier

continuous iteration semigroup F on the whole interval A, such that the difference

|F (t, x) − H(t, x)| is “small” for every x ∈ A and t ∈ (0,∞).

1. Let H ∈ Fδ, A be a component of I7δ (we consider similarly the case

when A is a component of D7δ) and x0 ∈ int(A∩ V ). We say that condition (El
1)

is satisfied for A if |B| < l, where B := V ∩ A ∩ (−∞, x0), and there exists a

continuous strictly decreasing function T : B → (0,∞) such that H(T (x), x) = x0,

limx→x
−

0

T (x) = 0, and, if inf B /∈ B, then limx→inf B+ T (x) = ∞.

Remark 2.1. If F ∈ F than for every x0 ∈ VF there exists (unique) such a

function T .

Proposition 2.1. Let H ∈ Fδ, A be a component of I7δ [ D7δ] and x0 ∈

int(A ∩ V ). If A satisfies condition (El
1) then there exists a continuous iteration

semigroup F : (0,∞) × cl(V ∩ A) → cl(V ∩ A) such that |F (t, x) − H(t, x)| ≤

max{20δ, 6δ + l}, t ∈ (0,∞), x ∈ cl(V ∩ A).

Proof. We start with defining F : (0,∞) × [x0, sup A] → cl A according to

Construction 2.1 with y = x0 (and s0 = 0). We extend F putting for x ∈ B

F (t, x) =



















T−1(T (x) − t), for t < T (x);

x0, for t = T (x);

F (t − T (x), x0), for t > T (x).

Moreover, if inf B /∈ B we put F (t, inf B) = inf B, for every t ∈ (0,∞). It is easy

to verify that F is continuous.

The translation equation is satisfied also for x ∈ B. Indeed, let us consider

the following cases:

• t + s < T (x)

F (t, F (s, x)) = F (t, T−1(T (x) − s)) = T−1(T (x) − s − t) = F (s + t, x);
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• t + s = T (x)

F (t, F (s, x)) = F (t, T−1(T (x) − s)) = F (t, T−1(t)) = x0 = F (T (x), x) =

F (s + t, x);

• t + s > T (x), s < T (x)

F (t, F (s, x)) = F (t, T−1(T (x) − s)) = F (t − T (T−1(T (x) − s)), x0) =

F (t − T (x) + s, x0) = F (s + t, x);

• s = T (x)

F (t, F (s, x)) = F (t, x0) = F (t + T (x) − T (x), x0) = F (t + T (x), x) =

F (t + s, x);

• s > T (x)

F (t, F (s, x)) = F (t, F (s − T (x), x0)) = F (t + s − T (x), x0) = F (t + s, x).

Finally we check the distance between F and H . In view of (2.6), it is enough

to consider it for x < x0.

• t > T (x)

|F (t, x) − H(t, x)| ≤ |F (t − T (x), x0) − H(t − T (x), x0)|+

|H(t − T (x), x0) − H(t, x)| < 19δ + δ

• t = T (x)

F (t, x) = x0 = H(t, x)

• t < T (x)

F (t, x) = T−1(T (x) − t) ∈ (x, x0); H(t, x) < x0 + 4δ, due to (2.1); H(t, x) >

x − 2δ − 4δ, by Lemma 2.1 (i) and (2.1). Taking above into account and

x0 − x < l, we infer that |F (t, x) − H(t, x)| < l + 6δ.

The proof is completed. �

2. Let H ∈ Fδ, A be a component of I7δ (we consider similarly the case

when A is a component of D7δ) and x0 ∈ int(A ∩ V ). We say that condition

(El,η
2 ) is satisfied for A if |B| < l, where B := V ∩ A ∩ (−∞, x0), there exist a

decreasing sequence (xn) of points of [inf B, x0) and an increasing sequence (Tn)

of positive numbers, both finite or infinite, depending whether inf B ∈ B or not,

respectively, which satisfy the following conditions.

• limn→∞ xn = inf B if the sequence is infinite, otherwise the last element

= inf B;

• there exists a positive γ such that |t−s| < γ implies |H(t, xn)−H(s, xn)| < η,

for every n;

• T1 < γ, Tn+1 − Tn < γ and Tn tends to infinity, if infinite;

• H(Tn, xn) = x0;
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• for every x ∈ (xn+1, xn) there is a t(x) ∈ [Tn, Tn+1] with H(t(x), x) = x0.

(see Figure 2.2)

T

H(  ,x  )

x

H(  ,x     )

T TT

H(  ,x  )

t(x)

H(  ,x  )

H(  ,x)

x

x

x

x

x

γ < <

0

1

2

n+1

1 2 n n+1

1

2

n

n+1

n

γ γ<

Remark 2.2. Let F : (0,∞) × X → X be a continuous iteration semigroup

and X a compact metric space then the function (0,∞) ∋ t 7→ F (t, ·) ∈ C(X, X) is

continuous. So, if H ∈ F then condition (El,η
2 ) is satisfied with every x0, suitable

for l, and η.

Proposition 2.2. Let H ∈ Fδ, A be a component of I7δ [D7δ] and x0 ∈

int(A∩ V ). If A satisfies condition (El,η
2 ) then there exists a continuous iteration

semigroup F : (0,∞) × cl(V ∩ A) → cl(V ∩ A) such that |F (t, x) − H(t, x)| ≤

2η + 26δ + l, t ∈ (0,∞), x ∈ cl(V ∩ A).

Proof. As previously, we define F (t, x1), for t ≥ T1, and F (t, x) for t ∈

(0,∞) and x ≥ x0 according to Construction 2.1 with y = x1, s0 = T1. Next

we choose any strictly increasing continuous functions fn : (0, Tn − Tn−1] →

(xn, xn−1] (we put T0 = 0) and define F (t, xn) := fn(t) for t ∈ (0, Tn −Tn−1] and

F (t, x) on the rest of domain of the desired continuous iteration semigroup in an

unique way determined by the translation equation (see Figure 2.3). Moreover,

if inf B /∈ B we put F (t, inf B) = inf B.

We pass to verifying the estimation of the difference between F and H . First

for x = xn and t ≤ Tn. We have F (t, xn) ∈ (xn, x0] and

inf B − 2δ − 4δ < H(t, xn) < x0 + 4δ, (2.7)
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which follows from Lemma 2.1 (i) and (2.1). These gives

|F (t, xn) − H(t, xn)| < 6δ + l.

For t > Tn we get

|F (t, xn) − H(t, xn)| ≤ |F (t − Tn, x0) − H(t − Tn, x0)|

+|H(t − Tn, x0) − H(t, xn)| < 19δ + δ.

Fix x ∈ B, xn < x < xn−1 and put t̃ = f−1
n (x). Consider the case t > t(x).

Then x = F (t̃, xn) and F (t, x) = F (t + t̃, xn). We have the following inequalities.

|F (t + t̃, xn) − H(t + t̃, xn)| < max{20δ, 6δ + l},

by what was already shown;

|H(t + t̃, xn) − H(t, xn)| < η

and

|H(t, xn) − H(t + (Tn − t(x)), xn)| < η,

since (El,η
2 ) is satisfied;

|H(t − t(x) + Tn, xn) − H(t − t(x), x0)| < δ
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and

|H(t − t(x), x0) − H(t, x)| < δ.

They result in

|F (t, x) − H(t, x)| < 2η + max{22δ, 8δ + l}.

If t < t(x) then, the same reasoning as in (2.7), gives

inf B − 6δ < H(t, x) < x0 + 4δ.

Notice that F (Tn − t̃, x) = x0. If t ≤ Tn − t̃ then F (t, x) ∈ (x, x0], which implies

|F (t, x) − H(t, x)| < 6δ + l.

Otherwise Tn − t̃ < t < t(x) and then

0 < F (t, x) − x0 ≤ |F (t − (Tn − t̃), x0) − H(t − (Tn − t̃), x0)|

+ |H(t − (Tn − t̃), x0) − H(T1 + t − (Tn − t̃), x1)|

+ |H(T1 + (t − (Tn − t̃)), x1) − H(T1, x1)| < 19δ + δ + η.

That is why

|F (t, x) − H(t, x)| < 26δ + l + η.

This ends the proof. �

After that we pass to formulation of a condition under which we can extend

continuous iteration semigroup F , defined on cl V , approximating H , to the whole

interval I, such that the extension is also close to H .

3. Let H ∈ Fδ. We say that H satisfies condition (E3) if

• lim inft→0 H(t, inf V ) = inf V ,

• lim supt→0 H(t, sup V ) = supV

and there exists a continuous function e : I \ clV → cl V with

• e(x) ∈ [lim inft→0 H(t, x), lim supt→0 H(t, x)],

• limx→inf V − e(x) = inf V ,

• limx→supV + e(x) = supV .

Remark 2.3. Notice that every F ∈ F satisfies condition (E3) (see [9]).

Lemma 2.4. Let H ∈ Fδ satisfies condition (E3). Let F̃ : (0,∞) × cl V →

cl V be a continuous iteration semigroup which satisfies |H(t, x) − F̃ (t, x)| ≤ ε̃,

t ∈ (0,∞), x ∈ cl V , for some ε̃ > 0. Then there is an extension F : (0,∞)×I → I

of F̃ such that |H(t, x) − F (t, x)| ≤ ε̃ + δ, t ∈ (0,∞), x ∈ I.
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Proof. Fix H , F̃ and e, as in assumptions. Put F (t, x) = F̃ (t, e(x)), for

x ∈ I \ cl V , t ∈ (0,∞), and, obviously, F (t, x) = F̃ (t, x), for x ∈ cl V , t ∈ (0,∞).

It is easy to check that F ∈ F . To complete the proof, fix x ∈ I \ clV and

choose a decreasing to 0 sequence (tn) such that limn→∞ H(tn, x) = e(x). We

have |H(t, x) − H(t − tn, H(tn, x))| < δ, which yields |H(t, x) − H(t, e(x))| ≤ δ,

and furthermore, |F (t, x) − H(t, x)| ≤ δ + ε̃. �

3. The main theorems

Now we are in position to formulate and prove the main results of this paper.

Let H ∈ Fδ and (An) be the sequence of all components of I7δ ∪D7δ . We say

that H satisfies condition (El,η) if condition (E3) holds as well as, for every n,

An satisfies either (El
1) or (El,η

2 ), provided int(An ∩ V ) 6= ∅ and |An| > 11δ.

Theorem 3.1. Let ε, δ, l, η > 0 be such that 27δ + l + 2η < ε. Then for

every H ∈ Fδ satisfying (El,η) there exists a continuous iteration semigroup

F : (0,∞) × I → I such that |F (t, x) − H(t, x)| < ε for x ∈ I and t ∈ (0,∞).

Proof. Let ε, δ, l, η and H be such as in assumptions. Let (An) be a

sequence of all components of I7δ ∪ D7δ of length greater than 11δ which have

nonempty intersection with V . For every n we construct F : (0,∞)× cl(An ∩V )→

cl(An∩V ) according to Proposition 2.1 or 2.2, depending on which of the condi-

tions (El
1) or (El,η

2 ) is satisfied for An. For the rest of cl V we put F (t, x) = x,

and we extend F on the whole interval I using Lemma 2.4. Defined in that way,

F ∈ F . Lemma 2.4 together with Propositions 2.1 and 2.2, as well as Corol-

lary 2.1, give the assertion. �

Next theorem is about approximation of H by F , without assuming the

condition (El,η), but only for x ∈ V \ L, where L is of positive length, however

as small as we wish.

Theorem 3.2. For every ε, ζ > 0 there exists δ > 0 such that for every

H ∈ Fδ there exist L ⊂ I, |L| < ζ, and F ∈ F such that |F (t, x) − H(t, x)| ≤ ε

for t ∈ (0,∞) and x ∈ cl V \ L.

Proof. Fix ε, ζ > 0 and choose δ > 0, in order to 22δ < ε and 6δ < ζ.

Let H ∈ Fδ, and (An) be a sequence of all components of I7δ ∪ D7δ of length

greater than 11δ which have nonempty intersection with V . Choose a sequence

(δn) of positive numbers, with
∑

n δn < ζ − 6δ. If the assumptions of Lemma 2.3

are satisfied for An then let xn
0 ∈ An be such that xn

0 − inf(An ∩ V ) < δn or
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sup(An ∩ V ) − xn
0 < δn, and find yn ∈ An and sn

0 ∈ (0,∞) such that yn <

H(sn
0 , yn) = xn

0 or yn > H(sn
0 , yn) = xn

0 , depending whether An ∈ I7δ or An ∈

D7δ, respectively. Otherwise, choose an arbitrary An ∩ V ∋ yn < inf V + δ and

xn
0 = H(sn

0 , yn) < yn + 2δ, or An ∩ V ∋ yn > sup V − δ and xn
0 = H(sn

0 , yn) >

yn − 2δ, if An ∈ I7δ or An ∈ D7δ, respectively. We define F according to

Construction 2.1 with y = yn, x0 = xn
0 and s0 = sn

0 , and extend it on the whole

interval An ∩ V for instance, as in Figure 2.3, with an arbitrary sequences (xn),

(Tn) and (fn). We have the estimation (2.6) with x0 = xn
0 . For the rest of V we

put F (t, x) = x, which gives the estimation |F (t, x) − H(t, x)| < 22δ, according

to Corollary 2.1. Finally we extend F on the whole interval I in order to F ∈ F .

Put Ln = [inf(An ∩ V ), xn
0 ) or (xn

0 , sup(An ∩ V )], if An ∈ I7δ or An ∈ D7δ,

respectively, and notice that |Ln| < δn or |Ln| < 3δ, but the second possibility

holds only for at most two indexes n. With L =
⋃

n Ln we get the assertion. �
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