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Jordan loop rings

By BRADLEY C. DART (Newfoundland) and EDGAR G. GOODAIRE (Newfoundland)

Abstract. A commutative loop or ring is said to be Jordan if it satisfies the

identity (x2y)x = x2(yx). We show that the loop ring of a Jordan loop L is Jordan and

not associative only if the characteristic of the coefficient ring is even and call such a loop

ring Jordan (RJ, for short). While Jordan loops are in general not power associative,

RJ loops are. We give various constructions of finite RJ loops and conjecture that these

exist only when they have order divisible by four. We also conjecture that RJ loops are

precisely those commutative loops in which squares are in the left nucleus.

1. Some history

The title of this paper is inspired by another, “Alternative Loop Rings,”
which appeared in this journal over twenty-five years ago [Goo83]. This was the
first paper exhibiting a class of loop rings satisfying an “interesting” identity, other
than associativity, and the present work is of a similar nature. In the interim, the
subject of nonassociative1 loop rings (and their underlying loops) has developed
substantially. Whereas there was once reason to believe that nonassociative loop
rings satisfying nonassociative identities could not exist, it turns out that virtually
any identity of Bol–Moufang type is satisfied by some nonassociative loop ring
[DG09]. There are RA loops, whose loop rings in all characteristics satisfy the
Moufang identities (but not associativity), RA2 loops, whose loop rings have the
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same properties in characteristic 2, SRAR loops, whose loop rings satisfy the right
Bol identity and, indeed, loops whose loop rings satisfy the C or extra identities
as identified by Fenyves [Fen69]. Since loop rings cannot satisfy the identity
x2 = 0, Lie loop rings cannot exist. The remaining important nonassociative
identity is the Jordan identity – (x2y)x = x2(yx) – and, two years ago, it was
shown that nonassociative Jordan loop rings do exist [GK08]. In this paper, we
show that such rings must have even characteristic and that the underlying “RJ
loops” are necessarily power associative, and we present several constructions
which suggest that finite RJ loops might exist only with orders that are multiples
of four. We also conjecture that RJ loops might simply be commutative loops in
which squares are in the left nucleus.

2. Preliminaries

A quasigroup is a set Q together with a binary operation (a, b) 7→ a · b on Q

with the property that each of the equations a · x = b and x · a = b has a
solution for any a, b ∈ Q. Thus there is a one-to-one correspondence between
finite quasigroups of order n and Latin squares of order n. A loop is a quasigroup
with identity. The left, middle and right nuclei of a loop L are the subsets

Nλ = {a ∈ L | (ax)y = a(xy) for all x, y ∈ L} left nucleus

Nµ = {a ∈ L | (xa)y = x(ay) for all x, y ∈ L} middle nucleus

Nρ = {a ∈ L | (xy)a = x(ya) for all x, y ∈ L} right nucleus.

In general, these are different associative subloops of L, but the situation is more
restrictive when L is commutative.

Lemma 2.1. If L is a commutative loop, then Nλ = Nρ ⊆ Nµ. Thus Nλ is

a normal subloop and, if L is finite, |Nλ|
∣∣ |L|.

Proof. Let a∈Nλ and let x, y be any elements of L. Then xy · a= a ·
xy = a · yx = ay · x = x · ay = x · ya, so a ∈ Nρ. Thus Nλ ⊆ Nρ and the
other inclusion follows in a similar fashion. Furthermore, with a, x, y as above,
xa · y = ax · y = a · xy = a · yx = ay · x = x · ay, so a ∈ Nµ, giving Nλ ⊆ Nµ.

A subloop H of a loop L is normal if Hx = xH, (Hx)y = H(xy), x(yH) =
(xy)H and (xH)y = x(Hy) for all x, y ∈ L. With L commutative and H = Nλ,
these properties clearly hold. Also, since Nλ(nx) = Nλx for any n ∈ Nλ and any
x ∈ L, L has a “coset expansion modulo” Nλ [Bru58, §V.1], and this concludes
the proof. ¤
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An important idea that we use frequently throughout this paper is that if Q

is a finite Latin square of odd order with entries the elements of a set S, then each
element of S appears on the diagonal of Q precisely once (because each occurrence
of the element above the diagonal can be matched with an occurrence below the
diagonal).

Given a commutative and associative ring R and a loop L, one forms the
loop ring RL precisely as in the case that L is a group. Specifically, RL is the
free R-module with basis L and multiplication defined by extending the product
in L using the distributive laws. We say that a loop or ring is Jordan if it is
commutative and satisfies the Jordan identity, (x2y)x = x2(yx). This paper is
motivated by the existence of and a desire to investigate nonassociative Jordan
loop rings (and the loops by which they are defined).

3. Even characteristic is a must

Recall that the characteristic of a ring R is the unique nonnegative integer n,
denoted charR, that generates the ideal {k ∈ Z | kx = 0 for all x ∈ R}.

Lowell Paige (with a minor correction by Marshall Osborn) showed that in
characteristic relatively prime to 6, a commutative power associative loop ring is
necessarily a group ring [Pai55], [Osb84]. We have a result of a similar nature
about Jordan loop rings.

Theorem 3.1. Let R be a commutative associative ring with 1 and of char-

acteristic relatively prime to 2 and let L be a loop. If RL is a Jordan ring, then

L is an abelian group.

Proof. We begin by noting that in characteristic different from 2, a Jordan
ring is power associative [Sch66, §IV.1] so our assumption about characteristic
tells us immediately that RL is power associative. Were charR to be relatively
prime to 3 as well as 2, then the Paige–Osborn theorem would give the desired
result, so it remains only to show that a Jordan loop ring is associative in odd
characteristic not relatively prime to 3. Assume then that charR = 3n with n

odd.
We “linearize” the Jordan identity: specifically, we replace x by x + z in the

Jordan identity (x2y)x = x2(yx) and, after cancelling two pairs of terms that are
equal by virtue of the Jordan identity, obtain

x2y · z + 2(xz · y)x + 2(xz · y)z + z2y · x = x2 · yz + 2xz · yx + 2xz · yz + z2 · yx.
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Defining the ring associator of elements a, b, c to be (ab)c − a(bc) and denoting
this element [a, b, c], our new identity reads

[x2, y, z] + 2[xz, y, x] + 2[xz, y, z] + [z2, y, x] = 0. (3.1)

Replacing x by 2x gives 4[x2, y, z] + 8[xz, y, x] + 4[xz, y, z] + 2[z2, y, x] = 0 and
subtracting twice (3.1) gives 2[x2, y, z] + 4[xz, y, x] = 0. In odd characteristic,
we may divide by 2, so [x2, y, z] + 2[xz, y, x] = 0. Replacing x by x + w gives
2[xw, y, z] + 2[xz, y, w] + 2[wz, y, x] = 0, so

[xw, y, z] + [xz, y, w] + [wz, y, x] = 0.

Here we set z and w equal to y obtaining 2[xy, y, y] + [y2, y, x] = 0 which,
expanded, is 2(xy · y)y − 2(xy)y2 + y3x − y2(yx). Remembering that RL is
commutative, we get 2(xy · y)y + xy3 = 3(xy)y2 and then, multiplying by n,
2n(xy · y)y + nxy3 = 0 (because 3nRL = 0). Since −2na = na for any a ∈ RL,
we have nxy3 = n(xy · y)y for all x, y ∈ RL.

Again we linearize, replacing y by y + z and use 3nRL = 0 to obtain

nx(y3 + z3) = n(xy · y)y + n(xy · y)z + n(xy · z)y + n(xy · z)z

+ n(xz · y)y + n(xz · y)z + n(xz · z)y + n(xz · z)z

and, after two cancellations,

n(xy · y)z + n(xy · z)y + n(xy · z)z + n(xz · y)y + n(xz · y)z + n(xz · z)y = 0.

Here we replace y by 2y and find

4n(xy · y)z +4n(xy · z)y +2n(xy · z)z +4n(xz · y)y +2n(xz · y)z +2n(xz · z)y = 0.

Subtracting these equations gives

3n(xy · y)z + 3n(xy · z)y + n(xy · z)z + 3n(xz · y)y + n(xz · y)z + n(xz · z)y = 0,

so
n(xy · z)z + n(xz · y)z + n(xz · z)y = 0. (3.2)

Now let x, y and z be elements of L. Since the coefficients on the left are nonzero,
equation (3.2) asserts the linear dependence of three loop elements. This cannot
happen if the loop elements are distinct. In fact, the loop elements here must all
be the same because no equation of the form 2n`1 + n`2 = 0, `1, `2 ∈ L, `1 6= `2
can hold in RL. In particular, we must have (xy · z)z = (xz · y)z which, in a
loop, gives xy · z = xz · y which is z · xy = zx · y because of commutativity. This
equation holds for any x, y, z in L, so the loop is associative, as claimed. ¤

Remark 3.2. Both the Paige–Osborn result and our Theorem 3.1 are decid-
edly false without the assumption on characteristic. Indeed, there exists a com-
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mutative loop L of order 6 with x2 = 1 for all x ∈ L (so L is not associative). If
F is the field of two elements and α ∈ FL, it is easy to see that α2 = 0 or α2 = 1,
so FL is both Jordan and power associative.

4. RJ loops

By analogy with the term “RA loop,” RA for ring alternative, to describe a
loop whose loop ring is alternative, but not associative, we call a loop RJ (ring
Jordan) if it has a loop ring that is nonassociative Jordan.

The following theorem is an easy consequence of Theorem 1.1 of [GK08].

Theorem 4.1. A loop L is RJ if and only if it is Jordan, not associative

and, for any x, y, z ∈ L, either

J1: x2y · z = x2 · yz and x · yz2 = xy · z2, or

J2: x2y · z = xy · z2 and x · yz2 = x2 · yz, or

J3: x2y · z = x · yz2 and x2 · yz = xy · z2.

Remark 4.2. It is easily seen that any two of the conditions J1, J2, J3 imply
that all four elements x2y · z, x2 · yz, x · yz2, xy · z2 are the same. Thus the third
condition is satisfied too. So for any x, y, z in an RJ loop precisely one of J1, J2,
J3 hold or all three of these conditions hold.

We use the notation (a, b, c) for the associator of three elements a, b, c in a
loop. Recall that this is the unique element f satisfying ab · c = (a · bc)f so that
a, b, c associate if and only if (a, b, c) = 1.

Corollary 4.3. If L is an RJ loop and x, y, z ∈ L, then (x2, y, z) = 1 if and

only if (x, y, z2) = 1. In particular, if L has odd order, then x ∈ Nλ(L) if and

only if x2 ∈ Nλ(L).

Proof. Let x, y, z ∈ L. Then we have J1 or J2 or J3. If J1 is the case,
then (x2, y, z) = (x, y, z2) = 1. If J2 is the case and (x2, y, z) = 1, then xy · z2 =
x2y · z = x2 · yz = x · yz2; that is, (x, y, z2) = 1. Similarly (x, y, z2) = 1 gives
(x2, y, z) = 1. The argument assuming J3 is similar. The second statement follows
from the first and the fact that L2 = L when L has odd order. ¤

While Jordan rings are almost always power associative,2 in general they are
not. The table below defines products of basis elements in a 6-dimensional Jordan

2in characteristic different from 2 [Sch66, §IV.1], and in characteristic 2 for algebras over fields

containing at least four elements [Kok55]
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algebra over the field of two elements and we note that ((((a ·a)a)a)a)a = f while
a3 · a3 = c2 = 0.

a b c d e f

a b c d e f 0
b c d e f 0 0
c d e 0 0 0 0
d e f 0 0 0 0
e f 0 0 0 0 0
f 0 0 0 0 0 0

We do not know if a Jordan loop ring must be power associative (but see Sec-
tion 7). This uncertainty, together with the fact that Jordan loops are in general
not power associative (see [GK08, §2]), makes the next result both interesting and
suggestive. We recognize that the theorem would be superfluous were it known
that a Jordan loop ring is power associative.

Theorem 4.4. An RJ loop is power associative.

Proof. Let L be an RJ loop. As is customary, for any x ∈ L, we define
nonnegative powers of x inductively by x0 = 1 and, for n > 0, xn = xn−1x and
prove that L is power associative by showing that xrxs = xr+s for any r, s ≥ 0.
This is clear if r = 0, 1 or s = 0, 1 so we assume in what follows that r, s ≥ 2. We
assume initially as well that r 6= s, so r > s, without loss of generality.

Assume r+s > 3 and that xn is well defined for any n < r+s. (In particular,
xr and xs are well defined.) According to Theorem 4.1, a loop is RJ if and only
if any three elements satisfy J1 or J2 or J3. We examine these conditions as they
apply to the triple (x, xr−2, xs) and, in each case, use the induction hypothesis
liberally and tacitly.

Suppose J1 is the case. The first equation of this condition gives xrxs =
(x2xr−2)xs = x2(xr−2xs) = x2xr+s−2 = x2(xr+s−3x) = (x2xr+s−3)x (by the
Jordan identity) = xr+s−1x = xr+s.

Suppose J2 is the case. The first equation of this condition says xrxs =
xr−1x2s, and x2s is well defined because of our assumption s < r. Thus J2 gives
xrxs = xr−1x2s = (xsxr−s−1)x2s = xs(xr−s−1x2s), using the Jordan identity.
Cancelling xs, we have xr = xr−s−1x2s = xr+s−1 = xrxs−1, so xs−1 = 1 and
xs = x. Thus xrxs = xrx = xr+1, whereas xr+s = xr+s−1x = (xrxs−1)x =
xrx = xr+1 too.

If J3 is the case, the second equation of this condition says x2xr+s−2 =
xr−1x2s, so xr−1x2s = x2(xr+s−3x) = (x2xr+s−3)x = xr+s−1x. Also, xr−1x2s =
(xsxr−s−1)x2s = xs(xr−s−1x2s) = xsxr+s−1, and so xr+s−1x = xsxr+s−1. It
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follows that xs = x. Thus xrxs = xrx = xr+1, whereas xr+s = xr+s−1x =
(xr−1xs)x = xrx = xr+1 too. In every situation, J1 or J2 or J3, so we obtain the
desired result.

It remains to consider the case r = s. If r = s = 2k is even, xrxs =
x2kx2k = x2k(xkxk) = (x2kxk)xk (by the Jordan identity) = x3kxk = x4k = xr+s

by the case r 6= s already established. If r = s = 2k + 1 is odd, we exam-
ine conditions J1, J2, J3 as they apply to the triple (xk, x, x2k+1) and use ex-
tensively the fact that the result we want holds when the exponents are differ-
ent. Assuming J1, x2k+1x2k+1 = x2kx2k+2 = x2k(xk+2xk) = (x2kxk+2)xk =
x3k+2xk = x4k+2 as desired (by the r > s case already settled); thus xrxs =
xr+s. Assuming J2, the second equation says xk[x(x2k+1)2] = x2kx2k+2 =
x4k+2 = x3k+2xk. Cancelling xk, we get (x2k+1)2x = x3k+2 = x3k+1x, so
(x2k+1)2 = x3k+1 = x2k+1xk. Thus xk = x2k+1 = xkxk+1, so xk+1 = 1
and x2k+1 = xk+1xk = xk. Now xrxs = x2k+1x2k+1 = xkxk = x2k, while
xr+s = x4k+2 = x2kx2k+2 = x2k(xk+1)2 = x2k as well. Finally, assume J3 holds
for (xk, x, x2k+1). Then x2kx2k+2 = xk+1(x2k+1)2, from the second equation,
so xk+1(x2k+1)2 = x2k(xk+2xk) = (x2kxk+2)xk (Jordan identity) = x3k+2xk =
x4k+2 = xk+1x3k+1, giving (x2k+1)2 = x3k+1 = x2k+1xk and x2k+1 = xk. So
xk = xkxk+1 and xk+1 = 1, hence x4k+2 = x3k+1xk+1 = x3k+1. Using the
first equation of J3, however, we find x2k+1x2k+1 = xk[x(x2k+1)2] = xk(xx2k) =
xkx2k+1 = x3k+1 as well. This completes the proof. ¤

5. A construction: J(G, α, β) loops

We present a construction that generalizes that of [GK08, Theorem 2.1] and
allows us to exhibit various RJ loops.

Theorem 5.1. Let (G, ·) be an abelian group and u an indeterminate. Let

α, β : G × G → G be symmetric maps with the property that for each g ∈ G,

the functions αg, βg : G → G defined by αg(x) = α(g, x) and βg(x) = β(g, x) are

bijections and β1(g) = g for all g ∈ G. Let L = G∪Gu and extend the product in

G to L using the rules (gu)(hu) = α(g, h) and g(hu) = (gu)h = β(g, h)u. Then

(1) (L, ·) is a commutative loop which is Jordan if and only if

• β(g, β(g2, h)) = β(g2, β(g, h)),
• β(α(g, g)h, g) = β(α(g, g), β(g, h)) and

• α(β(α(g, g), h), g) = α(g, g)α(g, h)

for all g, h and k in G;
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(2) (L, ·) is a group if and only if, for all g, h ∈ G, β(g, h) = gh and there exists

a ∈ G such that α(g, h) = agh.

Proof. (1) The operation in L is commutative and the condition β1(g) = g

for all g implies that the identity of G is an identity for L so, to see that (L, ·)
is a loop, we have only to note that it is a quasigroup: The unique solutions to
ax = b and xa = b appear in Table 1, while Table 2 shows why the conditions
equivalent to the Jordan identity are as stated.

a x b

g g−1h h

g β−1
g (h)u hu

gu α−1
g (h)u h

gu β−1
g (h) hu

x a b

hg−1 g h

β−1
g (h)u g hu

α−1
g (g)u gu h

β−1
g (h) gu hu

Table 1. The unique solutions to ax = b and xa = b for a, b ∈
{g, h, gu, hu | g, h ∈ G}.

x y (x2y)x x2(yx)

g h g3h g3h

g hu β(g, β(g2, h))u β(g2, β(h, g))u
gu h β(α(g, g)h, g)u β(α(g, g), β(h, g))u
gu hu α(β(α(g, g), h), g) α(g, g)α(h, g)

Table 2. g and h are elements of the group G.

(2) Looking at Table 3, we see that associativity is equivalent to
• β(gh, k) = β(g, β(h, k)) = β(β(g, h), k) = β(g, hk),
• α(β(g, h), k) = gα(h, k) = α(g, β(h, k)) = α(g, h)k and
• β(α(g, h), k)) = β(g, α(h, k))

for all g, h, k ∈ G.
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x y z (xy)z x(yz)

g h k (gh)k g(hk)
g h ku β(gh, k)u β(g, β(h, k))u
g hu k β(β(g, h), k)u β(g, β(h, k))u
g hu ku α(β(g, h), k) gα(h, k)
gu h k β(β(g, h), k)u β(g, hk)u
gu h ku α(β(g, h), k) α(g, β(h, k))
gu hu k α(g, h)k α(g, β(h, k))
gu hu ku β(α(g, h), k))u β(g, α(h, k))u

Table 3. g, h and k are elements of G.

If β(g, h) = gh and α(g, h) = agh for some a ∈ G and all g, h ∈ G, then
these conditions are satisfied, so the loop L is associative and hence a group.
Conversely, assume that L is a group. Since βk is a bijection for any k ∈ G,
the condition βk(gh) = βk(β(g, h)) says β(g, h) = gh for all g, h ∈ G. Now, the
conditions for associativity become

α(gh, k) = gα(h, k) = α(g, hk) = α(g, h)k = gα(h, k)

for all g, h, k ∈ G. Setting h = 1 in the first equation gives α(g, k) = gα(1, k)
which, with k = 1 says α(g, 1) = gα(1, 1). So α(g, k) = gα(1, k) = gkα(1, 1) for
all g and k. This gives the desired result with a = α(1, 1). ¤

Notation. We use the notation J(G, α, β) to describe the loop constructed in
Theorem 5.1.

We identify two special cases.

Corollary 5.2 ([GK08]). Let (G, ·) be an abelian group and u an inde-

terminate. Let α : G × G → G be a symmetric map such that, for each

g ∈ G, the function αg : G → G defined by αg(x) = α(g, x) is a bijection.

Let L = G ∪Gu with multiplication defined by the rules (gu)(hu) = α(g, h) and

g(hu) = (gu)h = (gh)u. Then L is a commutative loop that is Jordan if and only

if α(α(g, g)h, g) = α(g, g)α(g, h) for all g, h ∈ G and a group if and only if there

exists a ∈ G such that α(g, h) = agh for all g, h ∈ G.

Proof. This is just Theorem 5.1 in the special case β(g, h) = gh for g, h∈G.
¤

The loop just described was introduced in [GK08, Theorem 2.1] and is de-
noted J(G,α). By analogy, we label J(G, β) loops described by the next corollary.
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Corollary 5.3. Let (G, ·) be an abelian group and u an indeterminate. Let

β : G × G → G be a symmetric map such that for each g ∈ G the function

βg : G → G defined by βg(x) = β(g, x) is a bijection and β1(x) = x for all

x ∈ G. Let L = G ∪ Gu with multiplication given by the rules (gu)(hu) = gh

and g(hu) = (gu)h = β(g, h)u. Then (L, ·) is a commutative loop that is Jordan

if and only if

β(g2, h) = g2h and β(g2h, g) = g2β(g, h)

for all g, h ∈ G, and a group if and only if β(g, h) = gh for all g, h ∈ G, in

particular, if G has finite odd order.

Proof. This is Theorem 5.1 in the special case α(g, h) = gh for g, h ∈ G.
The last remark follows because in a group of odd order, every element is a square,
so β(g2, h) = g2h for all g, h says β(g, h) = gh for all g, h. ¤

Now we turn our attention to the possibility that a loop J(G,α, β) is ring
Jordan.

Theorem 5.4. A loop L = J(G, α, β) is RJ if and only if it is not associative

and, for any g, h, k ∈ G, the following conditions are satisfied:

(1) β(g2h, k) = g2β(h, k)

(2) α(g2h, k) = g2α(h, k)

(3) β(β(α(g, g), h), k) = β(α(g, g), β(h, k))

(4) β(α(g, g)h, k)=β(α(g, g), β(h, k)) and β(g, hα(k, k))=β(β(g, h), α(k, k)) or

β(α(g, g)h, k)=β(g, hα(k, k)) and β(α(g, g), β(h, k))=β(β(g, h), α(k, k)) or

β(α(g, g)h, k)=β(β(g, h), α(k, k)) and β(α(g, g), β(h, k)) = β(g, hα(k, k))

(5) α(β(α(g, g), h), k)=α(g, g)α(h, k) and α(g, β(h, α(k, k)))=α(g, h)α(k, k) or

α(β(α(g, g), h), k)=α(g, β(h, α(k, k))) and α(g, g)α(h, k)=α(g, h)α(k, k) or

α(β(α(g, g), h), k)=α(g, h)α(k, k) and α(g, g)α(h, k)=α(g, β(h, α(k, k))).

Proof. We consider Theorem 4.1, along with Tables 4 and 5 and note im-
mediately that the Jordan identity is equivalent to the following nine conditions.
The first six conditions are consequences of the fact that an element of G cannot
equal an element of Gu so that, for example, the g, h, ku lines of Table 4 and
Table 5 imply that β(g2h, k) = β(g2, β(h, k)).

(1) β(g2h, k) = β(g2, β(h, k))

(2) α(β(g2, h), k) = g2α(h, k)

(3) β(g, β(h, α(k, k))) = β(β(g, h), α(k, k))

(4) β(g, hk2) = β(β(g, h), k2)
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(5) β(β(α(g, g), h), k) = β(α(g, g), β(h, k))

(6) α(g, β(h, k2)) = α(g, h)k2

(7) β(β(g2, h), k) = β(g2, β(h, k)) and β(g, β(h, k2)) = β(β(g, h), k2), or
β(β(g2, h), k) = β(g, β(h, k2)) and β(g2, β(h, k)) = β(β(g, h), k2), or
β(β(g2, h), k) = β(β(g, h), k2) and β(g2, β(h, k)) = β(g, β(h, k2)),

(8) β(α(g, g)h, k)=β(α(g, g), β(h, k)) and β(g, hα(k, k))=β(β(g, h), α(k, k)) or
β(α(g, g)h, k)=β(g, hα(k, k)) and β(α(g, g), β(h, k))=β(β(g, h), α(k, k)) or
β(α(g, g)h, k)=β(β(g, h), α(k, k)) and β(α(g, g), β(h, k))=β(g, hα(k, k)),

(9) α(β(α(g, g), h), k)=α(g, g)α(h, k) and α(g, β(h, α(k, k)))=α(g, h)α(k, k) or
α(β(α(g, g), h), k)=α(g, β(h, α(k, k))) and α(g, g)α(h, k)=α(g, h)α(k, k) or
α(β(α(g, g), h), k)=α(g, h)α(k, k) and α(g, g)α(h, k)=α(g, β(h, α(k, k))).

x y z (x2y)z x2(yz)
g h k (g2h)k g2(hk)
g h ku β(g2h, k)u β(g2, β(h, k))u
g hu k β(β(g2, h), k)u β(g2, β(h, k))u
g hu ku α(β(g2, h), k) g2α(h, k)
gu h k (α(g, g)h)k α(g, g)(hk)
gu h ku β(α(g, g)h, k)u β(α(g, g), β(h, k))u
gu hu k β(β(α(g, g), h), k)u β(α(g, g), β(h, k))u
gu hu ku α(β(α(g, g), h), k) α(g, g)α(h, k)

Table 4. g, h and k are elements of G.

x y z x(yz2) (xy)z2

g h k g(hk2) (gh)k2

g h ku g(hα(k, k)) (gh)α(k, k)
g hu k β(g, β(h, k2))u β(β(g, h), k2)u
g hu ku β(g, β(h, α(k, k)))u β(β(g, h), α(k, k))u
gu h k β(g, hk2)u β(β(g, h), k2)u
gu h ku β(g, hα(k, k))u β(β(g, h), α(k, k))u
gu hu k α(g, β(h, k2)) α(g, h)k2

gu hu ku α(g, β(h, α(k, k))) α(g, h)α(k, k)

Table 5. g, h and k are elements of G.
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Condition (1) implies β(k2h, g) = β(k2, β(h, g)) = β(β(g, h), k2) using twice
the symmetry of β. Thus condition (1) implies condition (4), and conversely.
Condition (3) implies β(k, β(h, α(g, g))) = β(β(k, h), α(g, g)) and hence
β(h, β(k, α(g, g))) = β(β(h, k), α(g, g)) which, by symmetry, is (5). Conversely
condition (5) implies condition (3), so conditions (3) and (5) are equivalent, as
are conditions (2) and (6). Thus, removing redundancies, we have conditions (1),
(2), (5), (7), (8), (9).

Setting k = 1 in (1) and remembering that β(x, 1) = x identically gives
g2h = β(g2, h), so β(g2h, k) = g2β(h, k) for all g h, k and (2) becomes α(g2h, k) =
g2α(h, k). Conversely, β(g2h, k) = g2β(h, k) and α(g2h, k) = g2α(h, k) imply
conditions (1) and (2) and the first of the three alternatives in condition (7), so
the proof is complete. ¤

Once again, we specialize α and β.

Corollary 5.5. (1) The loop L = J(G,α) is RJ if and only if it is not

associative and, for any g, h, k ∈ G, α(g2h, k) = g2α(h, k) and one of the following

must hold:

• α(α(g, g)h, k) = α(g, g)α(h, k) and α(g, hα(k, k)) = α(g, h)α(k, k), or

• α(α(g, g)h, k) = α(g, hα(k, k)) and α(g, g)α(h, k) = α(g, h)α(k, k), or

• α(α(g, g)h, k) = α(g, h)α(k, k) and α(g, g)α(h, k) = α(g, hα(k, k)).

(2) The loop L = J(G, β) is RJ if and only if it is not associative and β(g2h, k) =
g2β(h, k) for all g, h, k ∈ G, that is, if and only if J1 holds identically in L.

Proof. (1) With β(g, h) = gh, conditions (1) and (3) of Theorem 5.4 hold
identically, as does the first alternative in (4). Thus the Jordan identity holds
in RJ if and only if (2) and (5) and, with β(g, h) = gh, these are precisely the
conditions stated.

(2). With α(g, h) = gh and β(g2h, k) = g2β(h, k), conditions (2) and (3) of
Theorem 5.4 hold identically, as do the first of the alternatives in (4) and (5) (it
is these that are equivalent to J1 holding identically – see Tables 4 and 5), so only
condition (1) remains. ¤

Remark 5.6. Suppose G has odd order. Then every element of G is a square
and every element of G appears on the diagonal of the Latin square defined
by α. The condition β(g2h, k) = g2β(h, k) that appears in Theorem 5.4 becomes
β(gh, k) = gβ(h, k), so (h = 1) β(g, k) = gk for all g and k and L is in fact a
J(G,α) loop. Similarly, the condition α(g2h, k) = g2α(h, k) for all g, h, k ∈ G

that we see in Corollary 5.5 implies α(g, k) = gα(k, 1) for all g, k. With k = 1,
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this gives α(g, 1) = gα(1, 1) for all g, so α(g, k) = gα(k, 1) = gkα(1, 1). Part (2)
of Theorem 5.1 now tells us that our loop is a group. All this shows that our
J(G,α, β) construction has a chance to produce an RJ loop only when |G| is even.
This is of interest because it is an open question whether or not there exist RJ
loops of order 2k, k odd, other than those of exponent 2, and we do not know if
our J(G,α, β) construction will produce a (nonassociative) Jordan loop when |G|
is odd.

The only known RJ loops are RJ because they satisfy condition J1 identically.
It is unknown whether or not J1 is necessary for RJ, though this is true for loops
of the form J(G, β), by Corollary 5.5, but perhaps not for J(G, α) loops, as our
next result suggests.

Corollary 5.7. Condition J1 holds identically for a J(G,α) loop if and only

if α(g2h, k) = g2α(h, k) and α(α(g, g)h, k) = α(g, g)α(h, k) for all g, h, k ∈ G.

Proof. Condition J1 holds identically if and only if the last two columns of
Table 4 are equal and the last two columns of Table 5 are equal for all x, y, z ∈ G.
With β(g, h) = gh identically, this occurs if and only if the two conditions on α

given in the statement hold for all g, h, k ∈ G. ¤

6. Examples of RJ loops

We use the results of Section 5 to exhibit a number of RJ loops that are not
of exponent 2.

Theorem 6.1. Let n be even and let m ∈ {0, 1, 2, . . . , n − 1}, m 6= n/2.

Define f : Zn × Zn → Zn by

f(i, j) =

{
i + j (mod n) i or j even

i + j − 2m (mod n) i, j both odd

With α = β = f , the loops J(Zn, α), J(Zn, β) and J(Zn, α, β) are RJ.

Proof. By Corollary 5.5, to ensure that L = J(G,α) is RJ, it is sufficient
that α(g2h, k) = g2α(h, k) and α(α(g, g)h, k) = α(g, g)α(h, k) for all g, h, k.
For G = Zn and α = f , these equations become f(2i + j, k) = 2i + f(j, k) and
f(f(i, i) + j, k) = f(i, i) + f(j, k) for all i, j, k ∈ Zn. That J(Zn, α) is RJ now
follows directly from Table 6.
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i j k f(2i + j, k) 2i + f(j, k) f(f(i, i) + j, k) f(i, i) + f(j, k)
even even even 2i + j + k 2i + j + k 2i + j + k 2i + j + k
even even odd 2i + j + k 2i + j + k 2i + j + k 2i + j + k
even odd even 2i + j + k 2i + j + k 2i + j + k 2i + j + k
even odd odd 2i + j + k − 2m 2i + j + k − 2m 2i + j + k − 2m 2i + j + k − 2m
odd even even 2i + j + k 2i + j + k 2i + j + k − 2m 2i + j + k − 2m
odd even odd 2i + j + k 2i + j + k 2i + j + k − 2m 2i + j + k − 2m
odd odd even 2i + j + k 2i + j + k 2i + j + k − 2m 2i + j + k − 2m
odd odd odd 2i + j + k − 2m 2i + j + k − 2m 2i + j + k − 4m 2i + j + k − 4m

Table 6. All entries are modulo n

With reference again to Corollary 5.5, we see that L = J(G, β) is RJ with
G = Zn and β = f if and only if f(2i + j, k) = 2i + f(j, k) for all i, j, k, a
condition already verified.

Finally, with respect to J(Zn, α, β), we show that α = β = f satisfies condi-
tions (1) to (3) of Theorem 5.4 and the first of the alternatives in conditions (4)
and (5). Each of the latter is a statement of the form “A and B” and, in each
case, A holds for all g, h, k if and only if B holds for all g, h, k. Also, with α = β,
conditions (1) and (2) are the same. In the present context, then, it is sufficient
to verify that

f(f(f(i, i), j), k) = f(f(i, i), f(j, k)) = f(f(i, i) + j, k) = f(i, i) + f(j, k)

for all i, j, k ∈ Zn. When i and either j or k are even, the four indicated elements
of G are equal because components are simply added together. Inspection of
Table 7 shows that they are equal also in the remaining cases. ¤

i j k f(f(f(i, i), j), k) f(f(i, i), f(j, k)) f(f(i, i) + j, k) f(i, i) + f(j, k)
even odd odd 2i + j + k − 2m 2i + j + k − 2m 2i + j + k − 2m 2i + j + k − 2m
odd even even 2i + j + k − 2m 2i + j + k − 2m 2i + j + k − 2m 2i + j + k − 2m
odd even odd 2i + j + k − 2m 2i + j + k − 2m 2i + j + k − 2m 2i + j + k − 2m
odd odd even 2i + j + k − 2m 2i + j + k − 2m 2i + j + k − 2m 2i + j + k − 2m
odd odd odd 2i + j + k − 4m 2i + j + k − 4m 2i + j + k − 4m 2i + j + k − 4m

Table 7. All entries are modulo n

We illustrate Theorem 6.1 in Tables 8, 9 and 10 with G = Z8 the group of
integers mod 8 and α and β modifications of the table for G in locations (i, j)
when i and j are both odd as described in Theorem 6.1 with m = 1.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 8

2 3 4 5 6 7 0 1 10 11 12 13 14 15 8 9

3 4 5 6 7 0 1 2 11 12 13 14 15 8 9 10

4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 6 7 0 1 2 3 4 13 14 15 8 9 10 11 12

6 7 0 1 2 3 4 5 14 15 8 9 10 11 12 13

7 0 1 2 3 4 5 6 15 8 9 10 11 12 13 14

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 10 11 12 13 14 15 8 1 0 3 2 5 4 7 6

10 11 12 13 14 15 8 9 2 3 4 5 6 7 0 1

11 12 13 14 15 8 9 10 3 2 5 4 7 6 1 0

12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 14 15 8 9 10 11 12 5 4 7 6 1 0 3 2

14 15 8 9 10 11 12 13 6 7 0 1 2 3 4 5

15 8 9 10 11 12 13 14 7 6 1 0 3 2 5 4

Table 8. An RJ loop J(Z8, α) with α(i, j) = i + j (mod 8) unless i, j

are both odd, in which case α(i, j) = i + j − 2 (mod 8).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 0 9 8 11 10 13 12 15 14

2 3 4 5 6 7 0 1 10 11 12 13 14 15 8 9

3 4 5 6 7 0 1 2 11 10 13 12 15 14 9 8

4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 6 7 0 1 2 3 4 13 12 15 14 9 8 11 10

6 7 0 1 2 3 4 5 14 15 8 9 10 11 12 13

7 0 1 2 3 4 5 6 15 14 9 8 11 10 13 12

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 8 11 10 13 12 15 14 1 2 3 4 5 6 7 0

10 11 12 13 14 15 8 9 2 3 4 5 6 7 0 1

11 10 13 12 15 14 9 8 3 4 5 6 7 0 1 2

12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 12 15 14 9 8 11 10 5 6 7 0 1 2 3 4

14 15 8 9 10 11 12 13 6 7 0 1 2 3 4 5

15 14 9 8 11 10 13 12 7 0 1 2 3 4 5 6

Table 9. An RJ loop J(Z8, β) with β(i, j) = i + j (mod 8) unless i, j

are both odd, in which case β(i, j) = i + j − 2 (mod 8).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 0 9 8 11 10 13 12 15 14

2 3 4 5 6 7 0 1 10 11 12 13 14 15 8 9

3 4 5 6 7 0 1 2 11 10 13 12 15 14 9 8

4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 6 7 0 1 2 3 4 13 12 15 14 9 8 11 10

6 7 0 1 2 3 4 5 14 15 8 9 10 11 12 13

7 0 1 2 3 4 5 6 15 14 9 8 11 10 13 12

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 11 12 13 14 15 8 9 2 3 4 5 6 7 0 1

11 10 13 12 15 14 9 8 3 2 5 4 7 6 1 0

12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 15 8 9 10 11 12 13 6 7 0 1 2 3 4 5

15 14 9 8 11 10 13 12 7 6 1 0 3 2 5 4

Table 10. An RJ loop J(Z8, α, β) with α = β(i, j) = i + j (mod 8)

unless i, j are both odd, in which case α = β(i, j) = i+ j−2 (mod 8).

7. Concluding remarks

As mentioned, we do not know if conditions J2 and J3 are redundant; that
is, we do not know if a loop is RJ if and only if condition J1 holds identically.
Note that J1 simply says that squares are in the left and right nuclei of L (these
nuclei are the same in any commutative loop).

In what follows, suppose that L is an RJ loop and that an RJ loop satisfies
J1 identically. We find answers to several questions that intrigue us.

(1) A Jordan loop algebra FL over any field F is power associative.
This follows from the theorem of Kokoris stated in a footnote within Sec-
tion 4 when |F | > 2 and also when F is the field of 2 elements because in
characteristic 2, squares of elements of L being nuclear implies the same for
squares of elements in FL and this easily gives power associativity of FL.

(2) If L has odd order, then L is a group.
This follows directly from Corollary 4.3.

(3) If L has finite order, then |a| ∣∣ |L| for any a ∈ L.
To understand this, we use the fact a2 ∈ Nλ which is a group of order a
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divisor of |L| – see Lemma 2.1. Now a2|Nλ| = 1. Also L/Nλ is an RJ loop. If
it has odd order, it is a group, and of exponent 2, a contradiction. So |L/Nλ|
is even so 2|Nλ|

∣∣ |L|, so |a|
∣∣ |L|.
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