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Common fixed points for Ćirić type f-weak contraction
with applications

By LJUBOMIR ĆIRIĆ (Belgrade), NAWAB HUSSAIN (Jeddah)

and NENAD CAKIĆ (Belgrade)

Abstract. We introduce a new conception of Ćirić type f -weakly contractive map-

pings and the existence of common fixed points is established for Ćirić type f -weakly

contractive mapping T . As an application, the existence of solution of variational in-

equalities is obtained. Our results unify and improve several recent results existing in

the current literature.

1. Introduction and preliminaries

Let (X, d) be a metric space. A map T : X → X is called to be weakly
contractive [1], [31] if, for each x, y ∈ X,

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)),

where ϕ : [0,∞) → [0,∞) is a lower semicontinuous function from the right such
that ϕ is positive on (0,∞) and ϕ(0) = 0.

We will say that a mapping T : X → X is f-weakly contractive if, for each
x, y ∈ X,

d(Tx, Ty) ≤ d(fx, fy)− ϕ(d(fx, fy)), (1)

where f : X → X is a self-mapping and ϕ : [0,∞) → [0,∞) is a lower semicon-
tinuous function from the right such that ϕ is positive on (0,∞) and φ(0) = 0.
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If ϕ(t) = (1 − k)t, 0 < k < 1, then a f -weakly contractive mapping is
called a f -contraction. Note that if f = I and ϕ is continuous non-decreasing,
then the definition of f -weakly contractive mapping is the same as it appeared
in [1], [31]. Further if f = I and ϕ(t) = (1 − k)t, 0 < k < 1, then a f -weakly
contractive mapping is called a contraction. Also note that if f = I and ϕ is lower
semicontinuous from the right then ψ(t) = t−ϕ(t) is upper semicontinuous from
the right and condition (1) is replaced by

d(Tx, Ty) ≤ ψ(d(x, y)). (2)

Therefore, f -weakly contractive maps for which ϕ is lower semicontinuous from
the right are of Boyd and Wong [9] type. Further, if we define k(t) = 1 − ϕ(t)

t

for t > 0 and k(0) = 0 together with f = I, then condition (1) is replaced by

d(Tx, Ty) ≤ k(d(x, y))d(x, y). (3)

Therefore f -weakly contractive maps are closely related to maps of Reich [30]
type, which are also generally researched by Bae [4] and Mizoguchi and Taka-

hashi [23].

The set of fixed points of T we shall denote by F (T ). A point x ∈ X is a
coincidence point (common fixed point) of f and T if fx = Tx (x = fx = Tx).
The set of coincidence points of f and T is denoted by C(f, T ). The pair {f, T}
is called (1) commuting [19] if Tfx = fTx for all x ∈ X, (2) compatible (see
[20], [21]) if limn d(Tfxn, fTxn) = 0 whenever {xn} is a sequence such that
limn Txn = limn fxn = t for some t in X; (3) weakly compatible [20] if they
commute at their coincidence points, that is, if fTx = Tfx whenever fx = Tx;
(4) R-weakly commuting [25] if there exists an R > 0 such that d(fTx, Tfx) ≤ R

d(Tx, fx) for all x ∈ X; (5) pointwise R-weakly commuting if for given x ∈ X,
there exists an R > 0 such that d(fTx, Tfx) ≤ R d(Tx, fx) holds.

It was proved in [26] that pointwise R-weak commutativity is equivalent to
commutativity at coincidence points; that is, f and T are pointwise R-weakly
commuting if and only if they are weakly compatible.

We denote by N and cl(M), the set of positive integers and the closure of a
set M in X, respectively.

The concept of the weakly contractive mapping is defined by Alber and
Guerre-Delabriere [1] in 1997. Actually, the authors in [1] proved the ex-
istence of fixed points for single-valued weakly contractive mapping on Hilbert
spaces. In 2001, Rhoades ([31], Theorem 2) proved the very interesting fixed
point theorem which is one of generalizations of Banach’s Contraction Mapping
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Principle, because the weakly contractions contains contractions as the special
cases (ϕ(t) = (1 − k)t), and also showed that most results of [1] are still true
for any Banach space. In fact, weakly contractive mappings are closely related to
maps of Boyd and Wong type ones [9] and Reich’s type ones [30] (see [32], [34]).

In this paper, we introduce a new conception of Ćirić type f -weakly con-
tractive mappings, and consequently establish the common fixed point results for
weakly compatible Ćirić type f -weakly contractive mappings. As applications, we
establish common fixed point results for a Banach operator pair and the existence
of solution of variational inequalities is obtained. Our results improve and extend
the recent common fixed point results of Al-Thagafi and Shahzad [2], [3], Beg

and Abbas [5], Chen and Li [10], Ćirić [11], Das and Naik [15], Jungck [19],
Jungck and Hussain [21], O’Regan and Hussain [21], Pant [25], Pathak and
Hussain [28], and Song [32]

2. Common fixed point results

The Banach Contraction Mapping Principle states that if (X, d) is a complete
metric space, K is a nonempty closed subset of X and T : K → K is a self-
mapping satisfying d (Tx, Ty) ≤ λd (x, y) for all x, y ∈ K, where 0 < λ < 1,
then T has a unique fixed point, say z in K, and the Picard iterations {Tnx}
converge to z for all x ∈ K. Ćirić [11] introduced and studied self-mappings
on K satisfying

d (Tx, Ty) ≤ λm(x, y),

where 0 < λ < 1 and

m (x, y) = max {d (x, y) , d (x, Tx) , d (y, Ty) , d (x, Ty) , d (y, Tx)} .

Further investigations were developed by Berinde [7], Ćirić [12], Jungck [20],
Jungck and Hussain [21], O’Regan and Hussain [24] and many other math-
ematicians(see [12] and references therein). Application of the contraction and
generalized contraction principle for self-mappings are well known (c.f. [6], [12],
[27], [28]).

We begin with the following result.

Theorem 2.1. Let K be a subset of a metric space (X, d) and let f and T

be a self-mappings of K. Assume that clT (K) ⊂ f(K), clT (K) is complete, f

and T satisfy the following condition:

d(Tx, Ty) ≤ M (x, y)− ϕ(M (x, y)) (4)
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for all x, y ∈ K, where

M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)} (5)

and ϕ : [0, +∞) → [0,+∞) is a real function such that

(i) ϕ(t) > 0 for all t > 0,

(ii) lims→t+ ϕ(s) > 0 for all t > 0,

(iii) t− ϕ(t)is non-decreasing,

(iv) limt→∞ ϕ(t) = +∞.

Then T and f have a unique coincidence point in K. If, in addition, (f, T ) is

weakly compatible, then K ∩ F (T ) ∩ F (f) is a singleton.

Proof. Let x0 ∈ K be arbitrarily. As T (K) ⊂ f(K), one can choose x1

in K, such that fx1 = Tx0. Consider now Tx1. Since Tx1 ∈ f(K), there exists
x2 in K such that fx2 = Tx1. By induction, we construct a sequence {xn} of
points in K such that

fxn+1 = Txn for n ∈ {0, 1, 2, 3, . . . }.
Denote

O(x0, n) = {Tx0, Tx1, Tx2, . . . , Txn}, (6)

O(x0) = {Tx0, Tx1, Tx2, . . . , Txn, . . . }. (7)

First we shall show that for any given x0 ∈ K, the set O(x0) is bounded.
Let n be any fixed positive integer. We shall show that

δn(x0) = diam({Tx0, Tx1, Tx2, . . . , Txn}) = d(Tx0, Txk), (8)

where k = k(n) ≤ n is a positive integer. Suppose, to the contrary, that there are
positive integers i = i(n) ≥ 1 and j = j(n) ≥ 1 such that

δn(x0) = d(Txi, Txj). (9)

Without loss of generality we may suppose that i < j.
Assume that δn(x0) > 0 and that i ≥ 1. Then Txi−1 ∈ O(x0, n). Since

Ixn+1 = Txn, from (5) with x = xi and y = xj we have

M (xi, xj) = max{d(fxi, fxj), d(fxi, Txi), d(fxj , Txj), d(fxi, Txj), d(fxj , Txi)}
= max{d(Txi−1, Txj−1), d(Txi−1, Txi), d(Txj−1, Txj), d(Txi−1, Txj),

d(Txj−1, Txi)} ≤ δn(x0).
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Thus from (4), (iii) and (i) we have

δn(x0) = d(Txi, Txj) ≤ M (xi, xj)− ϕ(M (xi, xj))

≤ δn(x0)− ϕ(δn(x0)) < δn(x0),

a contradiction. Therefore, our assumption (9) is wrong. Thus (8) holds.
Since by the triangle inequality,

d(Tx0, Txk) ≤ d(Tx0, Tx1) + d(Tx1, Txk),
from (8),

δn(x0) ≤ d(Tx0, Tx1) + d(Tx1, Txk). (10)

Since from (4),

d(Tx1, Txk) ≤ M (x1, xk)− ϕ(M (x1, xk)),

and as M (x1, xk) ≤ δn(x0), from (iii) we have

d(Tx1, Txk) ≤ δn(x0)− ϕ(δn(x0)).
Now, by (10),

δn(x0) ≤ d(Tx0, Tx1) + δn(x0)− ϕ(δn(x0)).

Hence
ϕ(δn(x0)) ≤ d(Tx0, Tx1). (11)

Since the sequence {δn(x0)} is non-decreasing, there exists lim δn(x0). Sup-
pose that lim δn(x0) = +∞. Then (iv) implies that the left-hand side of (11)
becomes unbounded when n tends to infinity, but the right-hand side is bounded,
a contradiction. Therefore, limn→∞ δn(x0) = δ(x0) < +∞, that is,

δ(x0) = diam({Tx0, Tx1, Tx2, . . . , Txn, . . . }) < +∞. (12)

Now we show that {Txn} is a Cauchy sequence. Set

δ(xn) = diam({Txn, Txn+1, . . . })

(n = 0, 1, 2, . . . ). Since δ(xn) ≤ δ(x0), then by (12) we conclude that {δ(xn)} is
a sequence of finite nonnegative numbers. Since δ(xn+1) ≤ δ(xn), it follows that
{δ(xn)} converges to some δ ≥ 0 and δ ≤ δ(xn) for all n ≥ 0. We shall prove
that δ = 0. Let n be arbitrary and let r, s be any positive integers such that
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r, s ≥ n + 1. Then Txr−1, Txs−1 ∈ {Txn, Txn+1, . . . } and hence we conclude
that M(xr, xs) ≤ δ(xn). From (4),

d(Txr, Txs) ≤ M (xr, xs)− ϕ(M (xr, xs)),

and then by (iii),
d(Txr, Txs) ≤ δ(xn)− ϕ(δ(xn)).

Hence we get

sup{d(Txr, Txs) : r ≥ n + 1; s ≥ n + 1} ≤ δ(xn)− ϕ(δ(xn)).

Therefore,

δ(xn+1) = sup{d(Txr, Txs) : r ≥ n + 1; s ≥ n + 1} ≤ δ(xn)− ϕ(δ(xn)).

Hence, as δ ≤ δ(xn) for all n ≥ 0,

δ ≤ δ(xn)− ϕ(δ(xn)). (13)

Suppose that δ > 0. Then letting n tends to infinity in (13) we get

δ ≤ δ − lim
n→∞

ϕ(δ(xn)) = δ − lim
δ(xn)→δ+

ϕ(δ(xn)).

Hence we have
lim

δ(xn)→δ+
ϕ(δ(xn)) ≤ 0,

a contradiction with (ii). Therefore, δ = 0. Thus, we have proved that

lim
n→∞

diam({Txn, Txn+1, . . . }) = 0.

Hence we conclude that {Txn} is a Cauchy sequence. By the completeness of
clT (K) there is some u ∈ clT (K) such that

u = lim
n→∞

Txn.

As clT (K) ⊂ f(K), there is some z in K such that

fz = u.
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We show that Tz = fz. Suppose, by way of contradiction, that d(Tz, fz) > 0.
Since fxn+1 = Txn, from (4) with x = z and y = xn+1 we have

d(fz, Tz) ≤ d(fz, Txn+1) + d(Tz, Txn+1)

≤ d(fz, Txn+1) + M(z, xn+1)− ϕ(M(z, xn+1)), (14)

where

M(z, xn+1)

= max{d(fz, fxn+1), d(fz, Tz), d(fxn+1, Txn+1), d(fz, Txn+1), d(fxn+1, T z)}
= max{d(fz, Txn), d(fz, Tz), d(Txn, Txn+1), d(fz, Txn+1), d(Txn, T z)}.

Since limn→∞ Txn = fz, for large enough n we have:

M(z, xn+1) = max{d(fz, Tz), d(Txn, T z)}.

If M(z, xn+1) = d(fz, Tz), then from (14) and (iii) we get

d(fz, Tz) ≤ d(fz, Txn) + d(fz, Tz)− ϕ(d(fz, Tz)).

Letting n tends to infinity we get

d(fz, Tz) ≤ d(fz, Tz)− ϕ(d(fz, Tz)).
Thus we have

0 < d(fz, Tz) ≤ d(fz, Tz)− ϕ(d(fz, Tz)) < d(fz, Tz),

a contradiction.
If M(z, xni+1) = d(Txni , T z), then from (14) and (iii) we get

d(fz, Tz) ≤ d(fz, Txn) + d(Txni , T z)− ϕ(d(Txni , T z)).

Letting i tends to infinity, by (ii) we get, as d(Txni , T z) → d(fz, Tz)+,

d(fz, Tz) < d(fz, Tz),

a contradiction. Thus our assumption d(fz, Tz) > 0 is wrong. Therefore
d(fz, Tz) = 0. Hence fz = Tz, that is, z is a coincidence point of T and f .

We now show that Tz is a common fixed point of f and T . Since f and T are
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weakly compatible and fz = Tz, we obtain by the definition of weak compatibility
that fTz = Tfz. Thus we have TTz = Tfz = fTz and

d(TTz, Tz) ≤ M(Tz, z)− ϕ(M(Tz, z)),
where

M(Tz, z) = max{d(fTz, fz), d(fTz, TTz), d(fz, Tz), d(fTz, Tz), d(fz, TTz)}
= d(TTz, Tz).

Thus
d(TTz, Tz) ≤ d(TTz, Tz)− ϕ(d(TTz, Tz)).

Hence d(TTz, Tz) = 0 and hence TTz = Tz. Therefore Tz = TTz = fTz. This
implies that w = Tz is a common fixed point of T and f . Hence K ∩F (T )∩F (f)
is a singleton. ¤

Corollary 2.2. Let K be a nonempty subset of a metric space (X, d) and

let T be a self-map of K. Assume that clT (K) ⊂ K, clT (K) is complete, and T

satisfies the following condition:

d(Tx, Ty) ≤ m (x, y)− ϕ(m (x, y))

for all x, y ∈ K, where

m (x, y)=max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

and ϕ : [0, +∞) → [0, +∞) is a real function satisfying conditions (i)–(iv) in

Theorem 2.1. Then T has a unique fixed point.

Proof. Taking f(t) = t in the proof of Theorem 2.1 we obtain Corollary 2.2.
¤

Corollary 2.3. Let K be a nonempty subset of a metric space (X, d) and

let f and T be a self-mappings of K. Assume that clT (K) ⊂ f(K) and clT (K)
is complete. If T satisfies the following inequality for all x, y ∈ K,

d(Tx, Ty) ≤ ψ(M(x, y)) (15)

where M(x, y) is defined by (5) and ψ : [0,∞) → [0,∞) is a real function such

that

(a) ψ(t) < t for all t > 0,

(b) lims→t+ ψ(s) < t for all t > 0,
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(c) ψ(t) is non-decreasing,

(d) limt→∞(t− ψ(t)) = ∞.

Then K ∩ F (T ) ∩ F (f) is a singleton.

Proof. Set ϕ(t) = t− ψ(t), then inequality (15) implies

d(Tx, Ty) ≤ M(x, y)− ϕ(M(x, y)),

and also ϕ : [0,∞) → [0,∞) is a real function satisfying conditions (i)–(iv) in
Theorem 2.1. The result follows from Theorem 2.1. ¤

Corollary 2.4. Let K be a nonempty subset of a metric space (X, d) and

let f and T be a self-mappings of K. Assume that clT (K) ⊂ f(K) and clT (K)
is complete. If T satisfies the following inequality for all x, y ∈ M ,

d(Tx, Ty) ≤ α(M(x, y))M(x, y) (16)

where α : [0,∞) → (0, 1) is a real function such that

(a) lims→t+ α(s) < 1 for all t > 0,

(b) α(t) is non-decreasing,

(c) limt→∞ α(t) < 1.

Then K ∩ F (T ) ∩ F (f) is a singleton.

Proof. Set ϕ(t) = (1− α(t))t, then inequality (16) implies

d(Tx, Ty) ≤ M(x, y)− ϕ(M(x, y)),

where ϕ : [0,∞) → [0,∞) is a real function satisfying conditions (i)–(iv) in
Theorem 2.1. The result now follows from Theorem 2.1. ¤

In Theorem 2.1, if ϕ(t) = (1− k)t for a constant k with 0 < k < 1, then we
get:

Corollary 2.5 ([18], [21], Theorem 2.1). Let K be a subset of a metric

space (X, d), and f and T be weakly compatible self-maps of K. Assume that

clT (K) ⊂ f(K), clT (K) is complete, and T and f satisfy for all x, y ∈ K and

0 < k < 1,

d(Tx, Ty) ≤ k max {d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)} . (17)

Then K ∩ F (f) ∩ F (T ) is a singleton.
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Corollary 2.6 ([24], Theorem 2.1). Let KM be a closed subset of a metric

space (X, d), and let f , T be pointwise R-weakly commuting self-maps of K.

Assume that either T (K) ⊂ f(K) and f(K) is closed or cl(T (K)) ⊂ f(K). If

cl(T (K)) is complete, T is f -continuous and T and f satisfy (17). Then K ∩
F (f) ∩ F (T ) is a singleton.

Corollary 2.7 (Das and Naik [15]). Let (X, d) be a complete metric space,

T, f : X → X satisfy (17). Suppose that T , f are commuting maps, f is con-

tinuous and T (X) ⊂ f(X). Then T and f have a unique common fixed point

in X.

In Theorem 2.1, if ϕ(t) = (1 − k)t for a constant k with 0 < k < 1, and
M(x, y) = d(fx, fy), then we get:

Corollary 2.8 ([2], Theorem 2.1). Let K be a subset of a metric space (X, d),
and f and T be weakly compatible self-maps of K. Assume that clT (K) ⊂ f(K),
clT (K) is complete, and T is f -contraction. Then K∩F (f)∩F (T ) is a singleton.

Corollary 2.9 (Jungck [19]). Let (X, d) be a complete metric space, T, f :
X → X be self-maps of X. Suppose that T is f -contraction, T , f are commuting

maps, f is continuous and T (X) ⊂ f(X). Then T and f have a unique common

fixed point in X.

Remark 2.10.

(1) Theorem 2.1 extends Theorem 1 due to Berinde [7], Theorems 2.1 and 2.5
due to Beg and Abbas [5] and Theorem 3.1 due to Song [32].

(2) In Corollary 2.2, if ϕ(t) = (1− k)t for a constant k with 0 < k < 1, then we
get the main result of Ćirić [11].

(3) Corollary 2.3 extends Theorem 1 due to Pant [25] to weakly compatible
maps with more general contractive condition and generalizes main result of
Boyd and Wong [9].

Recently, Chen and Li [10] introduced the class of Banach operator pairs,
as a new class of noncommuting maps and it has been further studied by Al-

Thagafi and Shahzad [3], Hussain [17] and Pathak and Hussain [28]. The
pair (T, f) is called a Banach operator pair, if the set F (f) is T -invariant, namely
T (F (f)) ⊆ F (f). Obviously, commuting pair (T, f) is a Banach operator pair
but converse is not true in general, see [10], [28]. If (T, f) is a Banach operator
pair, then (f, T ) need not be a Banach operator pair (cf. Example 1 [10]). It is
important to note that the class of Banach operator pairs is different from that of
weakly compatible maps as is clear from the following example (see also [10], [28]).
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Example 2.11. Consider K =R2 with the norm ‖(x, y)‖= |x|+ |y|, (x, y)∈K.
Define T and f on K as follows:

T (x, y) =
(

x3 + x− 1,
3
√

x2 + y3 − 1
3

)
,

f(x, y) =
(
x3 + x− 1, 3

√
x2 + y3 − 1

)
.

Then

F (T ) = {(1, 0)}; F (f) = {(1, y) : y ∈ R1};

C(f, T ) =
{
(x, y) : y = 3

√
1− x2, x ∈ R1

}
;

T (F (f)) = {T (1, y) : y ∈ R1} =
{(

1,
y

3

)
: y ∈ R1

}
⊆ {(1, y) : y ∈ R1} = F (f).

Thus, (T, f) is a Banach operator pair. It is easy to see that T and f do not
commute on the set C(f, T ), so T and f are not compatible.

As an application of Corollary 2.2, we obtain the following general result for
Banach operators.

Theorem 2.12. Let K be a nonempty subset of a metric space (X, d), and

T , f be self-maps of K. Assume that F (f) is nonempty, cl(T (F (f))) ⊆ F (f),
cl(T (K)) is complete, and T , f satisfy inequality (4), where ϕ : [0, +∞) →
[0,+∞) is a real function satisfying conditions (i)–(iv) in Theorem 2.1. Then

K ∩ F (T ) ∩ F (f) is a singleton.

Proof. cl(T (F (f))) being subset of cl(T (K)) is complete and cl(T (F (f))) ⊆
F (f). Notice that M(x, y) coincides with m(x, y) on F (f), hence for all x, y ∈
F (f), we have by (4),

d(Tx, Ty) ≤ M(x, y)− ϕ(M(x, y)) = m(x, y)− ϕ(m(x, y)). ¤

By Corollary 2.2, T has a unique fixed point z in F (f) and consequently,
K ∩ F (T ) ∩ F (f) is a singleton.

Corollary 2.13. Let K be a nonempty subset of a metric space (X, d), and

(T, f) be a Banach operator pair on K. Assume that cl(T (K)) is complete, F (f)
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is nonempty and closed and T , f satisfy (4) where ϕ : [0,+∞) → [0,+∞) is a

real function satisfying conditions (i)–(iv) in Theorem 2.1. Then K∩F (T )∩F (f)
is a singleton.

Corollary 2.14. Let K be a nonempty subset of a metric space (X, d), and

T , f be self-maps of K. Assume that F (f) is nonempty, clT (F (f)) ⊆ F (f),
cl(T (K)) is complete. If T satisfies the following inequality for all x, y ∈ K,

d(Tx, Ty) ≤ ψ(M(x, y))

where ψ : [0,∞) → [0,∞) is a real function satisfying conditions (a)–(d) in

Corollary 2.3. Then K ∩ F (T ) ∩ F (f) is a singleton.

Proof. Set ϕ(t) = t − ψ(t), then as in the proof of Corollary 2.3, T , f

satisfy (4) and ϕ : [0,∞) → [0,∞) satisfies conditions (i)–(iv) in Theorem 2.1.
The result follows from Theorem 2.12. ¤

In Theorem 2.12 and Corollary 2.13, if ϕ(t) = (1 − k)t for a constant k

with 0 < k < 1, then we obtain the following results which extend and improve
Lemma 3.1 of Chen and Li [10], Lemma 2.1 in [28], and provide the conclusions
about common fixed points of Theorem 2.1 for the different classes of maps.

Corollary 2.15 ([3], Theorem 3.2). Let K be a nonempty subset of a

metric space (X, d), and T , f be self-maps of K. Assume that F (f) is non-

empty, cl(T (F (f))) ⊆ F (f), cl(T (K)) is complete, and T , f satisfy (17). Then

M ∩ F (T ) ∩ F (f) is a singleton.

Corollary 2.16. Let K be a nonempty subset of a metric space (X, d), and

(T, f) be a Banach operator pair on K. Assume that cl(T (K)) is complete, T ,

f satisfy (17) and F (f) is nonempty and closed. Then K ∩ F (T ) ∩ F (f) is a

singleton.

The following example shows that the contractive condition (4) is substan-
tially more general than the condition (17), even if (X, d) is compact and convex
Euclidean space.

Example 2.17. Let K =
[
0, 1

2

]
be the closed interval with usual metric and

let f, T : K → K and ϕ : [0,+∞) → [0, +∞) be mappings defined as follows:

f(x) = x2 for all 0 ≤ x ≤ 1
2
,

T (x) = x2 − x4, for all 0 ≤ x ≤ 1
2
,
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ϕ(t) = t2, for 0 ≤ t ≤ 1
2
,

ϕ(t) =
1
2
t, for t >

1
2
.

Let x, y in K be arbitrary. Without loss of generality we may suppose that x ≤ y.
Then we have

M (x, y)

= max{d(f(x), f(y)), d(f(x), T (x)), d(f(y), T (y)), d(f(x), T (y)), d(f(y), T (x))}
= d(f(y), T (x)),

d(f(y), T (x)) = y2 − x2(1− x2).

Since y2 ≥ y2 − x2(1− x2)) for all x ∈ [
0, 1

2

]
, it follows that

−y4 ≤ −(y2 − x2(1− x2))2.
Thus we have

d(T (x), T (y)) = y2 − y4 − x2 + x4 = (y2 − x2(1− x2))− y4

≤ (y2 − x2(1− x2))− (y2 − x2(1− x2))2

= d(f(y), T (x))− [d(f(y), T (x))]2 = M(x, y)− ϕ(M(x, y)).

Therefore, f and T satisfy (4). Also it is easy to see that the mapping ϕ(t) satisfies
all hypotheses (i)-(iv) in Theorem 2.1. Thus we can apply our Theorem 2.1 and
Corollaries 2.2, 2.3 and 2.4, Theorem 2.12 and Corollaries 2.13 and 2.14. On the
other hand, for any fixed k; 0 < k < 1, we have, for x = 0 and each y ∈ X with
0 < y <

√
1− k,

d(T (0), T (y)) = y2 − y4 = (1− y2)y2 > k · y2 = k · d(f(y), T (0)) = k ·M(0, y).

Thus, T does not satisfy (17). Therefore, the Theorems of Jungck and Hussain

[21], Al-Thagafi and Shahzad [2], Jungck [19], Das and Naik [15], and Ćirić

[11], as well as the Theorem of Al-Thagafi and Shahzad [3], can not be applied.

3. An application to variational inequalities

In this section, we apply Corollary 2.15 to show the existence of solution
of variational inequalities as in the works of Belbas and Mayergoyz [6]
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Pathak [27]. Variational inequalities arise in optimal stochastic control as well as
in other problems in mathematical physics, for examples, deformation of elastic
bodies stretched over solid obstacles, elastic-plastic torsion etc. [16], [28]. The
iterative method for solutions of discrete variational inequalities are suitable for
implementation on parallel computers with single instruction, multiple-data ar-
chitecture, particularly on massively parallel processors.

The variational inequality problem is to find a function u such that

max{Lu− f, u− φ} = 0 on Ω, u = 0 on ∂Ω, (18)

where Ω is a nonempty open bounded subset of RN for some q ∈ Ω with smooth
boundary such that 0 ∈ cl(Ω), L is an elliptic operator defined on Ω by

L = −aij(x)∂2/∂xi∂xj + bi(x)∂/∂xi + c(x).IN ,

where summation with respect to repeated indices is implied, c(x) ≥ 0, [aij(x)] is
a strictly positive definite matrix, uniformly in x, for x ∈ Ω, f and φ are smooth
functions defined in Ω and φ satisfies the condition: φ(x) ≥ 0 for x ∈ ∂Ω.

The corresponding problem of stochastic optimal control can be described
as follows: L − cI is the generator of a diffusion process in RN , c is a discount
factor, f is the continuous cost, and φ represents the cost incurred by stopping the
process. The boundary condition “u = 0 on ∂Ω” expresses the fact that stopping
takes place either prior or at the time that the diffusion process exits from Ω.

A problem related to (18) is the two-obstacle variational inequality. Given
two smooth functions φ and µ defined on Ω such that φ ≤ µ on Ω, φ ≤ 0 ≤ µ on
∂Ω, the corresponding variational inequality is as follows:

max{min[Lu− f, u− φ], u− µ} = 0 on Ω, u = 0 on ∂Ω. (19)

Let A be an N×N matrix corresponding to the finite difference discretization
of the operator L. We shall make the following assumptions about the matrix A:

Aii = 1,
∑

j:j 6=i

Aij > −1, Aij < 0 for i 6= j. (20)

These assumptions are related to the definition of “M -matrices”; matrices arising
from the finite difference discretization of continuous elliptic operators will have
the property (20) under the appropriate conditions and Q denotes the set of all
discretized vectors in Ω (see [8], [28], [33]). Note that the matrix A is an M -matrix
if and only if every off-diagonal entry of A is nonpositive.
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Let B = IN −A. Then the corresponding properties for the B-matrices are:

Bii = 0,
∑

j:j 6=i

Bij < 1, Bij > 0 for i 6= j. (21)

Let q = maxi

∑
j Bij and A∗ be an N × N matrix such that A∗ii = 1 − q and

A∗ij = −q for i 6= j. Then we have B∗ = IN −A∗.
Now, we show the existence of iterative solutions of variational inequalities:
Consider the following discrete variational inequalities as mentioned above:

max[min{A(x−A∗.d(Ix, Tx))− f, x−A∗.d(Ix, Tx)− φ},
x−A∗.dist(Ix, Tx)− µ] = 0, (22)

where T , I are mappings from RN into itself implicitly defined by

Tx = min k
[
max{BIx + A(1−B∗). dist(Ix, Tx) + f,

(1−B∗). dist(Ix, Tx) + φ}, (1−B∗).dist(Ix, Tx) + µ
]

(23)

for all x ∈ cl(Q), 0 < k < 1 such that the following condition holds:
(i) cl(T (Ω)) is complete, F (I) is nonempty and clT (F (I)) ⊆ F (I).
Then (22) is equivalent to the common fixed point problem:

x = Tx = Ix. (24)

In a two-person game we determine the best strategies for each player on the
basis of maxmin and minmax criterion of optimality. This criterion will be well
stated as follows:
A player lists his/her worst possible outcomes and then he/she chooses that strat-
egy which corresponds to the best of these worst outcomes. Here, the problem
(22) exhibits the situation in which two players are trying to control a diffusion
process; the first player is trying to maximize a cost functional, and the second
player is trying to minimize a similar functional. The first player is called the
maximizing player and the second one the minimizing player. Here, f represents
the continuous rate of cost for both players, φ is the stopping cost for the maxi-
mizing player, and µ is the stopping cost for the minimizing player. This problem
is fixed by inducting a pair of maps (T, I) under the constrained condition (i) as
stated above.

Theorem 3.1. Under the assumptions (20) and (21), a solution for (24)
exists.
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Proof. Let (Ty)i = k(1 − B∗
ij).[d(Iyi, T yi) + µi] for any y ∈ cl(Q) and

any i, j = 1, 2, . . . , N . Now, for any x ∈ cl(Q), since
(Tx)i ≤ k(1−B∗

ij).[dist(Ixi, Txi) + µi], we have

(Tx)i − (Ty)i ≤ k(1−B∗
ij).{d(Ixi, Txi)− d(Iyi, T yi)}

≤ k max{d(Ixi, Txi), d(Iyi, T yi)}
≤ k max{d(Ixi, Txi), d(Iyi, T yi), d(Ixi, Tyi), d(Iyi, Txi)}. (25)

If

(Ty)i = max k{BijIyj + (1−B∗
ij).d(Iyi, Tyi) + fi, (1−B∗

ij).d(Iyi, T yi) + φi},

i.e. if the maximizing player succeeds to maximize a cost functional in his/her
strategy which corresponds to the best of N worst outcomes from his/her list,
then the game would be one sided. In this situation, we introduce the one sided
operator:

T+x = max k{BIx + A(1−B∗).d(Ix, Tx) + f, (1−B∗).d(Ix, Tx) + φ}.

Therefore, we have
(Ty)i = (T+y)i.

Now, if (Tx)i = k[BijIxj + Aij(1 − B∗
ij).d(Ixi, Txi) + fi], then since (Ty)i ≥

k[BijIyj + Aij(1−B∗
ij).d(Iyi, T yi) + fi], by using (20), we have

(T+x)i − (T+y)i ≤ k[Bij .‖Ixi − Iyi‖+ (1−B∗
ij). max{d(Ixi, Txi), d(Iyi, T yi)}]

≤ k[Bij .‖Ixi − Iyi‖
+ (1−B∗

ij).max{d(Ixi, Txi), d(Iyi, T yi), d(Ixi, T yi), d(Iyi, Txi)}]. (26)

If (Tx)i = k(1−B∗
ij).d(Ixi, Txi) + φi then since

(Ty)i ≥ k(1−B∗
ij).d(Iyi, T yi) + φi,

we have

(Tx)i − (Ty)i ≤ k(1−B∗
ij).max{d(Ixi, Txi), d(Iyi, T yi)}

≤ k(1−B∗
ij). max{d(Ixi, Txi), d(Iyi, T yi), d(Ixi, T yi]), d(Iyi, Txi)}. (27)

Hence, from (25)–(27), we have

(Tx)i − (Ty)i ≤ k[q.‖Ix− Iy‖+ (1− q).max{d(Ix, Tx), d(Iy, Ty),

d(Ix, Ty), d(Iy, Tx)}]. (28)
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Since x and y are arbitrarily chosen, we have

(Ty)i − (Tx)i ≤ k[q.‖Ix− Iy‖+ (1− q).max{d(Ix, Tx), d(Iy, Ty),

d(Ix, Ty), d(Iy, Tx)}]. (29)

From (28) and (29), it follows that

‖Tx− Ty‖ ≤ k[q.‖Ix− Iy‖+ (1− q).max{d(Ix, Tx), d(Iy, Ty),

d(Ix, Ty), d(Iy, Tx)}]
≤ k[max{‖Ix−Iy‖, max{d(Ix, Tx), d(Iy, Ty), d(Ix, Ty), d(Iy, Tx)}}]

that is,

‖Tx−Ty‖ ≤ k max
{‖Ix−Iy‖, ‖Ix−Tx‖, ‖Iy−Ty‖, ‖Ix−Ty‖, ‖Iy−Tx‖}.

Hence the condition (17) is satisfied. Therefore, Corollary 2.15 ensures the exis-
tence of a solution of (24). This completes the proof. ¤
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[29] V. Rakočević, Quasi contraction nonself mappings on Banach spaces and common fixed
point theorems, Publ. Math. Debrecen 58 (2001), 451–460.

[30] S. Reich, Some fixed point problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat.
Natur. (8)57, no. 3–4 (1975), 194–198.

[31] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001),
2683–2693.

[32] Y. Song, Coincidence points for noncommuting f -weakly contractive mappings, Internat,
J. Computational and Applied Math. 2 (2007), 51–57.

[33] R. S. Varga, Matrix Iterative Analysis, Englewood Cliff, Prentice Hall, N.J., 1982.
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