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A note on extension theory and direct limits

By SIBE MARDEŠIĆ (Zagreb) and LEONARD R. RUBIN (Norman)

Abstract. The direct limit of a direct sequence consisting of normal spaces and

closed inclusion mappings is a normal space. This result does not generalize to di-

rect systems because there exist direct systems of compact Hausdorff spaces and closed

inclusion mappings whose limit spaces fail to be normal. Introducing additional as-

sumptions, K. Morita obtained normality of the limit space also for systems of normal

spaces. Replacing normality of the spaces in the system by the property that a given

K (in particular, a CW-complex K) is an absolute extensor for these spaces, the ana-

logue of Morita’s theorem remains valid, i.e., K is an absolute extensor for the limit

space. This holds even under a weaker version of Morita’s additional assumptions. In

the case of direct sequences, these weaker conditions are always satisfied and therefore,

the improved Morita theorem implies the result for direct sequences of normal spaces.

1. Introduction

Extension theory (see [2] or [8]) is based on the following idea. Let K be a
CW-complex and X a space. Then we write XτK (or K ∈ AE(X)) if K is an
absolute extensor for X, i.e., for each closed subset A of X and map f : A → K,
there exists a map F : X → K that extends f . Note that XτK makes sense for
an arbitrary space K. It is this expanded notion that we use below.

In case K = [0, 1] (or K = R), by Tietze’s theorem, XτK is equivalent to
the statement that X is a normal space. In case K = Sn, for normal spaces X,
XτK is equivalent to the statement that the covering dimension dimX ≤ n [5],
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Theorem 3.2.10. In case K is an Eilenberg–MacLane complex K(G, n) for an
Abelian group G and X is paracompact, then XτK is equivalent to the statement
that the cohomological dimension dimG X ≤ n [4], [7], [14], [9]. By definition, the
extension dimension extdim X ≤ K, provided XτK (see [1] and [2]).

It is known (see e.g., the proof of Proposition A.5.1. (iv) in [6]) that the
direct limit of a direct sequence consisting of normal spaces and closed inclusion
mappings is a normal space (see Proposition 1). It is natural to ask whether
this result generalizes from direct sequences to direct systems. We show that the
answer is negative because there exist direct systems of compact Hausdorff spaces
and closed inclusion mappings whose limit spaces fail to be normal (Theorem 1).

In [12] K. Morita considered direct systems X = (Xa, ψb
a, A) of normal

spaces and closed inclusion mappings, satisfying some additional conditions con-
cerning the unions

⋃
d∈D Xd ⊆ X, for subsets D ⊆ A. He proved that for such

systems the limit space X is a normal space (see Proposition 3). In Theorem 3
we prove the analogue of Morita’s theorem for systems consisting of spaces, for
which K is an absolute extensor and of closed inclusions. Moreover, we im-
pose Morita’s additional conditions only on subsets D ⊆ A, whose cardinality
card(D) < card(A). In the case of sequences, i.e., when A = N, D is finite and
the additional conditions are automatically satisfied. Therefore, Theorem 3 yields
Proposition 1 as a special case. Theorem 4 is a slight improvement of Theorem 3
in which closed inclusions are replaced by closed embeddings.

2. Direct limits of normal spaces

By a direct system X = (Xa, ψb
a, A) is meant a system of spaces Xa, indexed

by a directed index set (A,¹), and mappings ψb
a : Xa → Xb, for a ¹ b, such

that ψa
a = id and ψc

bψ
b
a = ψc

a, for a ¹ b ¹ c. With X is associated its direct
limit X. It is the quotient space X = X̃/ ∼, where X̃ is the coproduct (direct
sum) X̃ =

⊔
a∈A Xa and ∼ is the equivalence relation, where x ∈ Xa and y ∈ Xb

are considered ∼-equivalent provided there exists an element c ∈ A, a, b ¹ c,
such that ψc

a(x) = ψc
b(y). If ψ : X̃ → X is the corresponding quotient mapping,

then there are canonical mappings ψa : Xa → X, a ∈ A, defined by putting
ψa = ψ | Xa. It is readily seen that ψbψ

b
a = ψa for a ¹ b, X =

⋃
a∈A ψa(Xa) and

a subset H of X is closed (open) in X if and only if (ψa)−1(H) ∩ Xa is closed
(open) in Xa for every a ∈ A. For more details see e.g., Appendix II of [3].

Direct systems whose connecting mappings ψb
a : Xa ↪→ Xb are inclusion

mappings are special. In this case x, y ∈ X̃ and x ∼ y imply x = y, because



A note on extension theory and direct limits 439

for x ∈ Xa and y ∈ Xb, there is a c º a, b such that x = ψc
a(x) = ψc

b(y) = y.
Consequently, X =

⋃
a∈A Xa and the canonical mappings ψa : Xa → X are

inclusion mappings. Moreover, a subset H of X is closed (open) in X if and only
H ∩Xa is closed (open) in Xa, for every a ∈ A.

Direct sequences are direct systems where the indexing set A = N. The usual
notation is X = (Xn, ψn+1

n ) because the connecting mappings ψm
n , where n < m,

are the compositions ψm
m−1 ◦ . . . ◦ ψn+1

n .

Proposition 1. If X = (Xn, ψn+1
n ) is a direct sequence of normal spaces

Xn, each Xn is a closed subset of Xn+1 and ψn+1
n : Xn → Xn+1 is the inclusion

mapping, then the direct limit X = dir lim X is also a normal space and each Xn

is closed in X.

Proposition 1 is obtained from Proposition 2 by putting K = I.

Proposition 2. Let X = (Xn, ψn+1
n ) be a direct sequence of spaces Xn

such that each Xn is a closed subset of Xn+1 and ψn+1
n : Xn → Xn+1 is the

inclusion mapping. If K is a space and XnτK for all n ∈ N, then the direct limit

X = dir lim X has the property that XτK and each Xn is closed in X.

By Remark 1 below, Proposition 2 follows from Theorem 3.

Theorem 1. There exists a direct system of compact Hausdorff spaces

(hence normal spaces) and inclusion mappings such that the limit space X is

not normal.

Indeed, with every topological space X one can associate the direct system C

which consists of all compact subspaces Cλ ⊆ X, λ ∈ Λ, and the connecting
mappings Cλ → Cλ′ , λ ¹ λ′, are inclusions. We refer to C as to the inclusion
system of compact subspaces of X. If X is Hausdorff, then each Cλ is closed in X.

Lemma 1. Every Hausdorff locally compact space X is the direct limit of

its inclusion system of compact subspaces C.

Proof. Every Hausdorff locally compact space is a compactly generated
space (see the definition of a k-space in 3.1.17 of [5]). To conclude that X =
dir lim C, one needs to verify that, whenever a subset B ⊆ X intersects every
compact subset Cλ of X in a closed subset of Cλ, then B is closed in X. For this
fact see Theorem 3.3.18 of [5]. ¤

Theorem 2. If X is a Hausdorff locally compact space which fails to be

normal, then its inclusion system of compact subspaces C is a direct system of

normal spaces and closed inclusion mappings such that X = dir lim C is not

normal.
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Proof of Theorem 1. It suffices to notice that there exist Hausdorff lo-
cally compact spaces, which are not normal. Such a space is the Tychonoff plank,
i.e., the space X = [0, ω1]× [0, ω] \ {(ω1, ω)}. One may find a proof that X is not
normal in 3.12.19.(a) of [5] or [15], p. 106.

3. General direct limit theorem

In view of Theorem 1, it is natural to ask for additional conditions under
which the direct limit X of a direct system of normal spaces and closed inclusion
mappings X is a normal space. Such conditions were given by K. Morita, who
proved the following theorem (see Theorem 2 of [12]).

Proposition 3 (K. Morita). Let X be a space and let F be a closed covering

of X such that the topology of X is the weak topology induced by the collection

F , i.e., U ⊆ X is open (closed) in X if and only if U ∩ F is open (closed) in F

for every space F ∈ F . If each F ∈ F is a normal space, then so is X, provided

the following additional conditions are fulfilled.

(i) For every subcollection G of F , ∪ G is a closed subset of X.

(ii) For every subcollection G of F , the relative topology of ∪ G is the weak

topology induced by G.

Since the union of two closed normal subspaces is a normal space, there is
no loss of generality in assuming that F is closed with respect to finite unions. In
that case F , ordered by the inclusion ⊆, becomes a directed set and one obtains
a direct system X = (F, ψF ′

F ,F), where ψF ′
F are inclusions F ↪→ F ′, for F ⊆ F ′.

Its direct limit is the space X.

The analogue of Proposition 3, where normality is replaced by paracompact-
ness, was proved by E. Michael in [11], Theorem 8.2 and by K. Morita in [13],
Theorem 1. It is useful in cohomological dimension theory.

Proposition 4 (E. Michael). Let X be a space and let F be a closed covering

of X such that the topology of X is the weak topology induced by the collection F .

If each F ∈ F is a paracompact space, then so is X, provided conditions (i) and

(ii) from Proposition 3 are fulfilled.

We now state an improved version of Morita’s theorem.

Theorem 3. Let K be a space and let X be the direct limit of a direct

system of spaces X = (Xa, ψb
a, A), where the index set (A,¹) is directed, each
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Xa, a ∈ A, is a subset of X satisfying the condition XaτK and the connecting

mappings ψb
a : Xa → Xb, a ¹ b, are inclusions. Moreover, for every subset D ⊆ A

of cardinality card(D) < card(A), let the following conditions hold.

(i) XD =
⋃

d∈D Xd is a closed subset of X,

(ii) the topology of XD, inherited from X, coincides with the weak topology

induced by the family of sets {Xd | d ∈ D}.
Then XτK.

Proof. If A is finite, it has an element d such that a ¹ d, for every a ∈ A.
Therefore, X = Xd has the desired property that XτK. Now assume that A is
infinite. For an arbitrary a ∈ A, put D = {a} and note that card(D) = 1 <

card(A). Therefore, by (i), Xa = XD is closed in X.

By the well-ordering theorem, we may assume that A = [0, γ), where γ is
an initial ordinal and thus, card(α) < card(γ), for every ordinal α < γ. We
shall denote by ≤ the ordering in [0, γ) as distinguished from ¹, used for the
ordering of A. Let H ⊆ X be closed and f : H → K a map. For each a ∈ A,
let Ha = H ∩ Xa and θa = f | Ha : Ha → K. If a ¹ b, then Ha ⊆ Hb and
θa = θb | Ha. We will construct, by transfinite induction, maps Θa : Xa → K,
a ∈ A, such that Θa | Ha = θa and Θa = Θb | Xa, for a ¹ b. Clearly, these maps
induce a unique mapping Θ : X → K such that Θ | Xa = Θa, for a ∈ A, and
Θ | H = f .

Since H0 is closed in X0, θ0 : H0 → K is a map and X0τK, we may choose
a map Θ0 : X0 → K such that Θ0 | H0 = θ0. Now let us make the inductive
assumption. Let 0 < δ < γ and suppose that for all 0 ≤ a < δ, we have determined
a map Θa : Xa → K such that:

(iii) Θa | Ha = θa, and

(iv) if 0 ≤ a < b < δ, then Θa | (Xa ∩Xb) = Θb | (Xa ∩Xb).

Put D = [0, δ) and note that there is a unique function ΘD : XD → K such
that ΘD | Xd = Θd, for each d ∈ D. Clearly, ΘD | Hd = Θd | Hd = θd. Since
each Θd is continuous, the assumption (ii) implies that also ΘD is continuous.

We now define an extension Θδ
D : XD ∪Hδ → K by putting Θδ

D | XD = ΘD

and Θδ
D | Hδ = θδ. To see that this function is well defined and continuous, we

need to verify that both summands XD and Hδ are closed in X and

ΘD | (XD ∩Hδ) = θδ | (XD ∩Hδ). (1)
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Indeed, XD is closed in X because of (i) and Hδ = Xδ ∩H is the intersection of
two sets closed in X. To verify (1), it suffices to show that

Θd | (Xd ∩Hδ) = θδ | (Xd ∩Hδ), (∀d ∈ D). (2)

First note that by the directedness of A, there is b ∈ A such that δ, d ¹ b.
By assumption, θδ = θb | Xδ and thus, θδ | (Xδ ∩ Hd) = θb | (Xδ ∩ Hd).
Similarly, θd = θb | Xd and thus, θd | (Xd ∩ Hδ) = θb | (Xd ∩ Hδ). Since
Xδ ∩Hd = Xδ ∩Xd ∩H = Xd ∩Hδ, we see that

θδ | (Xd ∩Hδ) = θd | (Xd ∩Hδ). (3)
Since d ∈ D,

Θd | (Xd ∩Hδ) = θd | (Xd ∩Hδ) = θδ | (Xd ∩Hδ), (4)

as desired.

Since XD ∪Hδ is closed in X and XδτK, Θδ
D admits a continuous extension

Θδ : XD ∪Xδ → K. Clearly, Θδ | Hδ = Θδ
D | Hδ = θδ, which is condition (iii),

for a = δ. To verify also condition (iv), we need to show that Θa | (Xa ∩Xδ) =
Θδ | (Xa ∩ Xδ), for 0 ≤ a < δ, i.e., for a ∈ D. Indeed, Θδ | (Xa ∩ Xδ) = Θδ

D |
(Xa∩Xδ) = ΘD | (Xa∩Xδ), because Xa∩Xδ ⊆ Xa ⊆ XD. Since Xa∩Xδ ⊆ Xa,
we see that ΘD | (Xa ∩Xδ) = Θa | (Xa ∩Xδ), as required.

By transfinite induction, we obtain mappings Θa : Xa → K, defined for all
a ∈ [0, γ) = A, satisfying (iii) and (iv). To complete the proof of the theorem we
must prove that, for elements a ¹ b from A we have Θa = Θb | Xa. First note
that a ¹ b implies Xa ⊆ Xb and thus, Xa ∩Xb = Xa. By (iv), if 0 ≤ a < b < γ,
then Θa | (Xa ∩Xb) = Θb | (Xa ∩Xb). The same formula holds if 0 ≤ b < a < γ.
Consequently, in all cases Θa = Θb | Xa. ¤

Remark 1. Proposition 2 is an immediate consequence of Theorem 3. Indeed,
if X is a direct sequence of normal spaces Xn and closed inclusion mappings, then
every subset D ⊆ N with card(D) < card(N) = ℵ0 is a finite set. Therefore, it has
a maximal element nD and thus, XD = XnD . It is now clear that XD satisfies
conditions (i) and (ii) from Theorem 3 and thus, XnτK implies XτK.

The next theorem is a slight strengthening of Theorem 3 because we replace
closed inclusions by closed embeddings.

Theorem 4. Let K be a space and let X be the direct limit of a direct

system of spaces X = (Xa, ψb
a, A), where the index set (A,¹) is directed, each

Xa, a ∈ A, is a space satisfying the condition XaτK and the connecting mappings

ψb
a : Xa → Xb, a ¹ b, are closed embeddings. Moreover, for every subset D ⊆ A

of cardinality card(D) < card(A), let the following conditions hold.



A note on extension theory and direct limits 443

(i)
⋃

d∈D ψd(Xd) is a closed subset of X,

(ii) the topology of
⋃

d∈D ψd(Xd), inherited from X, coincides with the weak

topology induced by the family of sets {ψd(Xd) | d ∈ D}.
Then XτK.

In the proof we need the following lemma.

Lemma 2. If in a direct system X the connecting mappings ψb
a : Xa → Xb

are closed embeddings, then so are the mappings ψa : Xa → X = dir lim X.

Consequently, the mappings ψa : Xa → ψa(Xa) are homeomorphisms.

Proof. Let us first see that ψa : Xa → X is an injection. If x, y ∈ Xa and
ψa(x) = ψa(y), then x ∼ y and thus, there exists an index b, a ¹ b, such that
ψb

a(x) = ψb
a(y). Since ψb

a is an injection, it follows that x = y. We still need to
prove that ψa : Xa → X is a closed mapping, i.e., if H ⊆ Xa is a closed set in Xa,
then ψa(H) is a closed set in X. This is equivalent to showing that ψ−1

b (ψa(H))
is a closed set in Xb, for every b ∈ A. Choose c ∈ A so that a, b ¹ c and note
that ψcψ

c
b = ψb implies ψ−1

b (ψa(H)) = (ψc
b)
−1(ψ−1

c (ψa(H))). Since ψa = ψcψ
c
a,

we see that ψ−1
b (ψa(H)) = (ψc

b)
−1ψ−1

c (ψc(ψc
a(H))) = (ψc

b)
−1(ψc

a(H)), because
ψc : Xc → X is an injection and thus, ψ−1

c (ψc(Y )) = Y , for every subset Y ⊆ Xc.
Since ψc

a : Xa → Xc is a closed mapping and H is a closed subset of Xa, it follows
that ψc

a(H) is a closed subset of Xc and thus, (ψc
b)
−1(ψc

a(H)) = ψ−1
b (ψa(H)) is a

closed subset of Xb, as desired. The second assertion of the lemma is an obvious
consequence of the first one. ¤

Proof of Theorem 4. We will derive Theorem 4 from Theorem 3. For
every a ∈ A, put X ′

a = ψa(Xa). By the second assertion of Lemma 2, ψa : Xa →
X ′

a is a homeomorphism and therefore, XaτK implies X ′
aτK. Note that a ¹ b

implies X ′
a ⊆ X ′

b. Indeed, if x′ ∈ X ′
a, there is an x ∈ Xa such that x′ = ψa(x).

Since ψa = ψbψ
b
a, it follows that x′ = ψbψ

b
a(x) ∈ ψb(Xb) = X ′

b. Clearly, taking
for ψ′ba : X ′

a → X ′
b the inclusion mappings X ′

a ↪→ X ′
b, we obtain a direct system

X ′ = (X ′
a, ψ′ba, A), whose connecting mappings are inclusions. To see that they

are closed mappings, note that for D = {a}, one has
⋃

d∈D ψd(Xd) = ψa(Xa) =
X ′

a and thus, by assumption (i) of Theorem 4, X ′
a is a closed subset of X for each

a ∈ A. It follows that the inclusion mapping ψ′ba : X ′
a → X ′

b is closed. Indeed, if
H is a closed subset of X ′

a, then ψ′ba(H) = H ⊆ X ′
b is also a closed subset of X ′

b,
because X ′

a ⊆ X ′
b is closed in X, hence it is also closed in X ′

b.

By the construction of direct limits, the limit X ′ of the new system X ′ equals
X and the corresponding canonical mappings ψ′a : X ′

a → X ′ are just inclusions of
X ′

a = ψa(Xa) to X ′ = X. Let us show that the direct limit topologies of X and X ′
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coincide so that the systems X and X ′ have the same limit space. First assume
that a set H ⊆ X = X ′ is closed in X and thus, the sets ψ−1

a (H) are closed in Xa.
It is readily seen that ψ−1

a (H) = ψ−1
a (X ′

a∩H), and thus the sets ψ−1
a (X ′

a∩H) are
closed in Xa. By Lemma 2, the mapping ψa : Xa → X is a closed mapping and
thus, ψa(ψ−1

a (X ′
a ∩H)) is closed in X. Note that ψa(ψ−1

a (X ′
a ∩H)) = X ′

a ∩H,
because for a mapping f : Y → Z and a set S ⊆ Z, one has ff−1(S) = S ∩ f(Y ).
It follows that X ′

a ∩H is a closed subset of X. Since X ′
a ∩H ⊆ X ′

a, we conclude
that the set X ′

a ∩ H is closed also in X ′
a, for every a ∈ A. However, this is

equivalent to saying that the set H is closed in X ′. Conversely, if H is closed
in X ′, then the sets X ′

a ∩ H are closed in X ′
a, hence also closed in X. By the

continuity of ψa : Xa → X, it follows that the sets ψ−1
a (X ′

a ∩H) = ψ−1
a (H) are

closed in Xa, which implies that H is closed in X.

By the assumptions (i) and (ii),
⋃

d∈D X ′
d is a closed subset of X = X ′ and the

topology of
⋃

d∈D X ′
d, inherited from X = X ′, coincides with the weak topology

induced by the family of sets {X ′
d | d ∈ D}. All this proves that X ′ is a direct

system, which consists of spaces X ′
aτK and closed inclusion mappings, X is its

direct limit and conditions (i) and (ii) from Theorem 3 are fulfilled. Consequently,
that theorem yields the desired conclusion that XτK. ¤
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[10] S. Mardešić and J. Segal, Shape theory, North-Holland Publ. Comp., Amsterdam, 1982.

[11] E. Michael, Continuous selections, I, Ann. Math. 63 (1956), 361–382.



A note on extension theory and direct limits 445

[12] K. Morita, On spaces having the weak topology with respect to closed coverings, Proc.
Japan Acad. 29 (1953), 537–543.

[13] K. Morita, On spaces having the weak topology with respect to closed coverings, II, Proc.
Japan Acad. 30 (1954), 711–717.

[14] E. G. Sklyarenko, On the definition of cohomological dimension, (in Russian), Dokl. Akad.
Nauk SSSR 161, no. 3 (1965), 538–539, Transl. Soviet Math. Dokl. 6, (1965), 478–479.

[15] L. Steen and J. A. Seebach, Counterexamples in Topology, Holt Rinehart and Winston,
Inc., New York, 1970.

SIBE MARDEŠIĆ
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