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Abstract. It has recently been shown that starting from the Finslerian geometri-
cal framework and demanding Riemannian conformal and projective structures together
with the constancy of norm of vectors under parallel displacement do not reduce the
geometry of the space-time to be Riemannian, but there results rather a Berwald space
subject to a constraint. Here we study what happens if the starting geometrical frame-
work is further generalized to be that of a generalized Lagrange space GLn (introduced
by the first author, [4]). In particular, we employ the GLn space endowed with fun-

damental tensor gij(x, y) = e2σ(x,y)γij(x) and study the consequences of imposing the
above conditions. We determine the canonical metrical d-connection for this space and
study some of its properties with the help of concrete examples. This further general-
ization can be of potential importance, especially in view of the recent discovery of the
relevance of such generalized spaces in the study of W -gravity, [8].

1. Introduction

The point of view that the underlying geometry of space-time is Rie-
mannian, is usually thought to be further strengthened by the constructive-
axiomatic formulation of general relativity given by Ehlers, Pirani and
Schild, [1]. Within this scheme the geometry of space-time is viewed
in terms of the main substructures: conformal and projective structures,
which are in turn thought to be fixed by light propagation and freely
falling non-rotating neutral test particles respectively. The main result of
EPS (EPS means “Ehlers, Pirani and Schild”) is that these substructures
together with the constancy of the norm of vectors under parallel displace-
ment are sufficient to ensure the Riemannian nature of space-time.

Recently, the second author together with Van den Bergh, [2,3] has
shown: A necessary and sufficient condition for a Finsler space endowed
with the fundamental function F (x, y) = e2σ(x,y)γij(x)yiyj to satisfy the
EPS conditions is for the function σ(x, y) to satisfy the equation

(1.1)
∂σ

∂xi
− ∂σ

∂yk

{
k

ij

}
yj = 0,
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where γij(x) is a Riemannian metric and
{

i
jk

}
are its Christoffel symbols.

The question then arises as to what happens if the starting geometrical
framework is allowed to be even more general than the Finslerian one,
namely a generalized Lagrange space.

Before turning to this question we give a brief account of these spaces,
sufficient for our purposes here.

A generalized Lagrange space GLn is a pair (M, gij(x, y)) formed by
the C∞-real n-dimensional differentiable manifold M and a d-tensor field
(where “d” denotes “distinguished”) gij(x, y) differentiable on T̃M = TM\
{0}, covariant of order 2, symmetric with the rank‖gij(x, y)‖ = n and of
constant signature, called the fundamental tensor field of GLn. Clearly a
Finsler space Fn or a Lagrange space Ln is a GLn space. A GLn is said
to be reducible to a Lagrange space if there exists a regular Lagrangian

L : TM → R such that gij =
1
2

∂2L

∂yi∂yj
. It is important to note that,

as opposed to the Finslerian case, the fundamental tensor field gij is not
homogeneous in yi. The geometry of GLn can be developed by the same
methods as those employed in Lagrange spaces, [7].

Let N be a nonlinear connection on TM with the local coefficients

N i
j(x, y). Then the vector fields

(
δ

δxi
,

∂

∂yi

)
, (i = 1, . . . , n), with

(1.2)
δ

δxi
=

∂

∂xi
−N j

i
∂

∂yj

are a local basis of the module of vector fields on T̃M . The dual basis is
given by (dxi, δyi), where

(1.2)′ δyi = dyi + N i
jdxj .

Then, the autoparallel curves of the nonlinear connection N are given

by
δyi

dt
= 0,

dxi

dt
= yi. The absolute energy of GLn is

(1.3) E(x, y) = gij(x, y)yiyj .

In a generalized Lagrange space GLn endowed with a nonlinear con-
nection N we can deduce a so called d-connection, [7] CΓ(N) = (Li

jk, Ci
jk).

This allows the h- and v-covariant derivatives, denoted by “|” and “|” re-
spectively. For example the h- and v-covariant derivatives of the funda-
mental tensor field gij are given by:

(1.4) gij|k =
δgij

δxk
− Ls

ikgsj − Ls
jkgis; gij |k =

∂gij

∂yk
− Cs

ikgsj − Cs
jkgis.

Denoting by gij(x, y) the reciprocal of gij(x, y) we have:
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In the generalized Lagrange space GLn = (M, gij(x, y)) there exists a
unique d-connection CΓ(N) with the properties: (a) gij|k = 0, gij |k = 0;
(b) T i

jk = Si
jk = 0. The coefficients of the d-connection CΓ(N) are given

by the generalized Christoffel symbols

(1.5)
Li

jk =
1
2
gis

(
δgjs

δxk
+

δgsk

δxj
− δgjk

δxs

)
,

Ci
jk =

1
2
gis

(
∂gjs

∂yk
+

∂gsk

∂yj
− ∂gjk

∂ys

)
.

Therefore, once N is given, CΓ(N) is determined solely by gij(x, y). It is
called the canonical metrical d-connection of the space GLn. In particular,
if GLn is a Finsler space Fn and N is the nonlinear Cartan connection,
then CΓ(N) is the metrical Cartan connection.

The connection CΓ(N) has three torsion tensor fields and three cur-
vature tensor fields.

Now some new remarks and properties. A d-tensor t is called h-
covariant constant (h-c.c.) if t|k = 0. If t is a scalar field on T̃M and has
the property t|k = 0, it is said to be h-constant (h-c.).

Now a h-c function σ(x, y) is a solution of the equation

(1.6)
∂σ

∂xi
−N j

i(x, y)
∂σ

∂yj
= 0,

which in the case N i
j =

{
i

jk

}
yk is given by (1.1). This makes sense geo-

metrically as σ|k is a covector field and equation (1.6) is given by σ|k = 0.
We have the following results concerning h-c functions:

Proposition 1.1. If the Liouville vector field c = yi ∂

∂yi
is h-c.c. then

the absolute energy (1.3) of the space GLn is an h-c function.

It is more important that we have.

Theorem 1.1. Every h-c function σ(x, y) is a constant on the au-
toparallel curves of the nonlinear connection N .

Proof. Recall that the differential dσ of the function σ(x, y) can be
written in the form dσ = σ|kdxk+σ|kδyk and that on an autoparallel curve

of N we have
δyk

dt
= 0, yk =

dxk

dt
. The condition σ|k = 0 then implies

dσ = 0.
Now considering the following 2-form on T̃M : θ = gij(x, y) δyi ∧ dxj

we have: The pair (T̃M, θ) is an almost symplectic space.
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Generally θ is not integrable. If, however, GLn is a Finsler or a
Lagrange space and N is a canonical nonlinear connection, then θ is a
closed 2-form. The above almost symplectic structure θ imposes an almost
Hermitian space H2n = (T̃M,G,F) which is the almost Hermitian model
of the generalized Lagrange space GLn.

2. Geometry of space-time and generalized Lagrange spaces

In this section we show that the EPS conditions can be satisfied by
a special generalized Lagrange space GLn endowed with a nonlinear con-
nection uniquely determined by its fundamental tensor gij .

Let us start with a GLn = (M, gij(x, y)) and assume that the following
axioms hold:

(a.1) The findamental tensor field gij(x, y) is of the form

(2.1) gij(x, y) = e2σ(x,y)γij(x)

where σ : TM → R is a C∞ function on T̃M , at least continuous on the
null section 0, and γij(x) is the metric tensor of a given Riemannian space
Rn .

It shouls be noted here that these assumptions also eliminate the
usual complications related to the causal structure of the space Rn and
the related problem of nullity of vectors. Furthermore, σ(x, y) does not
satisfy any homogeneity conditions with respect to yi.

(a.2) The space GLn is endowed with the nonlinear connection N
with the coefficients

(2.2) N i
j(x, y) =

{
i

jk

}
(x)yk.

where
{

i
jk

}
are the Christoffel symbols of the Riemannian metric γij(x).

(a.3) The space GLn is endowed with the canonical metrical d-conn-
ection CΓ(N).

We then have
Theorem 2.1. Axioms (a.1), (a.2) and (a.3) are equivalent to EPS

conditions.

Proof. Axiom (a.1) affirms that the space GLn with the metric
given in (2.1) has the same conformal structure as the Riemannian space
specified by γij(x). Axiom (a.2) shows (cf. section 1) that the autoparallel
curves of the nonlinear connection N with the coefficients (2.2) are coinci-
dent with the autoparallel curves of the Riemannian spaceRn. And finally,
the constancy of the norm of vectors under parallel transport is ensured by
the metricity conditions satisfied by the canonical metrical d-connection
CΓ(N) mentioned in axiom (a.3).
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It is worthwile to give a geometrical interpretation of the axiom (a.1).
Let (Γ, γ) be a smooth parametrized curve γ : t ∈ I → x(t) ∈ M
and Imγ = Γ. Using the tangent mapping of γ, we consider the curve
(Γ̃, γ̃), on T̃M , given by γ̃ : t ∈ I → (x(t), ẋ(t)) ∈ T̃M and Γ̃ = Imγ̃.
Therefore the element of the arc of the parametrized curve (Γ, γ) in Rn

is drs
2 = γij(x)ẋiẋjdt2 and the element of the arc of the parametrized

curve (Γ̃, γ̃) in GLn is ds2 = gij(x, x)ẋiẋjdt2. Axiom (a.1) which implies
ds2 = e2σ(x,y)drs

2 can then be interpreted geometrically as representing
a homothety (a gauge transformation, dilatation or contraction). The ho-
mothety is fixed in terms of σ(x, y) which in turn is to be specified by the
physical nature of the space. The parameter t can also be given physically,
for example it may be the proper time.

We close this section with a number of examples for the functional
form of σ.

(I) σ(x, y) may be taken to be any solution of the equation (1.1),
which is in turn strongly related to the axiom (a.2).

(II) Let Ai(x) be an electromagnetic covector field on M . Then we
may choose

(2.3) σ(x, y) = Ai(x)yi.

(III) Recalling the Liouville vector field, we can choose

(2.4) σ(x, y) = γij(x)yiyj .

(IV) If (M, V i(x), n(x, V (x))) is a dispersive medium, [6], with V i(x)
the velocity of the particle and n(x, V (x)) the refractive index, we may
consider

(2.5) σ(x, y) = α

(
1− 1

n2(x, y)

)
, α ∈ R∗+.

The metric tensor gij(x, y) = e
2α
�
1− 1

n2(x,y)

�
γij(x) can serve as a new the-

ory of relativistic optics, which reduces to the classical theory obtained

when
∂σ

∂yi
= 0, (i.e. the medium is non-dispersive). When

∂γij

∂xk
= 0, and

σ(x, y) is a solution of equation (1.1), then the medium is strongly disper-

sive, (assuming
∂σ

∂yi
6= 0). Indeed, if Rn is a Minkowski metric, then σ,

with
∂σ

∂yi
6= 0, satisfies (1.1) if and only if

∂σ

∂xi
= 0. But in this case σ is

purely yi (or velocity) dependent.

It is worthwile to note that the axioms (a.1)–(a.3) imply
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Proposition 2.1. The nonlinear connection N with the coefficients
(2.2) is uniquely determined by the fundamental tensor gij(x, y) of the
space GLn.

We can prove, without difficulties

Theorem 2.2. The generalized Lagrange space GLn with the funda-

mental tensor (2.1) and
∂σ

∂yi
6= 0 is not reducible to a Lagrange or a Finsler

space.

3. Canonocal metrical D-connection of the space GLn

In this section we briefly study the canonical metrical d-connection
CΓ(N) postulated in (a.3). We have

Theorem 3.1. The canonical metrical d-connection CΓ(N) of the
space GLn has the coefficients

(3.1)
Li

jk =
{

i

jk

}
+ δi

jσk + δi
kσj − gjkσi;

Ci
jk = δi

j σ̇k + σi
kσ̇j − gjkσ̇i,

where σk = σ|k, σi = gijσj , σ̇k =
∂σ

∂yk
, σ̇i = gij σ̇j .

Now clearly CΓ(N) has the properties gij|k = 0, gij |k = 0.
The torsion of CΓ(N) is given by Ci

jk in (3.1) and by

(3.2) Ri
hk = yjRj

i
hk, P i

jk = −(δi
jσk + δi

kσj − gjkσi),

where Rj
i
hk is the curvature tensor of the Riemannian metric γij(x). A

further interesting property of CΓ(N), which shows the importance of the
result established by R. Tavakol and Van den Bergh, [2,3], is given by

Theorem 3.2. The canonical metrical d-connection CΓ(N) has the

property Li
jk =

{
i

jk

}
, if and only if the function σ(x, y) is a solution of the

equation (1.1).

Proof. Using (3.1), the property Li
jk =

{
i

jk

}
holds if and only if

δi
jσk + δi

kσj − gjkσi = 0. Contracting the indices i and j gives σk = 0,

which, by using σk =
δσ

δxk
, is equivalent to (1.1).

Theorem 1.1 has as consequence the



Geometry of space-time and generalized . . . 173

Theorem 3.3. If the function σ(x, y) is a solution of the equation
(1.1), then the absolute energy E(x, y) of the space GLn is also a solution
of this equation. Furthermore, the absolute energy is constant on the
autoparallel curves of the nonlinear connection N .

Proposition 3.1. If
∂σ

∂yk
6= 0, then the coefficients Ci

jk of CΓ(N)

cannot vanish.

Also, regarding the d-tensor Ri
jk in (3.2) we obtain

Theorem 3.4. The nonlinear connection N of the space GLn is inte-
grable if and only if the Riemannian space Rn is locally Euclidean.

We end this section with two examples:
(I) If σ(x, y) = Ai(x)yi and Ai;j = 0, where “;” denotes covariant

differentiation with respect to the Christoffel symbols
{

i
jk

}
, then we obtain:

(a) σ(x, y) satisfies the equation (1.1).
(b) The coefficients of the canonical metrical connection CΓ(N) are

Li
jk =

{
i

jk

}
, Ci

jk = δi
jAk + δi

kAj − gjkAi, (Ai = gijAj).

(c) The absolute energy E(x, y) = e2Ak(x)yk

γijy
iyj satisfies (1.1).

(d) E(x, y) is a constant on the autoparallels of N .
(II) If σ(x, y) is given by (2.4), then:
(a) σ(x, y) satisfies the equation (1.1).
(b) The coefficients of CΓ(N) are given by

Li
jk =

{
i

jk

}
, Ci

jk = δi
jyk + δi

kyj − gjkgisys, (yi = γijy
j).

(c) E(x, y) = e‖y‖
2‖y‖2, (‖y‖2 = γijy

iyj) satisfies (1.1).
(d) E(x, y) is a constant on the autoparallels of N .

4. Conclusion

The results of the previous sections show that the usual EPS criteria
are not sufficient to fix the geometry of the space-time to be Riemann-
ian. Furthermore, the comparison between the results here and those in
[2,3] show that the more general the starting geometrical framework, the
more general will be the non-Riemannian geometrical framework that can
be made compatible with EPS conditions. This could have potentially
important consequences in generalizations of general relativity, especially
in the light of the recent discovery of the relevance of such a generalized
geometrical framework in the study of W -gravity [8].

It is clearly of interest to develop further the ideas presented in this
paper by determination of the curvature tensor fields, Einstein equations



174 Radu Miron and Renza Tavakol : Geometry of space-time and generalized . . .

within GLn with the canonical metrical d-connection (3.1), and the corre-
sponding electromagnetic tensor fields and the Maxwell equations, as well
as post-Newtonian approximation. We shall return to these questions in
future publications, in collaboration with Prof. I. Roxburgh and Prof. V.
Balan.
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