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Almost bounded variation of double sequences
and some four dimensional summability matrices

By MOHAMMAD MURSALEEN (Aligarh) and S. A. MOHIUDDINE (Aligarh)

Abstract. In 1937, Mears [Ann. Math., 38 (1937), 594–601] studied absolutely

regular matrices for single sequences. In this paper, we define the absolutely almost

conservative and absolutely almost regular matrices for double sequences and establish

the necessary and sufficient conditions to characterize them.

1. Introduction and preliminaries

A double sequence x = (xjk) of real or complex numbers is said to be bounded
if ‖x‖∞ = supj,k |xjk| < ∞. The space of all bounded double sequences is denoted
by Mu.

A double sequence x = (xjk) is said to converge to the limit L in Pringsheim’s
sense (shortly, p-convergent to L) [12] if for every ε > 0 there exists an integer
N such that |xjk − L| < ε whenever j, k > N . In this case L is called the p-limit
of x. If in addition x ∈ Mu, then x is said to be boundedly convergent to L in
Pringsheim’s sense (shortly, bp-convergent to L).

A double sequence x = (xjk) is said to converge regularly to L (shortly, r-
convergent to L) if x ∈ Cp and the limits xj := limk xjk (j ∈ N) and xk := limj xjk
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(k ∈ N) exist. Note that in this case the limits limj limk xjk and limk limj xjk

exist and are equal to the p-limit of x.
In general, for any notion of convergence ν, the space of all ν-convergent

double sequences will be denoted by Cν , the space of all ν-convergent to 0 double
sequences by Cν0 and the limit of a ν-convergent double sequence x by ν -limj,k xjk,
where ν ∈ {p, bp, r}.

Let Ω denote the vector space of all double sequences with the vector space
operations defined coordinatewise. Vector subspaces of Ω are called double se-
quence spaces. In addition to above-mentioned double sequence spaces we con-
sider the double sequence space

Lu :=
{

x ∈ Ω | ‖x‖1 :=
∑

j,k

|xjk| < ∞
}

of all absolutely summable double sequences.
All considered double sequence spaces are supposed to contain

Φ := span
{
ejk | j, k ∈ N}

,

where

ejk
il =

{
1; if (j, k) = (i, `),

0; otherwise.

We denote the pointwise sums
∑

j,k ejk,
∑

j ejk (k ∈ N), and
∑

k ejk (j ∈ N)
by e, ek and ej respectively.

Let E be the space of double sequences converging with respect to a conver-
gence notion ν, F be a double sequence space, and A = (amnjk) be a 4-dimensional
matrix of scalars. Define the set

F
(ν)
A :=

{
x ∈ Ω | [Ax]mn := ν -

∑

j,k

amnjkxjk exists and Ax := ([Ax]mn)m,n ∈F
}

.

Then we say that A maps the space E into the space F if E ⊂ F
(ν)
A and

denote by (E, F ) the set of all 4-dimensional matrices A which map E into F .
We say that a 4-dimensional matrix A is Cν-conservative if Cν ⊂ C(ν)

νA , and
Cν-regular if in addition

ν - lim Ax := ν - lim
m,n

[Ax]mn = ν - lim
m,n

xmn (x ∈ Cν).

For more details on double sequences and 4-dimensional matrices, we refer
to [3], [4], [8]–[11], and [13].



Almost bounded variation of double sequences. . . 497

The idea of almost convergence for single sequences was introduced by Lo-

rentz [5] and for double sequences by Móricz and Rhoades [7].
A double sequence x = (xjk) of real numbers is said to be almost convergent

to a limit L if

p - lim
p,q→∞

sup
m,n>0

∣∣∣∣∣
1
pq

m+p−1∑

j=m

n+q−1∑

k=n

xjk − L

∣∣∣∣∣ = 0.

In this case L is called the f2-limit of x and we shall denote by f2 the space of all
almost convergent double sequences.

Note that a convergent double sequence need not be almost convergent. How-
ever every bounded convergent double sequence is almost convergent and every
almost convergent double sequence is bounded.

The space BV of double sequences x = (xjk) of bounded variation was defined
by Altay and Başar [1] as follows.

BV :=
{

x = (xjk)
∣∣∣
∑

j,k

∣∣∣xjk − xj−1,k − xj,k−1 + xj−1,k−1| < ∞
}

which is a Banach space normed by

‖x‖BV =
∑

j,k

|xjk − xj−1,k − xj,k−1 + xj−1,k−1|.

Recently in [14] authors have characterized almost Cν-conservative matrices,
i.e. those 4-dimensional matrices A = (amnjk) which map the double sequence
space Cν into the space f2 where ν ∈ {bp, r, p}. In this paper we introduce the
notion of almost bounded variation for double sequences and use to define the
absolutely almost conservative and absolutely almost regular four dimensional
matrices and determine conditions to characterize them.

2. Almost bounded variation of double sequences

Motivated by the idea of absolute almost convergence for single sequences
[2], we define here the notion of almost bounded variation for double sequences.

Let

φpqst(x) = τpqst(x)− τp−1,q,s,t(x)− τp,q−1,s,t(x) + τp−1,q−1,s,t(x), and

τpqst(x) =
1

(p + 1)(q + 1)

p∑
m=0

q∑
n=0

xm+s,n+t.
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Thus

φpqst(x) =
1

(p + 1)(q + 1)

p∑
m=0

q∑
n=0

xm+s,n+t − 1
p(q + 1)

p−1∑
m=0

q∑
n=0

xm+s,n+t

− 1
(p + 1)q

p∑
m=0

q−1∑
n=0

xm+s,n+t +
1
pq

p−1∑
m=0

q−1∑
n=0

xm+s,n+t

=
1

(q + 1)

q∑
n=0

[
1

(p + 1)

p∑
m=0

xm+s,n+t − 1
p

p−1∑
m=0

xm+s,n+t

]

− 1
q

q−1∑
n=0

[
1

(p + 1)

p∑
m=0

xm+s,n+t − 1
p

p−1∑
m=0

xm+s,n+t

]

=
1

(q + 1)

q∑
n=0

[
1

p(p + 1)

p∑
m=1

m(xm+s,n+t − xm−1+s,n+t)
]

− 1
q

q−1∑
n=0

[
1

p(p + 1)

p∑
m=1

m(xm+s,n+t − xm−1+s,n+t)
]

=
1

p(p + 1)

p∑
m=1

m

[
1

(q + 1)

q∑
n=0

ym+s,n+t − 1
q

q−1∑
n=0

ym+s,n+t

]

where ym+s,n+t = (xm+s,n+t − xm−1+s,n+t). Simplifying further, we get

φpqst(x) =
1

p(p + 1)

p∑
m=1

m

[
1

q(q + 1)

q∑
n=1

n(ym+s,n+t − ym+s,n−1+t)
]

=
1

p(p + 1)q(q + 1)

p∑
m=1

q∑
n=1

mn[xm+s,n+t − xm−1+s,n+t)

− xm+s,n−1+t + xm−1+s,n−1+t].

Now we write

φpqst(x) =





1
p(p + 1)q(q + 1)

p∑
m=1

q∑
n=1

mn[xm+s,n+t − xm−1+s,n+t

−xm+s,n−1+t + xm−1+s,n−1+t]; p, q ≥ 1

xst; p = 0 or q = 0 or both p, q = 0.

(2.1)

Definition 2.1. A double sequence x = (xjk) ∈ Mu is said to be of al-
most bounded variation if

(i)
∑∞

p=0

∑∞
q=0 |φpqst(x)| converges uniformly in s, t; and
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(ii) limp,q→∞ τpqst(x), which must exist, should take the same value for all s, t.

By B̂V, we denote the space of all double sequences which are of almost bounded
variation.

Throughout the paper lim stands for bp - lim and
∑

for bp -
∑

.

Theorem 2.1. B̂V is a Banach space normed by

‖x‖ = sup
s,t

∞∑
p=0

∞∑
q=0

|φpqst(x)| (2.2)

Proof. By uniform convergence, there exist P and Q such that

∞∑

p=P+1

∞∑

q=Q+1

|φpqst(x)| ≤ 1

for all s, t and for fixed P and Q,

P∑
p=0

Q∑
q=0

|φpqst(x)|

is bounded because x ∈ B̂V and B̂V ⊂ Mu. Hence ‖x‖ is defined.
As in case of B̂V in [1], it can be easily shown that B̂V is also a normed linear

space.
Now, let (xb) be a Cauchy sequence in B̂V. Then for each j, k, (xb

jk) is a
Cauchy sequence in C. Therefore, xb

jk → xjk (say). Letting x = (xjk), given
ε > 0 there exists an integer N such that for b, d > N = N(ε) and for each s, t

∞∑
p=0

∞∑
q=0

|φpqst(xb − xd)| < ε,

and thus
|τpqst(xb − xd)| < ε.

Taking limit d →∞, we have for b > N = N(ε) and for each s, t

∞∑
p=0

∞∑
q=0

|φpqst(xb − x)| ≤ ε (2.3)

and
|τpqst(xb − x)| ≤ ε. (2.3)’
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Now, let ε > 0 be given. There exists a b such that (2.3) holds for all s, t.
Since xb ∈ B̂V, we can choose p0, q0 such that

∞∑
p=p0

∞∑
q=q0

|φpqst(xb)| < ε for all s, t.

It follows from (2.3) that

∞∑
p=p0

∞∑
q=q0

|φpqst(xb)− φpqst(x)| ≤ ε for all s, t.

Hence ∞∑
p=p0

∞∑
q=q0

|φpqst(x)| < 2ε for all s, t. (2.4)

Thus, starting with any ε, we have determined p0, q0 such that (2.4) holds. Hence
the condition (i) of Definition 2.1 holds.

Now, for given ε, let (2.3)’ hold for fixed chosen b and for all s, t. Since
xb ∈ B̂V, we have for all p ≥ p0, q ≥ q0

|τpqst(xb − Le)| < ε for all s, t.

It follows from (2.3)
′
that

|τpqst(xb)− τpqst(x)| ≤ ε for all s, t.

Hence
|τpqst(x)− Le)| < 2ε for all s, t,

which is condition(ii) of Definition 2.1. Hence the result. ¤

3. Absolutely almost conservative matrices

The idea of absolutely regular matrices for single sequences was studied by
Mears [6], i.e. those matrices which transform the space v of the sequences of
bounded variation into v leaving the limit invariant. Here we define the following:

Definition 3.1. A four dimensional infinite matrix A = (amnjk) is said to be
absolutely almost conservative if and only if Ax ∈ B̂V for all x ∈ BV.
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Definition 3.2. An infinite matrix A = (amnjk) is said to be absolutely al-
most regular if and only if it is absolutely almost conservative and lim Ax = lim x

for all x ∈ BV.

We write 401xjk = xjk − xj,k−1,

410xjk = xjk − xj−1,k,

411xjk = 410(401xjk) = 401(410xjk) = xjk − xj−1,k − xj,k−1 + xj−1,k−1.

Now we find necessary and sufficient conditions for A to be absolutely almost
conservative and absolutely almost regular.

We note that, if Ax is defined, then it follows from (2.1) that, for all integers
p, q, s, t ≥ 0

φpqst(Ax) =
∞∑

j=0

∞∑

k=0

α(p, q, j, k, s, t)xjk

where

α(p, q, j, k, s, t) =





1
p(p + 1)q(q + 1)

p∑
m=1

q∑
n=1

mn[am+s,n+t,j,k − am−1+s,n+t,j,k

−am+s,n−1+t,j,k + xm−1+s,n−1+t,j,k]; p, q ≥ 1

a(m,n, j, k); p or q or both zero.

The notation a(m,n, j, k) denotes the element amnjk of the matrix A.

Theorem 3.1. A matrix A = (amnjk) is absolutely almost conservative if

and only if

(i) there exists a constant K such that for i, r = 0, 1, 2, . . . ; s, t = 0, 1, 2, . . .

∞∑
p=0

∞∑
q=0

∣∣∣∣
i∑

j=0

r∑

k=0

α(p, q, j, k, s, t)
∣∣∣∣≤ K;

(ii) ujk =
∞∑

p=0

∞∑
q=0

α(p, q, j, k, s, t) uniformly in s, t;

(iii) u0k =
∞∑

p=0

∞∑
q=0

∞∑
j=0

α(p, q, j, k, s, t) uniformly in s, t;

(iv) uj0 =
∞∑

p=0

∞∑
q=0

∞∑
k=0

α(p, q, j, k, s, t) uniformly in s, t;

(v) u =
∞∑

p=0

∞∑
q=0

∞∑
j=0

∞∑
k=0

α(p, q, j, k, s, t) uniformly in s, t;
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(j, k = 0, 1, 2, . . . ) where (iii), (iv) and (v) satisfy that

(iii)’ for each k,
∞∑

j=0

amnjk converges for all m, n;

(iv)’ for each j,
∞∑

k=0

amnjk converges for all m, n;

(v)’
∞∑

j=0

∞∑
k=0

amnjk converges for all m, n;

respectively. In this case, the bp- lim Ax is

u`−
∞∑

k=0

u0khk −
∞∑

j=0

uj0`j +
∞∑

j=0

∞∑

k=0

ujkxjk,

for every x = (xjk) ∈ BV, where

` =
∞∑

j=0

∞∑

k=0

411xjk, hk =
∞∑

j=0

410xjk and `j =
∞∑

k=0

401xjk.

Theorem 3.2. A matrix A = (amnjk) is absolutely almost regular if and

only if

(i) there exists a constant K such that for i, r = 0, 1, 2, . . . ; s, t = 0, 1, 2, . . .

∞∑
p=0

∞∑
q=0

∣∣∣∣
i∑

j=0

r∑

k=0

α(p, q, j, k, s, t)
∣∣∣∣≤ K;

(ii) ujk = 0 for each j, k;

(iii) u0k = 0 for each k;

(iv) uj0 = 0 for each j;

(v) u = 1.

Proof of Theorem 3.1. Let A = (amnjk) be absolutely almost conserva-
tive. Put

qst(x) =
∞∑

p=0

∞∑
q=0

|φpqst(Ax)|

It is clear that for fixed m, n and for each j, k

j∑

i=0

k∑
r=0

amnirxir
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is a continuous linear functional on BV. We are given that, for all x ∈ BV it
tends to a limit as j, k → ∞ (for fixed m, n) and hence by Banach–Steinhaus
theorem, this limit, that is to say (Ax)st is also a continuous linear functional
on BV. Hence, for fixed s, t and fixed (finite) p, q

p∑
µ=0

q∑

ξ=0

|φµξst(Ax)| (3.1)

is a continuous seminorm on BV. For any given x ∈ BV, (3.1) is bounded in p,
q, s, t. Hence by another application of Banach–Steinhaus theorem, there exists
a constant M > 0 such that

qst(x) ≤ M ||x||. (3.2)

Apply (3.2) with x = (xjk) defined by

xjk =





1; if j ≤ i, k ≤ r

0; otherwise.

Note that, in this case, ‖x‖ = 2, and hence (i) must hold.
Since ejk, ek, ej and e belong to BV, necessity of (ii), (iii), (iv) and (v) is obvious.

Conversely, let the conditions hold and that x = (xjk) ∈ BV. We have defined
B̂V as a subspace of Mu. Thus, in order to prove that Ax ∈ B̂V, it is necessary to
prove that Ax exists and is bounded. Since the sum in (i) is bounded, it follows
that

i∑

j=0

r∑

k=0

amnjk (3.3)

is bounded for all i, r, m, n. Hence by the convergence of (v)’ for fixed m, n the
result follows easily.

Now by (v)’, the series

∞∑

j=0

∞∑

k=0

α(p, q, j, k, s, t)

converges for all p, q, s, t. Hence if we write

β(p, q, j, k, s, t) =
∞∑

i=j

γ(p, q, i, k, s, t)
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where

γ(p, q, i, k, s, t) =
∞∑

r=k

α(p, q, i, r, s, t),

then β(p, q, j, k, s, t) is defined, also, for fixed p, q, s, t we have

γ(p, q, i, k, s, t) → 0 as k →∞
β(p, q, j, k, s, t) → 0 as j →∞.

}
(3.4)

Then (iii) gives that
∞∑

p=0

∞∑
q=0

|β(p, q, 0, 0, s, t)| (3.5)

converges uniformly in s, t. Similarly (iii) and (iii)’ yield that, for fixed k

∞∑
p=0

∞∑
q=0

∣∣∣∣
∞∑

j=0

α(p, q, j, k, s, t)
∣∣∣∣ (3.6)

converges uniformly in s, t; and (iv) and (iv)’ yield that, for fixed j

∞∑
p=0

∞∑
q=0

∣∣∣∣
∞∑

k=0

α(p, q, j, k, s, t)
∣∣∣∣ (3.7)

converges uniformly in s, t. From (ii) for fixed j, k, we have that the series

∞∑
p=0

∞∑
q=0

|α(p, q, j, k, s, t)| (3.8)

converges uniformly in s, t. Since

β(p, q, j, k, s, t) =
∞∑

i=j

∞∑

r=k

α(p, q, i, r, s, t) =
( ∞∑

i=0

−
j−1∑

i=0

) ∞∑

r=k

α(p, q, i, r, s, t)

=
( ∞∑

i=0

∞∑

r=k

−
j−1∑

i=0

∞∑

r=k

)
α(p, q, i, r, s, t)

=

[ ∞∑

i=0

( ∞∑
r=0

−
k−1∑
r=0

)
−

j−1∑

i=0

( ∞∑
r=0

−
k−1∑
r=0

)]
α(p, q, i, r, s, t)=

∞∑

i=0

∞∑
r=0

α(p, q, i, r, s, t)

−
∞∑

i=0

k−1∑
r=0

α(p, q, i, r, s, t)−
j−1∑

i=0

∞∑
r=0

α(p, q, i, r, s, t) +
j−1∑

i=0

k−1∑
r=0

α(p, q, i, r, s, t)
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= β(p, q, 0, 0, s, t)− [β(p, q, 0, 0, s, t)− β(p, q, 0, k, s, t)]

−[β(p, q, 0, 0, s, t)−β(p, q, j, 0, s, t)]+
j−1∑

i=0

k−1∑
r=0

α(p, q, i, r, s, t)= β(p, q, 0, k, s, t)

+ β(p, q, j, 0, s, t)− β(p, q, 0, 0, s, t) +
j−1∑

i=0

k−1∑
r=0

α(p, q, i, r, s, t), (3.9)

it follows that, for fixed j, k

∞∑
p=0

∞∑
q=0

|β(p, q, j, k, s, t)| (3.10)

converges uniformly in s, t.

Now

φpqst(Ax)=
∞∑

j=0

∞∑

k=0

α(p, q, j, k, s, t)xjk=
∞∑

j=0

∞∑

k=0

[ ∞∑

i=j

∞∑

r=k

α(p, q, i, r,s, t)

]
(411xjk)

=
∞∑

j=0

∞∑

k=0

β(p, q, j, k, s, t)[xjk − xj−1,k − xj,k−1 + xj−1,k−1] (3.11)

by (3.4) and the boundedness of x = (xjk).

Now (i) and the boundedness of the sum (3.5) show that
∞∑

p=0

∞∑
q=0

|β(p, q, j, k, s, t)| (3.12)

is bounded for all j, k, s, t. We can make
∞∑

j=j0+1

∞∑

k=k0+1

|xjk − xj−1,k − xj,k−1 + xj−1,k−1|

arbitrarily small by choosing j0 and k0 sufficiently large. Therefore, it follows
that, given ε > 0 we can choose j0, k0 so that, for all s, t

∞∑
p=0

∞∑
q=0

∣∣∣∣
∞∑

j=j0+1

∞∑

k=k0+1

β(p, q, j, k, s, t)(xjk−xj−1,k−xj,k−1+xj−1,k−1)
∣∣∣∣< ε. (3.13)

Now since for each j, k, (3.10) converges uniformly in s, t, it follows that once j0,
k0 have been chosen we can choose p0, q0 so that, for all s, t

∞∑
p=p0+1

∞∑
q=q0+1

∣∣∣∣
j0∑

j=0

k0∑

k=0

β(p, q, j, k, s, t)(xjk − xj−1,k − xj,k−1 + xj−1,k−1)
∣∣∣∣< ε.
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It follows from (3.13) that the same inequality holds when
∑∞

p=0 and
∑∞

q=0 are
replaced by

∑∞
p=p0+1 and

∑∞
q=q0+1 respectively; hence for all s, t,

∞∑
p=p0+1

∞∑
q=q0+1

∣∣∣∣
∞∑

j=0

∞∑

k=0

β(p, q, j, k, s, t)(xjk−xj−1,k−xj,k−1+xj−1,k−1)
∣∣∣∣<2ε, (3.14)

that is ∞∑
p=p0+1

∞∑
q=q0+1

|φpqst(Ax)| < 2ε.

Thus ∞∑
p=0

∞∑
q=0

|φpqst(Ax)|

converges uniformly in s, t. Hence Ax satisfies condition (i) of Definition 2.1; we
still have to show that it satisfies condition (ii) of Definition 2.1.

If

φpqst(Ax) =
∞∑

j=0

∞∑

k=0

α(p, q, j, k, s, t)xjk,

then by Abel’s partial sum we have

φpqst(Ax) =
∞∑

j=0

∞∑

k=0

[
j−1∑

i=0

k−1∑
r=0

α(p, q, j, k, s, t)

]
411xjk.

Using (3.9), we get

φpqst(Ax) =
∞∑

j=0

∞∑

k=0

[
β(p, q, j, k, s, t)− β(p, q, 0, k, s, t)

− β(p, q, j, 0, s, t) + β(p, q, 0, 0, s, t)
]411xjk.

Again using Abel’s partial sum to first three summations, we get

φpqst(Ax) =
∞∑

j=0

∞∑

k=0

α(p, q, j, k, s, t)xjk −
∞∑

j=0

∞∑

k=0

α(p, q, j, k, s, t)410xjk

−
∞∑

j=0

∞∑

k=0

α(p, q, j, k, s, t)401xjk +
∞∑

j=0

∞∑

k=0

α(p, q, j, k, s, t)411xjk.

Hence
∞∑

p=0

∞∑
q=0

φpqst(Ax) =
∞∑

j=0

∞∑

k=0

∞∑
p=0

∞∑
q=0

α(p, q, j, k, s, t)xjk
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−
∞∑

j=0

∞∑

k=0

∞∑
p=0

∞∑
q=0

α(p, q, j, k, s, t)410xjk−
∞∑

j=0

∞∑

k=0

∞∑
p=0

∞∑
q=0

α(p, q, j, k, s, t)401xjk

+
∞∑

j=0

∞∑

k=0

∞∑
p=0

∞∑
q=0

α(p, q, j, k, s, t)411xjk=
∞∑

j=0

∞∑

k=0

[ ∞∑
p=0

∞∑
q=0

α(p, q, j, k, s, t)xjk

]

−
∞∑

k=0

[ ∞∑
p=0

∞∑
q=0

( ∞∑

j=0

α(p, q, j, k, s, t)(xjk − xj−1,k)
)]

−
∞∑

j=0

[ ∞∑
p=0

∞∑
q=0

( ∞∑

k=0

α(p, q, j, k, s, t)(xjk − xj,k−1)
)]

+
∞∑

p=0

∞∑
q=0

[ ∞∑

j=0

∞∑

k=0

α(p, q, j, k, s, t)

]
(xjk − xj−1,k − xj,k−1 + xj−1,k−1)

=
∞∑

j=0

∞∑

k=0

ujkxjk −
∞∑

k=0

u0khk −
∞∑

j=0

uj0`j + u`,

where, for x ∈ BV

`j = lim
k→∞

xjk =
∞∑

k=0

(xjk − xj,k−1), hk = lim
j→∞

xjk =
∞∑

j=0

(xjk − xj−1,k),

` = lim x =
∞∑

j=0

∞∑

k=0

411xjk.

Proof of Theorem 3.2. Suppose that A is absolutely almost regular ma-
trix. Since ejk, ek, ej and e ∈ BV, conditions (ii), (iii), (iv) and (v) hold respec-
tively. Condition (i) follows as in the proof of Theorem 3.1.

Conversely, if a matrix A satisfies the conditions of the theorem, then it is
an absolutely almost conservative matrix. For x ∈ BV, the bp-limit of Ax is

∞∑

j=0

∞∑

k=0

ujkxjk −
∞∑

k=0

u0khk −
∞∑

j=0

uj0`j + u`

which reduces to ` by using conditions (ii)–(v). Hence A is an absolutely almost
regular matrix.
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[1] B. Altay and F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl. 309
(2005), 70–90.

[2] G. Das, B. Kuttner and S. Nanda, Some sequence spaces and absolute almost conver-
gence, Trans. Amer. Math. Soc. 283 (1984), 729–739.
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