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On Daróczy’s problem for additive functions

By ADRIENN VARGA (Debrecen) and CSABA VINCZE (Debrecen)

Dedicated to Professor Zoltán Daróczy on the occasion of his 70th birthday

Abstract. In this paper we investigate the functional equation

nX
i=1

αiA(βix) = 0

which holds for all x ∈ R with an unknown additive function A : R → R and fixed real

parameters αi, βi, where i = 1, . . . , n. The case n = 2 is discussed by Z. Daróczy [1].

Here we formulate sufficient conditions for the existence of nontrivial solutions in terms

of the parameters β1

βn
, . . . ,

βn−1

βn
and α1

αn
, . . . ,

αn−1

αn
.

1. Introduction and preliminaries

Let αi, βi be fixed real parameters, i = 1, . . . , n. Consider the functional equation

n
∑

i=1

αiA(βix) = 0 (x ∈ R) (1.1)

with an unknown additive function A : R → R, i.e.

A(x + y) = A(x) + A(y)

is satisfied for all x and y ∈ R. Since any additive function vanishes at x = 0,

without loss of generality we can suppose that none of the parameters equals zero.

Mathematics Subject Classification: 39B22.
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The case n = 2 has been investigated in Daróczy [1]. His fundamental result

states that the functional equation α1A(β1x) + α2A(β2x) = 0 has non-trivial

solutions if and only if both the parameters

λ :=
β1

β2

and µ := −α2

α1

are transcendental or they are algebraic with the same defining polynomial. It

is important to see that this condition is equivalent to the existence of a field

isomorphism δ : Q(λ) → Q(µ) such that δ(λ) = µ. Consider now R as the vector

space over Q(λ) and Q(µ), respectively. We can use the procedure of semilinear

extension to construct an additive function A : R → R such that A(λx) = µA(x)

for all x ∈ R. This is obviously equivalent to equation (1.1) in case of n = 2.

In this paper we investigate the case n ≥ 3 which is a natural extension of the

original problem. The theory of functional equations

n
∑

i=0

aif(αix + (1 − αi)y) = 0 (x ∈ I)

containing weighted arithmetic means also gives important motivations. Here

I ⊂ R is a non-void open interval, f : I → R is an unknown function, the

parameters αi ∈ [0, 1] are arbitrarily fixed and i = 0, 1, . . . , n. The particular case

n = 3, a0 = a1 = 1, a2 = a3 = −1 and α2 = 1, α3 = 0 has been investigated

in Daróczy–Maksa–Páles [3], Daróczy–Lajkó–Lovas–Maksa–Páles [8],

and also in Maksa [9] in connection with the equivalence of certain functional

equations involving means. The result have been extended for the case of arbitrary

α2, α3 ∈ (0, 1) in the paper [10]. The investigation of the general case can be found

in [11] with proving that f is a solution if and only if it has the form

f(x) = A0 + A1(x) + · · · + An−1(x, . . . , x),

where A0 is a constant and, for any k = 1, . . . , n− 1, Ak : Rk → R is a symmetric

k-additive function such that the first order condition

a1A1(β1x) + · · · + an−1A1(βn−1x) + anA1(βnx) = 0,

the second order conditions

a1A2(x, β1y) + · · · + an−1A2(x, βn−1y) + anA2(x, βny) = 0 and

a1A2(β1x, β1x) + · · · + an−1A2(βn−1x, βn−1x) + anA2(βnx, βnx) = 0
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and so on are also satisfied with the parameters

βi :=
αi − α0

αn − α0

for all real numbers x and y. It can be easily seen that the condition for the

additive function A1 is the same as equation (1.1). First of all we introduce some

basic notions we need in the following.

Definition 1.1. Let m be a positive integer and consider the elements ~λ :=

(λ1, . . . , λm) and ~µ := (µ1, . . . , µm) of the coordinate space Rm.

(i) The ideal I(~λ) := {p ∈ Q[x1, . . . , xm] | p(λ1, . . . , λm) = 0} of the polynomial

ring Q[x1, . . . , xm] is called the defining ideal of ~λ := (λ1, . . . , λm).

(ii) If the defining ideals of ~λ and ~µ are the same then we say that they are

algebraic conjugate of each other.

Remark 1.2. An important special case when the defining ideal of

~λ = (λ1, . . . , λm)

contains only the zero polynomial, i.e. the coordinates are algebraically indepen-

dent. Otherwise they are algebraically dependent. In the particular case m = 1

the ideal I(λ) can be generated by the minimal polynomial and we have that

λ and µ are algebraic conjugate if both of them are transcendent or they are

algebraic and their defining polynomials are the same.

Lemma 1.3. Suppose that 2 ≤ n ∈ N and let ~λ = (λ1, . . . , λn−1) and

~µ := (µ1, . . . , µn−1) be arbitrarily fixed. There exists a field isomorphism δ :

Q(µ1, . . . , µn−1) → Q(λ1, . . . , λn−1) such that δ(µi) = λi for all i = 1, . . . , n − 1

if and only if ~λ and ~µ are algebraic conjugate.

For the proof see A. Varga and Cs. Vincze [11].

Definition 1.4. A translate of a k - dimensional linear subspace of Rm is

called a k-flat. If k = 1 then we speak about a line. In case of k = m − 1 we

have a hyperplane. A k-flat Fk is called algebraic if there exists a not identically

zero element P of the polynomial ring Q[x1, . . . , xm] such that P vanishes at all

points of the k-flat, i.e.

P ∈ ∩~λ∈Fk

I(~λ).

Remark 1.5. In case of k = 0, i.e. if the flat reduces to a point we can refer

to Definition 1.1.
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2. Some observations on algebraic flats

Lemma 2.1. A k-flat Fk in Rm is the union of zero’s of not identically zero

elements of the polynomial ring Q[x1, . . . , xm] if and only if it is algebraic.

Proof. If Fk is algebraic then the statement is trivial. The proof of the

converse is by the induction on k as follows. Since a 0-flat F0 is a singleton, the

statement is obvious for k = 0. Now let us assume that 0 ≤ k ≤ m − 1 and

the statement is valid for all k-flats in Rm. We consider a representation of an

arbitrary (k + 1)-flat Fk+1 in the form

Fk+1 = {v0 + tv + t1v1 + · · · + tkvk | (t, t1, . . . , tk) ∈ Rk+1},

where v ∈ Rm and vj ∈ Rm (j = 0, 1, . . . , k) are fixed. Let

Fk(t) = {v0 + tv + t1v1 + · · · + tkvk | (t1, . . . , tk) ∈ Rk}.

Then Fk(t) = Fk(0) + tv is a k-flat such that Fk(t) ⊂ Fk+1. Geometrically we

interpret Fk+1 as the union of parallel k-flats Fk(t) by running the parameter t

along the set of the real numbers. Now suppose that Fk+1 is the union of zero’s of

not identically zero elements of the polynomial ring Q[x1, . . . , xm]. Then, for every

real number t, so is Fk(t), and due to the inductive hypothesis there exists a not

identically zero polynomial Pt ∈ Q[x1, . . . , xm] such that Pt(u + tv) = 0 for every

u ∈ Fk(0). Since Q[x1, . . . , xm] is countable, there exists an uncountable (and

thus infinite) set I ∈ R and a not identically zero polynomial P ∈ Q[x1, . . . , xm]

such that Pt = P for every t ∈ I. Hence we have

P (u + tv) = 0

for every u ∈ Fk(0) and t ∈ I. Consequently, for each u ∈ Fk(0), the polynomial

Qu(t) = P (u+ tv) has infinitely many zeros, and thus Qu is identically zero. This

yields the equation P (u + tv) = 0 for every u ∈ Fk(0) and t ∈ R, therefore P

vanishes at all points of Fk+1. �

Remark 2.2. The result says that a k-flat Fk is algebraic if and only if the

coordinates of any point of Fk are algebraic dependent.

Lemma 2.3. The hyperplane in Rm defined by the equation

λ1x1 + . . . λm−1xm−1 + λm = xm

is algebraic if and only if all of the coefficients λ1, . . . , λm is algebraic.
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Proof. Suppose that the hyperplane is algebraic. Then we have a not iden-

tically zero element P of the polynomial ring Q[x1, . . . , xm] which vanishes at the

points of the hyperplane. Therefore

P (x1, x2, . . . , xm−1, λ1x1 + · · · + λm−1xm−1 + λm) = 0. (2.1)

Substituting x1 = · · · = xm−1 = 0 we have that λm is the root of the polynomial

p(t) := P (0, . . . , 0, t). Suppose, in contrary, that λm is not algebraic. Then

P (0, . . . , 0, t) = 0 ⇒ DmP (0, . . . , 0, t) = 0, where DmP means the usual partial

derivative of the polynomial P with respect to xm. Differentiating (2.1.) by xi,

we have that for any indices i = 1, . . . , m − 1

DiP (0, . . . , 0, λm) + λiDmP (0, . . . , 0, λm) = 0

and, consequently, DiP (0, . . . , 0, λm) = 0. Because λm is not algebraic

DiP (0, . . . , 0, t) = 0 ⇒ DmDiP (0, . . . , 0, t) = 0

for all indices i = 1, . . . , m − 1 and t ∈ R. Of course, the same is true if i = m.

Differentiating again (2.1) by xi and xj , we have that

DjDiP (0, . . . , 0, λm) + λjDmDiP (0, . . . , 0, λm)

+ λiDjDmP (0, . . . , 0, λm) + λiλjDmDmP (0, . . . , 0, λm) = 0

and, consequently, DjDiP (0, . . . , 0, λm) = 0. Since λm is not algebraic, it follows

that DiDjP (0, . . . , 0, t) = 0 where i, j are arbitrary indices including the cases

i = m or j = m too. According to the Taylor formula at (0, 0, . . . , 0), the process

shows that P must be identically zero, which is a contradiction.

Let now, for example, x1 := 1 and x2 = · · · = xm = 0. Then we have

P (1, 0, . . . , 0, λ1 + λm) = 0, i.e. λ1 + λm is the root of the polynomial p(t) :=

P (1, 0, . . . , 0, t). A similar reasoning as above gives that λ1 + λm is algebraic.

Because the algebraic numbers form a field it follows that λ1 = λ1 + λm − λm is

algebraic. The proof is similar for any further coefficients.

Conversely suppose that the coefficients are algebraic numbers and consider

their defining polynomials in the form

Ω1(t) := (t − λ1,1)(t − λ1,2) · · · (t − λ1,k1
),

Ω2(t) := (t − λ2,1)(t − λ2,2) · · · (t − λ2,k2
), . . . ,

Ωm−1(t) := (t − λm−1,1)(t − λm−1,2) · · · (t − λm−1,km−1
),

Ωm(t) := (t − λm,1)(t − λm,2) · · · (t − λm,km
),
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where λi,1 := λi and for any further index j, λi,j are the algebraic conjugates of

λi. Let

P (x1, . . . , xm)

:=

k1
∏

i1=1

k2
∏

i2=1

· · ·
km
∏

im=1

(xm − λ1,i1x1 − · · · − λm−1,im−1
xm−1 − λm,im

) (2.2)

which obviously vanishes at the points of the hyperplane. On the other hand,

for any fixed x1, . . . , xm, it can be considered as a symmetric polynomial of the

variables λ1,1, . . . , λ1,k1
. Using the fundamental theorem of symmetric polynomi-

als it has a unique representation as the polynomial of the elementary symmetric

polynomials

E0(λ1,1, . . . , λ1,k1
) = 1,

E1(λ1,1, . . . , λ1,k1
) = λ1,1 + · · · + λ1,k1

,

E2(λ1,1, . . . , λ1,k1
) = λ1,1λ1,2 + · · · + λ1,1λ1,k1

+ λ1,2λ1,3 + . . .

+ λ1,2λ1,k1
+ · · · + λ1,k1−1λ1,k1

, . . .

Ek1
(λ1,1, . . . , λ1,k1

) = λ1,1λ1,2 . . . λ1,k1
.

According to the relations between the coefficients of the polynomials and its roots

we have that P is a polynomial of the variables x1, x2, . . . , xm, λ2,1, . . . , λ2,k2
, . . . ,

λm,km
with rational coefficients. Repeating the procedure as above we have that

P is an element of the polynomial ring Q[x1, . . . , xm]. �

Example 2.4. Consider the line x2 =
√

3x1 +
√

2 in R2. An easy calculation

shows that P (x1, x2) = x4
2 − 6x2

1x
2
2 − 4x2

2 + 9x4
1 − 12x2

1 + 4.

3. Sufficient conditions for the existence of non-trivial solutions

Before we can state our main theorems in their final forms we need the

following result like Theorem 3.2 in [11].

Lemma 3.1. Let 3 ≤ n ∈ N be arbitrarily fixed and βi, δi, βn ∈ R be nonzero

real numbers, i = 1, . . . , n − 1. If there exists a field isomorphism

δ : Q

(

β1

βn

, . . . ,
βn−1

βn

)

→ Q

(

δ1, . . . , δn−1

)
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such that

δ

(

βi

βn

)

= δi and
α1

αn

δ1 + · · · + αn−1

αn

δn−1 = −1, (3.1)

where i = 1, . . . , n − 1, then there exists a not identically zero additive function

A : R → R such that
∑n

i=1
αi A(βix) = 0 (x ∈ R).

Proof. Consider R as the vector space over Q
(

β1

βn

, . . . ,
βn−1

βn

)

with the ba-

sis H. Define A : R → R as follows: on the elements of H we define it arbitrarily

and for x =
∑

j cjhj , where cj ∈ Q
(

β1

βn

, . . . ,
βn−1

βn

)

and hj ∈ H, let A(x) :=
∑

j δ(cj)A(hj); it is easy to see that A is additive and for any i = 1, . . . , n − 1

A

(

βi

βn

x

)

= δiA(x) (x ∈ R).

Indeed,

A

(

βi

βn

x

)

= A

(

∑

j

βi

βn

cjhj

)

=
∑

j

δ

(

βi

βn

cj

)

A(hj)

=
∑

j

δiδ(cj)A(hj) = δi

∑

j

δ(cj)A(hj) = δiA(x)

holds for all x ∈ R, where i = 1, . . . , n − 1. Therefore

α1

αn

A

(

β1

βn

x

)

+ · · · + αn−1

αn

A

(

βn−1

βn

x

)

+ A(x)

=

(

α1

αn

δ1, . . . , +
αn−1

αn

δn−1 + 1

)

A(x) = 0

for all x ∈ R, i.e.
∑n

i=1

αi

αn
A

(

βi

βn
x
)

= 0. Multiplying by αn and substituting x by

βnx this equation is equivalent to
∑n

i=1
αi A(βix) = 0 (x ∈ R) which was to be

stated. �

Theorem 3.2. Suppose that n ≥ 3. If the parameters β1

βn
, . . . ,

βn−1

βn
are al-

gebraically independent and at least one of the parameters α1

αn

, . . . ,
αn−1

αn

is tran-

scendental then equation (1.1) always has a nontrivial additive solution which is

semi-homogeneous in the sense that A( βi

βn

x) = δiA(x) for some δi’s, where x ∈ R

and i = 1, . . . n − 1.

Proof. Let β1

βn

, . . . ,
βn−1

βn

be fixed such that they are algebraic independent.

According to Lemma 1.3 and Lemma 3.1 equation (1.1) has nontrivial additive

solutions if there exist δ1, . . . , δn−1 ∈ Rn−1 such that they satisfy the equation

α1

αn

x1 + · · · + αn−1

αn

xn−1 = −1 (3.2)
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and the defining ideal of ~δ := (δ1, . . . , δn−1) contains only the zero polynomial.

Because of Lemma 2.3 the hyperplane defined by (3.2) is not algebraic which

means, by Lemma 2.1 that it is not the union of zero’s of nontrivial elements of

the polynomial ring Q[x1, . . . , xn−1]. This implies the existence of δi’s as was to

be stated. �

Theorem 3.3. Suppose that n ≥ 3. If the parameters α1

αn

, . . . ,
αn−1

αn

are

algebraically independent and at least one of the parameters β1

βn

, . . . ,
βn−1

βn

is tran-

scendental then equation (1.1) always has nontrivial additive solution which is

semi-homogeneous in the sense that A(δix) = αi

αn
A(x) for some δi’s, where x ∈ R

and i = 1, . . . n − 1.

Proof. The proof is similar to that of Theorem 3.2 using the field isomor-

phism δ : Q
(

δ1, . . . , δn−1

)

→ Q
(

α1

αn
, . . . ,

αn−1

αn

)

such that

δ(δi) =
αi

αn

and δ1

β1

βn

+ · · · + δn−1

βn−1

βn

= −1, (3.3)

where i = 1, . . . , n − 1. �

Remark 3.4. First of all note that βn and αn can be substituted with any

other coefficients βi and αi, respectively, where i = 1, . . . , n − 1. On the other

hand the reasoning in the proofs shows that points with algebraic independent

coordinates can be find almost everywhere on the hyperplanes defined by (3.2).

Remark 3.5. If a not identically zero additive function A is semi-homogeneous

in the sense that

A

(

βi

βn

x

)

= δiA(x) (x ∈ R)

with some δi’s, i = 1, . . . , n−1 then for any β ∈ Q( β1

βn

, . . . ,
βn−1

βn

), A(βx) = δA(x)

with some δ ∈ Q(δ1, . . . , δn−1). Explicitly, if

β =
w

(

β1

βn

, . . . ,
βn−1

βn

)

k
(

β1

βn
, . . . ,

βn−1

βn

)
, then δ =

w(δ1, . . . , δn−1)

k(δ1, . . . , δn−1)
,

where w, k are the elements of the polynomial ring Q[x1, . . . , xn−1]. According to

Lemma 3.1 in [11] the fields

Q

(

β1

βn

, . . . ,
βn−1

βn

)

and Q(δ1, . . . , δn−1)
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are isomorphic to each other. Like the homogeneity field [5] we can define the

inner semi-homogeneity field

IS(A) := {β ∈ R | A(βx) = δA(x) for all real number x}

and the outer semi-homogeneity field

OS(A) := {δ ∈ R | A(βx) = δA(x)for all real number x}.

The semi-homogeneity field is unique in the sense that IS(A) and OS(A) is

isomorphic. According to the rational homogeneity of the additive functions

Q ⊂ IS(A) ∩ OS(A).

In terms of the semi-homogeneity field the following converse of Theorem 3.2

is natural.

Theorem 3.6. Suppose that n ≥ 3. If the parameters β1

βn

, . . . ,
βn−1

βn

are

algebraically independent and equation (1.1) has a nontrivial semi-homogeneous

additive solution with β1

βn
, . . . ,

βn−1

βn
in its inner semi-homogeneity field, then at

least one of the parameters α1

αn

, . . . ,
αn−1

αn

is transcendental.

In a similar way we have the following result.

Theorem 3.7. Suppose that n ≥ 3. If the parameters α1

αn

, . . . ,
αn−1

αn

are

algebraically independent and equation (1.1) has a nontrivial semi-homogeneous

additive solution with α1

αn
, . . . ,

αn−1

αn
in its outer semi-homogeneity field then at

least one of the parameters β1

βn

, . . . ,
βn−1

βn

is transcendental.

4. Examples for the remaining cases

In the previous section we formulated existence theorems for the nontrivial

solution of equation (1.1) under certain conditions. According to Theorems 3.2

and 3.3 we have the following remaining cases:

(i) β1

βn
, . . . ,

βn−1

βn
and α1

αn
, . . . ,

αn−1

αn
are algebrically dependent,

(ii) β1

βn
, . . . ,

βn−1

βn
are algebraic independent and all of the parameters α1

αn
, . . . ,

αn−1

αn

are algebraic, or

(iii) α1

αn

, . . . ,
αn−1

αn

are algebraic independent and all of the parameters β1

βn

, . . . ,
βn−1

βn

are algebraic.
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Here we investigate only an example for the case (ii). Consider the functional

equation
√

d1A

(

β1

β3

x

)

+
√

d2A

(

β2

β3

x

)

+ A(x) = 0,

where d1 and d2 are positive rational and the parameters β1

β3

, β2

β3

are algebraic

independent. It is equivalent to equation (1.1) under n = 3, α1

α3

=
√

d1,
α2

α3

=
√

d2.

To solve the functional equation consider the following procedure. Multiplying

by
√

d1

A

(

d1

β1

β3

x

)

+
√

d1d2A

(

β2

β3

x

)

+
√

d1A(x) = 0.

Substituting β1

β3

x we have

A

(

d1

(

β1

β3

)2

x

)

+
√

d1d2A

(

β1β2

β2
3

x

)

+
√

d1A

(

β1

β3

x

)

= 0. (4.1)

In a similar way

√

d1d2A

(

β1

β3

x

)

+ A

(

d2

β2

β3

x

)

+
√

d2A(x) = 0

and
√

d1d2A

(

β1β2

β2
3

x

)

+ A

(

d2

(

β2

β3

)2

x

)

+
√

d2A

(

β2

β3

x

)

= 0 (4.2)

follows immediately. Taking the difference of (4.2) and (4.1)

√

d2A

(

β2

β3

x

)

−
√

d1A

(

β1

β3

x

)

= A

((

d1

(

β1

β3

)2

− d2

(

β2

β3

)2)

x

)

.

On the other hand

√

d1A

(

β1

β3

x

)

+
√

d2A

(

β2

β3

x

)

= −A(x)

as the original functional equation shows. Taking the sum

2
√

d2A

(

β2

β3

x

)

= A

((

d1

(

β1

β3

)2

− d2

(

β2

β3

)2

− 1

)

x

)

.

Substituting β3

2β2

x we have that

√

d2A(x) = A

((

d1

(

β1

β3

)2

− d2

(

β2

β3

)2

− 1

)

β3

2β2

x

)
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which means, by Daróczy theorem, that

√

d2 and

(

d1

(

β1

β3

)2

− d2

(

β2

β3

)2

− 1

)

β3

2β2

,

are algebraic conjugate to each other, i.e.

±
√

d2 =

(

d1

(

β1

β3

)2

− d2

(

β2

β3

)2

− 1

)

β3

2β2

provided that A is not identically zero. In a similar way (taking the difference

instead of the sum) it follows that

−2
√

d1A

(

β1

β3

x

)

= A

((

d1

(

β1

β3

)2

− d2

(

β2

β3

)2

+ 1

)

x

)

and, consequently, ±
√

d1 =
(

d1

(

β1

β3

)2 − d2

(

β2

β3

)2
+ 1

)

β3

2β1

provided that A is not

identically zero. It can be easily seen that both of the final results contradicts to

the condition of algebrically independence of the parameters β1

β3

and β2

β3

. Therefore

the only solution is the identically zero function. The method can be easily

generalized for solving the functional equation

α1

α3

A

(

β1

β3

x

)

+
α2

α3

A

(

β2

β3

x

)

+ A(x) = 0

if the parameters α1

α3

and α2

α3

are algebraic of degree at most 2. Then all of them

have the form αi

α3

= ri + si

√
di, where ri, si and di are rational and i = 1, 2.
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310 A. Varga and Cs. Vincze : On Daróczy’s problem for additive functions

[5] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Prace
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