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Integer points on two families of elliptic curves

By FILIP NAJMAN (Zagreb)

Abstract. In this paper we find all the integer points on elliptic curves induced

by the Diophantine triples {k− 1, k + 1, 16k3 − 4k} and {k− 1, k + 1, 64k5 − 48k3 + 8k}
that have either rank two or 2 ≤ k ≤ 10000 (with one possible exception).

1. Introduction

It is expected that the number of integer points on an elliptic curve E in
Weierstrass form depends on the rank of E(Q). More precisely, Lang conjectured
that it grows exponentially with the rank (see [23]). Since not much is known
on the distribution of ranks in parametric families of elliptic curves, it is hard to
expect to find (or even predict) all integer points on a family of elliptic curves in
Weierstrass form. However, for some families of elliptic curves not in Weierstrass
form, there are results which give evidence that the number of integer points might
not depend on rank, and that actually the number of points can be the same for
all curves in a family. Several such results involve so called D(n)−m-tuples.

A set of positive integers {a1, a2, . . . , am} is called a Diophantine D(n)−m-
tuple if aiaj + n is a perfect square for all 1 ≤ i < j ≤ m. We define for k ≥ 0,
cl = ((k +

√
k2 − 1 )2l+1 + (k − √k2 − 1 )2l+1 − 2k)/(2(k2 − 1)). A parametric

family induced by the Diophantine D(1)-triples {k−1, k+1, c1} has been examined
in [6] and all the integer points have been determined under the assumption that
the rank of the elliptic curve is 1. This is a consequence of the fact that the

Mathematics Subject Classification: 11G05, 11Y50.
Key words and phrases: family of elliptic curves, integer points, Diophantine m-tuple.
The author was supported by the Ministry of Science, Education and Sports, Republic of Croa-

tia, Grant 037-0372781-2821.



402 Filip Najman

Diophantine D(1)-triple {k−1, k+1, c1} can be uniquely extended to a quadruple
with the same property by c2 (proven in [5]).

Let us mention the articles [12], [13], [7] and [9] in which are examined families
of elliptic curves induced by the D(−1)-triples {F2k+1, F2k+3, F2k+5}, the D(−1)-
triples {1, 2, 1

8 ((1 +
√

2)4k + (1 − √2)4k + 6)} and the D(1)-triples {F2k, F2k+2,

F2k+4} and {1, 3, cl(2)} respectively, where cl(2) denotes the cl with k = 2.
In all these families, except [12], the integer points come from the possible

extensions of the triple.
It has been recently proven (see [11] and [2]) that the Diophantine D(1)-triple

{k− 1, k + 1, cl} can be extended to a quadruple with the same property only by
either cl−1 or cl+1.

Although it has been conjectured by Dujella that all the integer points can
be determined (and arise from the possible extensions) on all families of elliptic
curves induced by the triple {k − 1, k + 1, cl}, there are no general results so
far. As the next logical step, we examine the families induced by the triples
{k − 1, k + 1, c2} and {k − 1, k + 1, c3}.

2. The family generated by c2

We examine the elliptic curve

Ek : y2 = ((k − 1)x + 1)((k + 1)x + 1)((16k3 − 4k)x + 1). (1)

We use the variable change

y 7→ y

(k − 1)(k + 1)(16k3 − 4k)
, x 7→ x

(k − 1)(k + 1)(16k3 − 4k)
,

and obtain the curve

E′
k : y2 = (x+k2−1)(x+16k4−16k3−4k2+4k)(x+16k4+16k3−4k2−4k). (2)

We have three obvious points

A = (1−k2, 0), B = (−16k4+16k3+4k2−4k, 0), C = (−16k4−16k3+4k2+4k, 0)

of order two. We will prove these are the only points of finite order.

Lemma 1. Ek(Q)tors ' Z2 ⊕ Z2.
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Proof. As {k−1, k+1, 16k3−4k} is a Diophantine triple, by ([7], Theorem 2)
there are no points of order 4.

Suppose Ek(Q)tors ' Z2 + Z6 for l ≥ 2. By a theorem of Ono ([21], Main
Theorem 1), this implies there exist integers a, b such that

32k3 − 8k = a4 + 2a3b and − 16k4 + 16k3 + 5k2 − 4k − 1 = b4 + 2ab3.

From the first equation we see that a has to be even, so the right side is divisible
by 16, which implies k is even. Adding these equations we obtain

−16k4 + 48k3 + 5k2 − 12k − 1 = (a2 + ab + b2)2 − 3a2b2,

which is impossible since the left side is congruent to 3 or 7 modulo 8, while the
right side is congruent to 1 or 6 modulo 8. By Mazur’s theorem, this proves the
lemma. ¤

We define

P = (0, (k2−1)(16k3−4k)), R = (−16(−k2+k4), 4k(1+3k−4k2)(−1+3k+4k2)).

It is easy to see that both points lie on the curve Ek(Q).

Lemma 2. R,R + A,R + B,R + C /∈ 2E′
k(Q).

Proof. The 2-descent proposition (see [16], Theorem 4.2, p. 85) implies that
R ∈ 2E′

k(Q) iff x(R) + k2 − 1, x(R) + 16k4 − 16k3 − 4k2 + 4k and x(R) + 16k4 +
16k3 − 4k2 − 4k are squares. For the rest of the article we will use this argument
without mentioning it.

For k ≥ 2, x(R) + k2 − 1 < 0, and thus can not be a square, which proves
R 6∈ 2E′

k(Q). x(R + A) = −16k4 + 8k2, so for k ≥ 2, x(R + A) + k2 − 1 < 0 and
thus it can not be a square, which proves R + A /∈ 2E′

k(Q).
Suppose R + B ∈ 2E′

k(Q). x(R + B) = 16k4 + 8k3 − 12k2 − 2k + 2, so
16k4+8k3−11k2−2k+1 is a square, but (4k2+k−2)2 < 16k4+8k3−11k2−2k+1 <

(4k2 + k − 1)2 for k ≥ 2. R + C 6∈ 2E′
k(Q) is proved in the same way. ¤

Lemma 3. P, P + A,P + B,P + C /∈ 2E′
k(Q).

Proof. P is obviously not in 2 E′
k(Q) since k2 − 1 can not be a square.

Suppose P + A ∈ 2E′
k(Q). Then x(P + A) = 256k6 − 160k4 + 24k2, so

256k6 − 160k4 + 25k2 − 1 = (16k3 − 5k)2 − 1 is a square, which is impossible.
Suppose P + B ∈ 2E′

k(Q). x(P + B) = −16k4 − 16k3 + 4k2 + 6k + 2, so
x(P +B)+k2−1 = 1+6k+5k2−16k3−16k4 < 0 for k ≥ 2. The same argument
works for P + C. ¤
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Lemma 4. R + P, R + P + A,R + P + B, R + P + C /∈ 2E′
k(Q).

Proof. x(R + P ) = −64k6+64k4−16k2+1
4k2 , so x(R + P ) + k2− 1 < 0 for k ≥ 2,

and hence can not be a square, which implies R + P /∈ 2E′
k(Q).

x(R + P + A) = −64k8+96k6−32k4−k2+1
4k4−4k2+1 , so x(R + P ) + k2 − 1 < 0 for k ≥ 2,

and hence can not be a square, which implies R + P + A 6∈ 2E′
k(Q).

x(R+P +B) = 64k6−32k5−64k4+16k3+20k2−4k
4k2−4k+1 . Suppose R+P +B ∈ 2E′

k(Q).
This implies x(R + P + B)− 4k − 4k2 + 16k3 + 16k4 is a rational square. Hence
8k(−1+4k)(1−2k2)2 is a square, which implies that 8k(−1+4k) is a square. But
8k and 4k − 1 are coprime, and 4k − 1 can not be a square, since it is congruent
to 3 modulo 4.

Suppose R + P + C ∈ 2E′
k(Q). Then x(R + P + C) + k2 − 1 is a square,

which implies −1 − 4k + 5k2 + 24k3 + 16k4 is a square, but (4k2 + 3k − 1)2 <

−1− 4k + 5k2 + 24k3 + 16k4 < (4k2 + 3k)2. ¤

Proposition 5. The rank of E′
k over Q is greater than or equal to two.

Proof. We claim that R and P generate a subgroup of rank 2 in E′
k(Q)

/E′
k(Q)tors. We will prove aP + bR ∈ E′

k(Q)tors implies a = b = 0.
Suppose aP + bR = T ∈ E′

k(Q)tors. If a and b are not both even, then one
of the following is true: P + T ∈ 2E′

k(Q), R + T ∈ 2E′
k(Q), P + R + T ∈ 2E′

k(Q).
This gives a contradiction with Lemmas 2, 3 and 4. We conclude that a = 2a1

and b = 2b1. We have 2a1P + 2b1R ∈ E′
k(Q)tors, so a1P + b1R ∈ E′

k(Q)tors. We
can again conclude that a1 and b1 are both even and continuing this process we
get a = b = 0. ¤

Theorem 6. If rank(Ek(Q)) = 2 or 2 ≤ k ≤ 10000 and k 6= 6300, then all

integer points on Ek are given by

(x, y) ∈ {(0,±1), (4k,±(1− 12k2 + 32k4)),

(64k5 − 48k3 + 8k,±(1− 40k2 + 496k4 − 2112k6 + 3584k8 − 2048k10))}. (3)

The x-coordinates of the non trivial integer points correspond to c1 and c3.

Proof. Case rank(Ek) = 2
Let δ = (k − 1)(k + 1)(16k3 − 4k). If X0 = (u, v) is an integer point on Ek,
then X = (δu, δv) is an integer point on E′

k. Let E′
k(Q)/E′

k(Q)tors = 〈U, V 〉.
Then P ≡ U1 + T1 (mod 2E′

k(Q)), R = U2 + T2 (mod 2E′
k(Q)) and P + R ≡

U3 + (T1 + T2) (mod 2E′
k(Q)), where Ti are torsion points and Ui are elements

of 〈U, V 〉. From Lemmas 2, 3 and 4 we have {U1, U2, U3} = {U, V, U + V }. Now
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we have X ≡ X1 (mod 2E′
k(Q)), where

X1 ∈ S = {O,A, B, C, P, P + A,P + B,P + C,R, R + A, R + B, R + C,

P + R,P + R + A,P + R + B, P + R + C}.

Let {a, b, c} = {(k − 1)(k + 1), (k − 1)(16k3 − 4k), (k + 1)(16k3 − 4k)}. By [16],
Proposition 4.6, p. 89, the function φ : E′

k(Q) → Q∗/Q∗2 defined by

φ(X) =





(x + a)Q∗2 if X = (x, y) 6= O, (−a, 0)

(b− a)(c− a)Q∗2 if X = (x, y) = (−a, 0)

Q∗2 if X = O

is a group homomorphism.
This implies that to find integer points on E, all we have to do is find integer

solutions to all systems of the form

(k − 1)x + 1 = α¤, (k + 1)x + 1 = β¤, (16k3 − 4k)x + 1 = γ¤,

where for X1 = (δu, δv), α, β, γ are defined by α = (k− 1)u+1, β = (k +1)u+1,
γ = (16k3 − 4k)u + 1 if all these are nonzero, and if one is zero then that one is
defined as the product of the other two. ¤ denotes a rational square, and we will
use this notation in the rest of the paper.

1) X1 = P

This case is completely solved in [2] and corresponds to the integer points whose
x-coordinates are 4k and 64k5 − 48k3 + 8k.

2) X1 ∈ {B, C, P + B, P + C, R, R + A,R + P, R + P + A}
In these cases, exactly two of the numbers from the set {α, β, γ} are negative, so
the system has no solutions.

3) X1 = O

This induces the system

(k − 1)x + 1 = k(k + 1)(4k2 − 1)¤, (k + 1)x + 1 = k(k − 1)(4k2 − 1)¤,

(16k3 − 4k)x + 1 = (k − 1)(k + 1)¤.

Let X ′ be the square-free part of X. We will use this notation in the rest of the
paper. We note that gcd((4k2−1)′, (k+1)′)= 1 or 3 and gcd((4k2−1)′, (k−1)′)= 1
or 3 (obviously (k−1)′ and (k+1)′ can not be both divisible by 3). If 3|(k+1)′ or
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3|(k− 1)′, this implies that in the last equation the right side is divisible by 3 an
odd number of times, while the left side is congruent to 1 modulo 3. We conclude
that gcd((4k2 − 1)′, (k + 1)′) = gcd((4k2 − 1)′, (k − 1)′) = 1. By subtracting the
first equation from the second we see that (4k2 − 1)′ > 1 divides x, which makes
the first equation impossible since (4k2 − 1)′ divides the right side, but not the
left.

4) X1 = R + B

This induces the system

(k − 1)x + 1 = 2k(4k − 1)¤, (k + 1)x + 1 = 2k(4k2 − k − 1)(k − 1)¤,

(16k3 − 4k)x + 1 = (k − 1)(4k − 1)(4k2 − k − 1)¤.

If k is even, then (k − 1)(4k − 1)(4k2 − k − 1) ≡ 3 (mod 4), while the left side in
the third equation is congruent to 1 modulo 4, which is a contradiction.

If k is odd, then 2k(4k− 1) ≡ 2 (mod 4), which implies 2k(4k− 1)¤ is even,
while the left side of the first equation is odd, a contradiction.

5) X1 = R + C

This induces the system

(k − 1)x + 1 = 2k(k + 1)(4k2 + k − 1)¤, (k + 1)x + 1 = 2k(4k + 1)¤,

(16k3 − 4k)x + 1 = (k + 1)(1 + 4k)(−1 + k + 4k2)¤.

If k is even, then (k + 1)(1 + 4k)(−1 + k + 4k2) ≡ 3 (mod 4), while the left side
in the third equation is congruent to 1 modulo 4, which is a contradiction.

If k is odd, the left side of the second equation is odd, while 2k(4k + 1) ≡ 2
(mod 4), which implies the right side is even, a contradiction.

6) X1 = A

This induces the system

(k − 1)x + 1 = k(−1 + 4k2)(−1 + 4k)(−1 + k + 4k2)¤,

(k + 1)x + 1 = k(−1 + 4k2)(1 + 4k)(−1− k + 4k2)¤,

(16k3 − 4k)x + 1 = (−1 + 4k)(1 + 4k)(−1− k + 4k2)(−1 + k + 4k2)¤.

If k is even, then (−1 + 4k)(1 + 4k)(−1 − k + 4k2)(−1 + k + 4k2) ≡ 3 (mod 4),
while the left side in the third equation is congruent to 1 modulo 4, which is a
contradiction.

If k ≡ 1 (mod 4), as in the above cases, we conclude that the right side of
the second equation is even, while the left is odd.
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If k ≡ 3 (mod 4), as in the above cases, we conclude that the right side of
the first equation is even, while the left is odd.

7) X1 = R + P + B

This induces the system

(k − 1)x + 1 = 2(−1 + 2k)(−1 + 4k)(2k + 1)(k + 1)¤,

(k + 1)x + 1 = 2(1 + 2k)(−1− k + 4k2)(2k − 1)¤,

(16k3 − 4k)x + 1 = (k + 1)(−1− k + 4k2)(4k − 1)¤.

We note that gcd(((−1 + 4k)(k + 1))′, 4k2 − 1) = 1 or 3. If the result is 3, this
gives a contradiction with the last equation, since the right side is divisible by 3
while the left is congruent to 1 modulo 3.

By subtracting the first equation from the second we obtain that (2k + 1)′

and (2k − 1)′ divide x. If (2k + 1)′ > 1 or (2k − 1)′ > 1 the first equation is
impossible. So 2k + 1 = ¤ and 2k − 1 = ¤, which is impossible.

8) X1 = R + P + C

This induces the system

(k − 1)x + 1 = 2(−1 + 2k)(1 + 2k)(−1 + k + 4k2)¤,

(k + 1)x + 1 = 2(1 + 2k)(1 + 4k)(2k − 1)(k − 1)¤,

(16k3 − 4k)x + 1 = (−1 + k)(4k + 1)(4k2 + k − 1)¤.

Again, by subtracting the first equation from the second we obtain that (2k + 1)′

and (2k − 1)′ divide x. This implies that 2k + 1 and 2k − 1 are both squares,
which is impossible.

9) X1 = P + A

This induces the system

(k − 1)x + 1 = (1 + k)(4k − 1)(4k2 + k − 1)¤,

(k + 1)x + 1 = (−1 + k)(4k + 1)(4k2 − k − 1)¤,

(16k3 − 4k)x + 1 = (−1 + k2)(−1 + k + 4k2)(4k2 − k − 1)(4k + 1)(4k − 1)¤.

First suppose gcd(((1+k)(4k−1)(4k2 + k − 1))′,((−1+k)(4k+1)(4k2−k−1))′)=1.
This implies, by subtracting the second equation from the third, that
((−1 + k)(4k + 1)(4k2 − k − 1))′|(4k + 1)(4k2 − k − 1)x. Since (k − 1)′|x would
lead to a contradiction, we conclude (k − 1)′|(4k + 1)(4k2 − k − 1). But from
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(4k + 1)(4k2 − k− 1) = (11 + 16k + 16k2)(k− 1) + 10, it follows that (k− 1)′|10,
i.e. (k − 1)′ = 1, 2, 5 or 10. In the same way as above we obtain (k + 1)′ = 1, 2, 5
or 10.

Examining the possibilities (modulo 5 and eliminating the trivial ones), we
see that the only possible ones are that either (k − 1)′ = 2 or (k + 1)′ = 2. We
conclude that k is odd. We can write k as k = 2t− 1 or k = 2t + 1, where t is an
odd integer.

Suppose k = 2t + 1. The right side of the second equation is then equal to
2t(8t+5)(4(2t+1)2−2(t+1))¤. This expression is divisible by 2 an odd number
of times, giving a contradiction because the left side is odd, unless ord2(t+1) = 1.
Suppose ord2(t + 1) = 1. But now the right side of the first equation is divisible
by 2 an odd number of times, while the left is odd, which is a contradiction.

Assume k = 2t − 1. The right side of the first equation is then equal to
2t(8t− 5)(4(2t− 1)2 + 2(t− 1))¤. In the same way as above, we will arrive at a
contradiction.

Suppose gcd(((1+k)(4k−1)(4k2+k−1))′, ((−1+k)(4k+1)(4k2−k−1))′) =
d7 > 1. This implies that d7|(k−1)x+1 and d7|(k+1)x+1, which implies d7|2x.
Since d7|x would lead to a contradiction, we conclude d7 = 2, meaning that the
right sides of the first and second equation will be divisible by 2 a odd number of
times. On the other hand, d7 = 2 implies that k has to be odd, making the left
sides of the fist two equations odd, giving a contradiction.

Case 2 ≤ k ≤ 10000
We now prove that the mentioned integer points are the only ones without any
conditions on the rank, for 2 ≤ k ≤ 10000 with one possible exceptional case.
Assume (x, y) is an integer point on the elliptic curve Ek. This implies

(k − 1)x + 1 = µ2µ3x
2
1, (k + 1)x + 1 = µ1µ3x

2
2,

(16k3 − 4k)x + 1 = µ1µ2x
2
3,

where µ1|16k3 − 5k − 1, µ2|16k3 − 5k + 1, µ3|2. By eliminating x we obtain

d1x
2
1 − d2x

2
2 = j1, d3x

2
1 − d2x

2
3 = j2, d1x

2
3 − d3x

2
2 = j3, (4)

where d1 = (k + 1)µ2, µ2 is a square-free factor of 16k3 − 5k + 1, d2 = (k− 1)µ1,
µ1 is a square-free factor of 16k3 − 5k− 1, (d3, j1, j2) =

(
16k3 − 4k, 2, 16k3−5k+1

µ2

)

or
(
32k3 − 8k, 1, 16k3−5k+1

µ2

)
and j3 = j1d3−j2d1

d2
if d2 divides j1d3 − j2d1. If

j1d3− j2d1 is not divisible by d2, we can eliminate the case. Now we test whether
the system has a solution modulo various primes. If the system passes all these
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local tests, we test whether each equation independently has a global solution,
i.e. test whether a Pellian equation is solvable. Since the coefficients (and with
them the fundamental solutions) in these equations become large, we can not use
standard methods (using continued fractions) to check this. By using compact
representations of quadratic integers, we are able to store the large fundamental
solutions of the Pell equation. Compact representations were used for solving
systems of Pellian equations for the first time in [15]. These methods and all the
tests for determining the local solvability are explained in detail in [20].

We obtain that for 2 ≤ k ≤ 10000 the above system is insoluble except for
the case

k = 6300, d1 = 591594589, d2 = 13556071355339,

d3 = 1000187993700, j1 = 2, j2 = 42611509, j3 = −1859.

This case passed all the congruence tests, every equation individually has a so-
lution, but the coefficients are too large to try to get a solution by continued
fractions and the regulators of the induced quadratic fields are too large to give
any usable bound on the solution. Also, as the right side is not 1 in all three
equations it is possible that the equations have more than one class of solutions,
which further complicates matters. ¤

Let us also mention that for the cases k = 3072, 3294, 3428, 4176 and 9552,
there exist systems that pass all congruence tests, but one of the equations is
globally insoluble.

One example of this is the case

k = 9552, d1 = 133211801105681857, d2 = 9551, d3 = 6972249617760,

j1 = 1, j2 = 1, j3 = −13946689232129.

We examine the equation d′3x
2 − d2y

2 = 1, where d′3 = 435765601110 is the
squarefree part of d3, and compute a compact representation of the fundamental
solution x1 + y1

√
d′3d2 of the Pell equation x2 − d2d

′
3y

2 = 1. Applying the
algorithm from [20] we obtain that x1 ≡ 40771521982 (mod 2d′3), and by [14],
Criterion 1, this implies that d′3x

2 − d2y
2 = 1 has no solutions.

Rank distribution. We used the mwrank ([4]) program to compute the
rank and in most cases this was sufficient to find the rank exactly and uncondi-
tionally. In the cases where the rank was not computed exactly, the ellrootno()

function from PARI/GP ([1]) was also used to determine whether the rank is even
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or odd. ellrootno() gives a correct output if the Parity conjecture holds (a con-
sequence of the Birch–Swinnerton–Dyer conjecture). Also, the Mestre() function
from APECS ([3]) was used to (conditionally) find the upper bound on the rank.

We obtained the following results:

rank k

2 2,3,6,9,13,15,17∗,20∗,25,26,27∗,28,34,36,42,52,57,59,60,61,62,
63,71,75,79,85,89,97,98

3 4,5,7,10,12,18,19,21,23,24,31,32,35,37,38,39,42,43,45,46,47,49,50,54,
56,58,67,68∗,69,70,73,74,76,77,78,83,86,87,92,93,94,95,99,100,101

4 8,11,14,16,23,29,30,41,44∗,51,55,65,81,82,90,91,96∗

5 33,48,53,72
2 or 4∗ 40,64,66,80,88
3 or 5∗ 84

*assuming the Parity conjecture.
It is most likely that the cases where the rank is possibly either 2 or 4 have

rank 2 and where the rank is possibly either 3 or 5 have rank 3.
So for the first 100 cases we get (assuming B-S-D) 29–34 curves with rank 2

(the result is most likely 34), 44–45 curves with rank 3 (most likely 45), 17–22
curves of rank 4 (most likely 17) and 4–5 curves of rank 5 (most likely 4).

It is a natural question how often rank(Ek(Q)) = 2. Although we were unable
to prove this, we expect rank(Ek(Q(k))) = 2 and the results for 2 ≤ k ≤ 101 also
suggest this. If this is true, the Katz–Sarnak conjecture (see [22]) would imply
that 50% of the curves have rank 2. Our results on the rank distribution are
closer to the experimental results obtained by Fermigier ([10]), where 32% of
the curves satisfied rank(Ek(Q)) = rank(E(Q(k))).

If k is allowed to be a rational number, then there exists an elliptic curve
from this family with rank 9 (see [8]).

3. The family generated by c3

We examine the elliptic curve

Ek : y2 = ((k − 1)x + 1)((k + 1)x + 1)((64k5 − 48k3 + 8k)x + 1). (5)

We use the variable change

y 7→ y

(k − 1)(k + 1)(64k5 − 48k3 + 8k)
, x 7→ x

(k − 1)(k + 1)(64k5 − 48k3 + 8k)
,
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and obtain the curve

E′
k : y2 = (x + k2 − 1)(x + (k − 1)(64k5 − 48k3 + 8k))

× (x + (k + 1)(64k5 − 48k3 + 8k)). (6)

We have three obvious points

A = (1− k2, 0), B = (−(k − 1)(64k5 − 48k3 + 8k), 0),

C = (−(k + 1)(64k5 − 48k3 + 8k), 0)

of order two. We will prove these are the only points of finite order.

Lemma 7. Ek(Q)tors ' Z2 ⊕ Z2 or Z2 ⊕ Z6.

Proof. As {k − 1, k + 1, 64k5 − 48k3 + 8k} is a Diophantine triple, by ([7],
Theorem 2) there are no points of order 4. ¤

We define
P = (0, (k2 − 1)(64k5 − 48k3 + 8k)),

R = (16(k2− 4k4 + 4k6), 8k(−1 + 2k2)(1− 3k− 4k2 + 8k3)(−1− 3k + 4k2 + 8k3))

Lemma 8. P, P + A,P + B,P + C /∈ 2E′
k(Q).

Proof. x(P ) + k2 − 1 = k2 − 1 obviously can not be a square. (64k5 −
48k3 + 7k − 1)2 < x(P + A) + k2 − 1 < (64k5 − 48k3 + 7k)2, so this can not be a
square. x(P + B) + k2 − 1 < 0 and x(P + C) + k2 − 1 < 0, so these can not be
squares. ¤

Lemma 9. R,R + A,R + B,R + C /∈ 2E′
k(Q).

Proof. (8k3−6k−1)2 < x(R+A)+k2−1 < (8k3−6k)2 and (8k3−4k−1)2 <

x(R) + k2 − 1 < (8k3 − 4k)2, so can not be squares. x(R + B) + k2 − 1 < 0 and
x(R + C) + k2 − 1 < 0, so these can not be squares. ¤

Lemma 10. R + P,R + P + A, R + P + B, R + P + C /∈ 2E′
k(Q).

Proof.
( (8k4−8k2+1)

k

)2
< x(R+P )+k2−1 <

( (8k4−8k2+2)
k

)2, so this can not
be a square. (8k3−2k−1)2 < x(R+P+A)+k2−1 = k2−32k4+64k6 < (8k3−2k)2.
x(R + P + B) + k2 − 1 < 0 and x(R + P + C) + k2 − 1 < 0 so x(R + P + A),
x(R + P + B) and x(R + P + C) can not be squares. ¤

Proposition 11. The rank of E′
k over Q is greater or equal to two.
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Proof. We note that if E′
k(Q)tors ' Z2 ⊕ Z6, a torsion point T satisfies

T ≡ O, A,B or C (mod 2E′
k(Q)). Having this in mind, using Lemmas 8 to 10,

one can prove this proposition along the same lines as Proposition 5. ¤

Theorem 12. If rank(Ek(Q)) = 2 or 2 ≤ k ≤ 10000, then all integer points

on Ek are given by

(x, y)∈{(0,±1), (− 4k +16k3,±(−1− 2k + 4k2)(−1+ 2k +4k2)(1−16k2+32k4),

(−8k + 112k3 − 320k5 + 256k7,

±(− 1+ 2k)(1 +2k)(− 1− 6k + 8k3)(1− 6k +8k3)(− 1+32k2− 128k4+128k6))}.
The x-coordinates of the non trivial integer points correspond to c2 and c4.

Proof. Case rank(Ek) = 2
Let δ = (k − 1)(k + 1)(64k5 − 48k3 + 8k). We follow the proof of Theorem 6. To
find integer points on E, all we have to do is find integer solutions to all systems
of the form

(k − 1)x + 1 = α¤, (k + 1)x + 1 = β¤, (64k5 − 48k3 + 8k)x + 1 = γ¤,

where for X1 = (δu, δv), α, β, γ are defined by α = (k− 1)u+1, β = (k +1)u+1,
γ = (8k − 48k3 + 64k5)u + 1 if all these are nonzero, and if one is zero then that
one is defined as the product of the other two.

So we have to check, as in Theorem 6, the cases

X1 ∈ S = {O,A, B, C, P, P + A,P + B,P + C,R, R + A, R + B, R + C,

P + R,P + R + A,P + R + B, P + R + C}.
1) X1 = P

This case is completely solved in [11] and corresponds to the integer points whose
x-coordinates are −4k + 16k3 and −8k + 112k3 − 320k5 + 256k7.

2) X1 ∈ {B, C, P + B, P + C, R + B, R + C, R + P + B, R + P + C}.
In these cases, exactly two of the numbers α, β, γ are negative, so the system
does not have a solution.

3) X1 = P + A

(k − 1)x + 1 = (−1− 4k + 8k2)(−1− 3k + 4k2 + 8k3)(1 + k)¤,

(k + 1)x + 1 = (−1 + 4k + 8k2)(1− 3k − 4k2 + 8k3)(−1 + k)¤,

(64k5 − 48k3 + 8k)x + 1 = (−1− 4k + 8k2)(−1 + 4k + 8k2)

× (1− 3k − 4k2 + 8k3)(−1− 3k + 4k2 + 8k3)(−1 + k)(1 + k)¤.
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Suppose gcd(((−1 − 4k + 8k2)(−1 − 3k + 4k2 + 8k3)(1 + k))′, ((−1 + 4k + 8k2)
(1− 3k − 4k2 + 8k3)(−1 + k))′) = d1 > 1. This implies that d1|(k − 1)x + 1 and
d1|(k +1)x+1, which implies d1|2x. Since d1|x would lead to a contradiction, we
conclude d1 = 2, meaning that the right sides of the first two equations will be
divisible by 2 a odd number of times. On the other hand, d1 = 2 implies that k

is odd. But now the left side of the first and second equation are odd, giving a
contradiction. So, d1 = 1.

By subtracting the first equation from the third we get ((−1 − 4k + 8k2)
(−1 − 3k + 4k2 + 8k3)(1 + k))′ divides (−1 − 4k + 8k2)(−1 − 3k + 4k2 + 8k3)x.
Since (k + 1)′ would lead to a contradiction, this implies (k + 1)′|(−1 − 4k +
8k2)(−1 − 3k + 4k2 + 8k3). Since (−1 − 4k + 8k2)(−1 − 3k + 4k2 + 8k3) =
(23− 16k + 16k2 − 64k3 + 64k4)(k + 1)− 22, we conclude that (k + 1)′ = 1, 2, 11
or 22.

In the same way we conclude gcd(((−1 + 4k + 8k2)(1 − 3k − 4k2 + 8k3))′,
(k−1)′) = d3 = (k−1)′. From (−1+4k +8k2)(1−3k−4k2 +8k3) = (23+16k +
16k2 + 64k3 + 64k4)(k − 1)′ + 22, we conclude (k − 1)′ = 1, 2, 11, or 22.

First suppose k is even. (k − 1)′ = (k + 1)′ = 11 is impossible modulo 11.
(k + 1)′ = (k − 1)′ = 1 is impossible since this would imply that both k + 1 and
k− 1 are squares. (k− 1)′ = 11, (k +1)′ = 1 is impossible, since this would imply
¤ ≡ 2 (mod 11). So, we conclude (k − 1)′ = 1, (k + 1)′ = 11.

Let k − 1 = x2
1, k + 1 = 11x2

2. We obtain the equation x2
1 − 11x2

2 = −2.
By [19], Theorem 108, all the solutions of this equation are x1 + x2

√
11 =

(3 +
√

11 )(10 + 3
√

11 )n, n ≥ 0. Let un + vn

√
11 = (10 + 3

√
11 )n. By [18], The-

orem 11.1, we have 3|vn. Now we have x1 + x2

√
11 = (3 +

√
11 )(un + vn

√
11 ) =

3un + 11vn +
√

11 (un + 3vn). We conclude 3|x1, which further implies k ≡ 1
(mod 9). From the first equation of the system, we get 1 ≡ 3¤ (mod 9), a con-
tradiction.

Now suppose k is odd. We note that when k is odd gcd((−1 + 4k + 8k2)
(1−3k−4k2 +8k3), (k−1)) = gcd(((−1−4k+8k2)(−1−3k+4k2 +8k3), (1+k))
is either 2 or 22. This means that either (−1 + 4k + 8k2)(1− 3k − 4k2 + 8k3) or
k−1 is divisible by 2 once. But examining the second equation, we conclude that
the other expression is divisible by 2 an odd number of times (otherwise the left
side is odd and the right is even). From this we obtain that (k − 1)′ has to be
even. In the same way we deduce that (k + 1)′ is even.

(k − 1)′ = (k + 1)′ = 2 is impossible since it would imply that 2 consecutive
squares exist. (k − 1)′ = (k + 1)′ = 22 is impossible modulo 22. (k − 1)′ = 2,
(k + 1)′ = 22 is impossible, since this would imply ¤ ≡ 10 (mod 11). We are
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left with the case (k − 1)′ = 22, (k + 1)′ = 2. This case leads to the equation
(k − 1)2 − 11(k + 1)2 = −1, which is not solvable modulo 4.

4) X1 = R

(k − 1)x + 1 = (−1− 3k + 4k2 + 8k3)(1 + k)(−1 + 2k)(1 + 2k)¤,

(k + 1)x + 1 = (1− 3k − 4k2 + 8k3)(−1 + k)(−1 + 2k)(1 + 2k)¤,

(64k5 − 48k3 + 8k)x + 1 = (1− 3k − 4k2 + 8k3)(−1− 3k + 4k2 + 8k3)

× (−1 + k)(1 + k)¤.

We first note that gcd(4k2−1,−1−3k +4k2 +8k3) = gcd(4k2−1, 1−3k−4k2 +
8k3) = 1. Next we note that gcd((4k2− 1)′, (k + 1)′) = 1 or 3 and gcd((4k2− 1)′,
(k− 1)′) = 1 or 3 (obviously (k− 1)′ and (k + 1)′ can not be both divisible by 3).
If 3|(k + 1)′ or 3|(k − 1)′, this implies that in the last equation the right side
is divisible by 3 an odd number of times, while the right side is congruent to 1
modulo 3 (since 3 does not divide 1−3k−4k2 +8k3 and 1−3k−4k2 +8k3, while
64k5−48k3 +8k is always divisible by 3). We conclude gcd((4k2−1)′, (k +1)′) =
gcd((4k2 − 1)′, (k − 1)′) = 1.

By subtracting the first equation from the second, we get (2k +1)′ divides x,
which gives a contradiction if (2k+1)′> 1. In the same way we get that (2k−1)′=1.
This implies that 2k + 1 and 2k − 1 are squares, which is impossible.

5) X1 = R + A

(k − 1)x + 1 = (−1− 4k + 8k2)(−1 + 2k)(1 + 2k)¤,

(k + 1)x + 1 = (−1 + 4k + 8k2)(−1 + 2k)(1 + 2k)¤,

(64k5 − 48k3 + 8k)x + 1 = (−1− 4k + 8k2)(−1 + 4k + 8k2)¤.

We first note that gcd((4k2−1)′, (−1−4k+8k2)′) = 1 or 3 and gcd((4k2−1)′, (−1+
4k+8k2)′) = 1 or 3 and that both (−1−4k+8k2)′ and (−1+4k+8k2)′ can not be
divisible by 3. If one of the above is 3, this implies that the right side of the last
equation is divisible by 3 an odd number of times, while the right is to 1 modulo 3.
We conclude gcd((4k2−1)′, (−1−4k+8k2)′) = gcd((4k2−1)′, (−1+4k+8k2)′) = 1.

By subtracting the first equation from the second, we get (2k +1)′ divides x,
which gives a contradiction if (2k+1)′> 1. In the same way we get that (2k−1)′=1.
This implies that 2k + 1 and 2k − 1 are both squares, which is impossible.

6) X1 = R + P

(k − 1)x + 1 = 2k(−1− 3k + 4k2 + 8k3)(−1 + 2k2)¤,

(k + 1)x + 1 = 2k(1− 3k − 4k2 + 8k3)(−1 + 2k2)¤,

(64k5 − 48k3 + 8k)x + 1 = (1− 3k − 4k2 + 8k3)(−1− 3k + 4k2 + 8k3)¤.
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If k is even, we get that the right side of the third equation is congruent to 0 or 3
modulo 4, while the left side is congruent to 1 modulo 4.

If k is odd, we note that gcd(k′, ((−1 − 3k + 4k2 + 8k3)(−1 + 2k2))′) =
gcd(k′, ((1 − 3k − 4k2 + 8k3)(−1 + 2k2))′) = 1, so we conclude that k′|x, which
is a contradiction, unless k′ = 1. We conclude that k is a square. Let k = y2. In
the same way we conclude that 2k2−1 is a square. We now have the Diophantine
equation 2y4 − 1 = z2. The only positive solutions to this equation are y = 1
and 13 (see [17]). So we have k = 1 or 169. Since our assumption is k ≥ 2, we
only consider the case k = 169 and easily see it has no solutions (the right side
of the first equation is even, while the left is odd).

7) X1 = R + P + A

(k − 1)x + 1 = 2k(1 + k)(−1 + 2k2)(−1− 4k + 8k2)¤,

(k + 1)x + 1 = 2k(−1 + 4k + 8k2)(−1 + k)(−1 + 2k2)¤,

(64k5 − 48k3 + 8k)x + 1 = (−1− 4k + 8k2)(−1 + 4k + 8k2)(−1 + k)(1 + k)¤.

By the same method as in the previous case, we get that k and 2k2 − 1 are both
squares, which leads to the equation 2y4 − 1 = z2. Again, we conclude k = 169.
We get that 3|168x + 1, which is impossible.

8) X1 = A

(k − 1)x + 1 = 2k(−1− 4k + 8k2)(−1− 3k + 4k2 + 8k3)(−1 + 2k)(1 + 2k)

× (−1 + 2k2)¤,

(k + 1)x + 1 = 2k(−1 + 4k + 8k2)(1− 3k − 4k2 + 8k3)(−1 + 2k)(1 + 2k)

× (−1 + 2k2)¤,

(64k5 − 48k3 + 8k)x + 1 = (−1− 4k + 8k2)(−1 + 4k + 8k2)

× (1− 3k − 4k2 + 8k3)(−1− 3k + 4k2 + 8k3)¤.

This case is analogous to the previous. We conclude that k = 169, implying
3|168x + 1, a contradiction.

9) X1 = O

(k − 1)x + 1 = 2k(k + 1)(−1 + 2k)(1 + 2k)(−1 + 2k2)¤,

(k + 1)x + 1 = 2k(k − 1)(−1 + 2k)(1 + 2k)(−1 + 2k2)¤,

(64k5 − 48k3 + 8k)x + 1 = (k + 1)(k − 1)¤.

This case is analogous to the previous three.

Case 2 ≤ k ≤ 10000
We will prove that the mentioned integer points are the only ones without any
conditions on the rank, for 2 ≤ k ≤ 10000. Assume (x, y) is an integer point on
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the elliptic curve Ek. This implies

(k − 1)x + 1 = µ2µ3x
2
1, (k + 1)x + 1 = µ1µ3x

2
2,

(64k5 − 48k3 + 8k)x + 1 = µ1µ2x
2
3,

where µ1|64k5 − 48k3 + 7k − 1, µ2|64k5 − 48k3 + 7k + 1, µ3|2. By eliminating x

we obtain

d1x
2
1 − d2x

2
2 = j1, d3x

2
1 − d2x

2
3 = j2, d1x

2
3 − d3x

2
2 = j3, (7)

where d1 = (k + 1)µ2, µ2 is a square-free factor of 64k5 − 48k3 + 7k + 1, d2 =
(k− 1)µ1, µ1 is a square-free factor of 64k5− 48k3 +7k− 1, (d3, j1, j2) =

(
64k5−

48k3 +8k, 2, 64k5−48k3+7k+1
µ2

)
or

(
2(64k5−48k3 +8k), 1, 64k5−48k3+7k+1

µ2

)
and j3 =

j1d3−j2d1
d2

if d2 divides j1d3 − j2d1. If j1d3 − j2d1 is not divisible by d2, we
can eliminate the case. Again, using tests described in [20] we obtain that for
2 ≤ k ≤ 10000 the above system is insoluble. All the systems were locally
unsolvable, so there was no need to test for global solutions. ¤

Rank distribution. We used the mwrank ([4]) program to compute the
rank and in most cases this was sufficient to find the rank exactly and uncondi-
tionally. In the cases where the rank was not computed exactly, the ellrootno()

function from PARI/GP ([1]) was also used to determine whether the rank is
even or odd. ellrootno() gives a correct output if the Parity conjecture holds (a
consequence of the Birch-Swinnerton-Dyer conjecture).
Also, the Mestre() function from APECS ([3]) was used to (conditionally) find
the upper bound on the rank.

rank k

2 4,6,8,9,15,25,27,46
3 2,3,5,13,14,16,19,21,28∗, 32∗, 34∗, 35, 36, 37, 39∗, 42, 43∗44, 47, 50
4 10,29,30,31,33,41,
5 7,11,12,23,38

2 or 4∗ 17,18,24,40,45,48,49
3 or 5∗ 20,22,26,51

*assuming the Parity conjecture
We were only able to efficiently compute the rank up to k ≤ 50, since for

larger k, mwrank could in most cases only compute bounds on the rank. We
obtained less curves of rank 2 for this family or curves than for the previous one,
8–15 of them (again the actual number is likely to be closer to 15). Again the
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results are closer to the experimental results of Fermigier, than to those predicted
by the Katz-Sarnak conjecture.
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