Parameter-independent structure in periodic orbits of an iterated function system on the real line

By DIXON J. JONES (Fairbanks, Alaska)

Abstract

For the iterated function system on \mathbb{R} comprising the maps $f(x)=$ $a x+1$ and $g(x)=b x$, with $a>0$ and $0<b<1$, we represent each n-cycle by the composition (or word) in f and g corresponding to the cycle's point of least magnitude (or perigee). These representations are partitioned into equivalence classes using simple combinatorial criteria. Associated with each n-cycle are n polynomials in a and b whose values at a special value of a are partially ordered. An example is given showing that, for fixed b, the perigee word of an n-cycle is a function of a; but the ordering of the polynomial values enables us to prove that the maximal perigee word in each equivalence class is independent of the parameters a and b.

1. Introduction

Let $\Psi(a, b)$ be the iterated function system on \mathbb{R} comprising the maps

$$
\begin{equation*}
f(x)=a x+1 \quad \text { and } \quad g(x)=b x \tag{1}
\end{equation*}
$$

where $a>0$ and $0<b<1$. The dynamics of this system for $a>1$ are considered in [2]. Here we present some combinatorial properties of Ψ 's cycle structure which are independent of the parameters a and b; in particular, these properties hold whether or not f is a contraction.

[^0]Given the maps f and g defined in (1), and a positive integer n, choose functions $t_{i}, 1 \leq i \leq n$, from the set $\{f, g\}$, and compose them by right-to-left concatenation. We call $w=t_{n} t_{n-1} \cdots t_{1}$ the word for the cycle point x_{1} satisfying

$$
t_{n} t_{n-1} \cdots t_{1}\left(x_{1}\right)=x_{1} .
$$

Since the word g^{n} yields just the trivial cycle point $x_{1}=0$ for all $n \in \mathbb{N}$ and all $b \in(0,1)$, we exclude words of this form in what follows. Let Σ^{n} be the set of n-letter words on the symbols f and g in which f appears at least once. The cyclic permutations, or rotations, of a word $w \in \Sigma^{n}$ yield the set of cycle points $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, in which the (not necessarily unique) point of least magnitude or perigee of the cycle [1] is generated by its corresponding perigee word. We use the following combinatorial properties of cycle words.

Definition 1. Given $w \in \Sigma^{n}$.
(a) The f-rank of w, denoted by r, is its number of f s. Note $r \geq 1$.
(b) The density, denoted by α, is the ratio $(n-r) / r$ of the number of $g s$ to $f \mathrm{~s}$ in w.
(c) The base markers in w are the f s indexed from left to right and from 1 to r in w.
(d) For $2 \leq i \leq r$, the i th gap d_{i} is the number of g s between base markers f_{i-1} and f_{i}, while d_{1} is the number of $g s$ to the left of f_{1}. The ordered r-tuple $D(w)=\left(d_{1}, d_{2}, \ldots, d_{r}\right)$ is the gaps vector of $w .{ }^{1}$
(e) The g-rank of base marker f_{i} is the number of $g s$ to its left in w, and is denoted by q_{i}. Equivalently, it is the sum of gaps $d_{1}+d_{2}+\cdots+d_{i}$. The ordered r-tuple $Q(w)=\left(q_{1}, q_{2}, \ldots, q_{r}\right)$ is the cycle word code, or more briefly the code of w.

For example, $g g f_{1} g f_{2} f_{3} g g f_{4} f_{5}$ shows the base markers labeled for the word $w=g g f g f f g g f f \in \Sigma^{10}$, for which $D(w)=(2,1,0,2,0)$ and $Q(w)=(2,3,3,5,5)$.

Given a and b, a word's length and code determine its cycle point.
Proposition 1. For $n \in \mathbb{N}$ and $1 \leq r \leq n$, let $w \in \Sigma^{n}$ have code $\left(q_{1}, q_{2}, \ldots, q_{r}\right)$ and density α. Then

$$
\begin{equation*}
x_{1}=\frac{1}{1-\left(a b^{\alpha}\right)^{r}} \sum_{i=1}^{r} b^{q_{i}} a^{i-1} \tag{2}
\end{equation*}
$$

is the unique point satisfying $w\left(x_{1}\right)=x_{1}$.

[^1]Proof. We show that

$$
\begin{equation*}
w(x)=a^{r} b^{n-r} x+\sum_{i=1}^{r} b^{q_{i}} a^{i-1} \tag{3}
\end{equation*}
$$

from which the result follows. For $m \geq 0$ and $n>m$, define Σ_{m}^{n} to be the set of words w that can be written $w=t_{n} \ldots t_{m+2} f g^{m}$, where $t_{i} \in\{f, g\}$, so that

$$
\Sigma^{n}=\bigcup_{m<n} \Sigma_{m}^{n}
$$

For each $m \geq 0$ we prove by induction on n that, for all $n>m$,

$$
\begin{equation*}
w \in \Sigma_{m}^{n} \Longrightarrow w(x)=a^{r} b^{n-r} x+\sum_{i=1}^{r} b^{q_{i}} a^{i-1} \tag{4}
\end{equation*}
$$

For the initial step, fix $m \geq 0$, use the base value $n=m+1$, and let $w \in \Sigma_{m}^{m+1}$. Then $w=f g^{m}, r=1, q_{1}=0$, and

$$
\begin{equation*}
f g^{m}(x)=a b^{m} x+1=a^{r} b^{(m+1)-r} x+\sum_{i=1}^{r} b^{q_{i}} a^{i-1} \tag{5}
\end{equation*}
$$

as required. For the inductive step, let $n>m$, and assume (4). Let $w=$ $t_{n+1} \ldots t_{m+2} f g^{m} \in \Sigma_{m}^{n+1}$, where $Q(w)=\left(q_{1}, \ldots, q_{r}\right)$. Write $w=t_{n+1} w^{\prime}$, where w^{\prime} has length n. If $t_{n+1}=f$, then $q_{1}=0, Q\left(w^{\prime}\right)=\left(q_{2}, \ldots, q_{r}\right)$, and

$$
\begin{equation*}
w(x)=a\left(a^{r-1} b^{n-(r-1)} x+\sum_{i=2}^{r} b^{q_{i}} a^{i-1}\right)+1 \tag{6}
\end{equation*}
$$

If $t_{n+1}=g$, on the other hand, then $Q\left(w^{\prime}\right)=\left(q_{1}-1, q_{2}-1, \ldots, q_{r}-1\right)$, and

$$
\begin{equation*}
w(x)=b\left(a^{r} b^{n-r} x+\sum_{i=1}^{r} b^{q_{i}-1} a^{i-1}\right) . \tag{7}
\end{equation*}
$$

The induction hypothesis is confirmed, since both (6) and (7) reduce to

$$
w(x)=a^{r} b^{(n+1)-r} x+\sum_{i=1}^{r} b^{q_{i}} a^{i-1}
$$

Note that, if $a=b^{-\alpha}$, we have division by 0 in equation (2), and the cycle point does not exist; we return to this important fact in Section 7.

2. Representing cycles by perigee words

In general, the correspondence between a cycle point word in Σ^{n} and its code is not a bijection. For instance, the words $g g f g f, g g f g f g, g g f g f g g$, and so on all have gaps vector $(2,1)$ and code $(2,3)$. We now define a subset F^{n} of Σ^{n} which contains all the perigee words, and in which every word is uniquely represented by its gaps vector, or, equivalently, by its code.

Definition 2. For each $n \in \mathbb{N}$ and for $1 \leq r \leq n$,

$$
\begin{aligned}
& F^{n}=\left\{w \in \Sigma^{n} \mid w=t_{n} t_{n-1} \cdots t_{2} t_{1} \text { with } t_{1}=f\right\} \\
& F_{r}^{n}=\left\{w \in F^{n} \mid w \text { has } f \text {-rank } r\right\} \\
& P_{r}^{n}=\left\{w \in F_{r}^{n} \mid w \text { is a perigee word }\right\}
\end{aligned}
$$

F_{r}^{n} contains P_{r}^{n} because, if $t_{n} \ldots t_{2} g\left(x_{1}\right)=x_{1}$, then $\left|x_{2}\right|=\left|g\left(x_{1}\right)\right|<\left|x_{1}\right|$; hence x_{1} cannot be the perigee, and no word ending in g can be a perigee word. The sets P_{r}^{n} are equivalence classes imposed on the set of n-length perigee words by the relation "possesses r letters f " for $1 \leq r \leq n$. Table 1 shows the P_{r}^{7} for $r=1, \ldots, 7$ in $\Psi\left(\frac{5}{3}, \frac{1}{2}\right)$. By construction, the perigees in this table increase in absolute value within each P_{r}^{n}.

Note that, for every $w \in F_{r}^{n}$, the base marker f_{r} is always rightmost and its g-rank is always $n-r$, so all words in F_{r}^{n} have $q_{r}=n-r=r \alpha$. Furthermore, the allowable rotations of any $w \in F_{r}^{n}$ put each f in the rightmost position exactly once; consequently, w admits of r such rotations and r (not necessarily distinct) cycle points. Finally, we have the useful property that any allowable rotation of a word in F_{r}^{n} yields a corresponding cyclic permutation of its gaps vector. That is, for $w \in F_{r}^{n}$ and $1 \leq i \leq r$, w's i th gap d_{i} is the number of g s between base markers f_{i-1} and f_{i}, indices taken modulo $r .^{2}$ This follows because none of the g s counted by d_{1} lie to the right of f_{r} for any word in F_{r}^{n}.

While there is an obvious bijection between words in F_{r}^{n} and their codes, we do not claim a bijection between words and cycle points. Distinct cycles need not be disjoint; for instance, in $\Psi\left(2, \frac{1}{2}\right)$, the cycle words ggggffgfggf and $g g g f g g f f g g f$ both yield the perigee $\frac{3}{7}$. However, disjoint cycles are not required here.

[^2]| set | perigee word | code | perigee | decimal |
| :---: | :---: | :---: | :---: | ---: |
| P_{1}^{7} | ggggggf | (6) | $3 / 187$ | 0.01604 |
| P_{2}^{7} | gggggff | $(5,5)$ | $24 / 263$ | 0.09125 |
| | ggggfgf | $(4,5)$ | $33 / 263$ | 0.12548 |
| | gggfggf | $(3,5)$ | $51 / 263$ | 0.19392 |
| P_{3}^{7} | ggggfff | $(4,4,4)$ | $147 / 307$ | 0.47883 |
| | gggfgff | $(3,4,4)$ | $174 / 307$ | 0.56678 |
| | gggffgf | $(3,3,4)$ | $219 / 307$ | 0.71336 |
| | ggfggff | $(2,4,4)$ | $228 / 307$ | 0.74267 |
| | ggfgfgf | $(2,3,4)$ | $273 / 307$ | 0.88925 |
| P_{4}^{7} | gggffff | $(3,3,3,3)$ | $816 / 23$ | 35.47826 |
| | ggfgfff | $(2,3,3,3)$ | 39 | 39.00000 |
| | ggffgff | $(2,2,3,3)$ | $1032 / 23$ | 44.86957 |
| | gfggfff | $(1,3,3,3)$ | $1059 / 23$ | 46.04348 |
| | gfgfgff | $(1,2,3,3)$ | $1194 / 23$ | 51.91304 |
| P_{5}^{7} | ggfffff | $(2,2,2,2,2)$ | $-4323 / 2153$ | -2.00790 |
| | gfgffff | $(1,2,2,2,2)$ | $-4566 / 2153$ | -2.12076 |
| | gffgfff | $(1,1,2,2,2)$ | $-4971 / 2153$ | -2.30887 |
| P_{6}^{7} | gffffff | $(1,1,1,1,1,1)$ | $-22344 / 14167$ | -1.57719 |
| P_{7}^{7} | fffffff | $(0,0,0,0,0,0,0)$ | $-3 / 2$ | -1.50000 |

Table 1. The distinct perigee words of length 7 , with their codes and perigee values, for $f:=f(x)=\frac{5}{3} x+1$ and $g:=g(x)=\frac{x}{2}$.

3. Minimal and maximal perigees

Our main results show that the minimal and maximal perigee words in each equivalence class may be characterized purely combinatorially.

Theorem 1. In $\Psi(a, b)$, the minimal perigee word with density α in P_{r}^{n} is $w_{\min }=g^{r \alpha} f^{r}$, whose code is the r-tuple

$$
Q\left(w_{\min }\right)=(r \alpha, r \alpha, \ldots, r \alpha)
$$

Proof. Let $g^{r \alpha} f^{r}(y)=y$. Given any $w \neq g^{r \alpha} f^{r} \in F_{r}^{n}$, with $Q(w)=$ $\left(q_{1}, \ldots, q_{r}\right)$, there exists an integer $j, 1 \leq j \leq r$, for which

$$
\begin{array}{ll}
q_{i}<r \alpha, & 1 \leq i \leq j \\
q_{i} \leq r \alpha, & j+1 \leq i \leq r
\end{array}
$$

By Proposition 1 with $0<b<1$, the cycle point x_{1} for w satisfies

$$
x_{1}=\frac{1}{1-\left(a b^{\alpha}\right)^{r}} \sum_{i=1}^{r} b^{q_{i}} a^{i-1}>\frac{1}{1-\left(a b^{\alpha}\right)^{r}} \sum_{i=1}^{r} b^{r \alpha} a^{i-1}=y
$$

and the theorem follows.
Theorem 2 (Maximal Perigee Property). In $\Psi(a, b)$, the maximal perigee word $w_{\max } \in P_{r}^{n}$ with density α has code

$$
Q\left(w_{\max }\right)=(\lceil\alpha\rceil,\lceil 2 \alpha\rceil, \ldots,\lceil r \alpha\rceil)
$$

where $\lceil\cdot\rceil$ is the ceiling function.
For example, $n=7$ and $r=4$ yield $\alpha=\frac{3}{4}$, and the maximal perigee word code in P_{4}^{7} is

$$
\left(\left\lceil\frac{3}{4}\right\rceil,\left\lceil\frac{2 \cdot 3}{4}\right\rceil,\left\lceil\frac{3 \cdot 3}{4}\right\rceil,\left\lceil\frac{4 \cdot 3}{4}\right\rceil\right)=(1,2,3,3)
$$

as in Table 1. (The result holds trivially when $\alpha=0$, that is, when $r=n$.)
An inquiry into general n-cycles follows, culminating in a proof of Theorem 2. In Section 4 we show how to use a word's code to calculate the code of any rotation. A lemma of Chisala (Section 5) implies that, among a word's rotated codes, there are at least two "extremal" codes: one which is superdiagonal and one subdiagonal. In Section 6 we introduce the deviation vector and maximum deviation of a word, and prove that the deviation vectors of a word's rotations become cyclic permutations of each other under a particular vertical translation; a special case involving subdiagonal words is crucial later.

Section 7 gives the name code function to the polynomial part of equation (2), along with an example showing that, for a given value of the parameter a and for fixed b, the perigee of a cycle corresponds to the minimal code function. Although no cycle points exist when $a=b^{-\alpha}$, the code functions for a word and its rotations are well-defined for this value of a, and in Section 8 we show that the code function values at $a=b^{-\alpha}$ are partially ordered, with the smallest and largest values corresponding to super- and subdiagonal codes, respectively. Section 9 establishes upper and lower bounds for super- and subdiagonal code function values at $a=b^{-\alpha}$, respectively, over all words in F_{r}^{n}, and we prove that the only superdiagonal word in F_{r}^{n} whose maximum deviation is less than 1 is the word whose code is $(\lceil\alpha\rceil,\lceil 2 \alpha\rceil, \ldots,\lceil r \alpha\rceil)$. Finally, Section 10 employs these results to prove the Maximal Perigee Property.

We are less interested here with the cycle point values x_{i} than with their combinatorial representations, largely because the interesting aspects of the representations occur when the parameter values preclude the existence of the points.

4. Rotations of codes

We begin by showing how codes change when the words they belong to are rotated. We use the following notation, where i and $j \in\{1, \ldots, r\}$. Given $w \in F_{r}^{n}$ with $D(w)=\left(d_{1}, \ldots, d_{r}\right), w_{i}$ is the rotation of w whose gaps vector begins with d_{i}. (Hence $w_{1}=w$.) $D\left(w_{i}\right)$ is abbreviated D_{i}, and likewise $Q_{i}=Q\left(w_{i}\right) . x_{i}$ is the cycle point for w_{i}; that is, $w_{i}\left(x_{i}\right)=x_{i}$. Lastly, we write $y \sim z$ if y is a cyclic permutation of z. (For a given w_{1}, we have $w_{i} \sim w_{j}$ and $D_{i} \sim D_{j}$, but $Q_{i} \sim Q_{j}$ only for $w=f^{n}$).

Proposition 2. If $w_{1} \in F_{r}^{n}$ has code $Q_{1}=\left(q_{1}, q_{2}, \ldots, q_{r}\right)$, then the rotation $w_{i}, 1 \leq i \leq r$, has code $Q_{i}=\left(q_{1}{ }^{\prime}, q_{2}{ }^{\prime}, \ldots, q_{r}{ }^{\prime}\right)$, where

$$
q_{j}^{\prime}= \begin{cases}q_{i+j-1}-q_{i-1}, & j \in\{1, \ldots, r-i+1\} \tag{8}\\ q_{r}+q_{i+j-r-1}-q_{i-1}, & j \in\{r-i+2, \ldots, r\}\end{cases}
$$

and where we define $q_{0}=d_{0}=0$.
Proof sketch. The gaps vector for w_{i} is

$$
D_{i}=\left(d_{i}, d_{i+1}, \ldots, d_{r}, d_{1}, \ldots, d_{i-1}\right)
$$

so $D_{i}=\left(d_{1}{ }^{\prime}, d_{2}{ }^{\prime}, \ldots, d_{r}{ }^{\prime}\right)$ has

$$
d_{j}^{\prime}= \begin{cases}d_{i+j-1}, & j \in\{1, \ldots, r-i+1\} \\ d_{i+j-r-1}, & j \in\{r-i+2, \ldots, r\}\end{cases}
$$

The formulas (8) then follow directly. The definitions $q_{0}=d_{0}=0$ preserve identity when $i=1$.

The transformation in Proposition 2 may also be expressed as

$$
\begin{equation*}
q_{j-i+1}^{\prime}=q_{j}-q_{i-1}, \quad 1 \leq j \leq r \tag{9}
\end{equation*}
$$

where arithmetic is performed modulo $n-r$, and the indices are calculated modulo r. The formulas (8) will be used in the final proof of the Maximal Perigee Property (Section 10), while (9) will be applied in Section 6.

5. Chisala's Lemma, and sub- and superdiagonal codes

We now invoke a modified lemma of Chisala [3] to define two kinds of words which are "extremal," in the sense that all the partial averages of the g-ranks are either no less than or no greater than the word's density.

Lemma 1. Given a sequence $D=\left(d_{1}, \ldots, d_{r}\right)$ of real numbers and a sequence $M=\left(m_{1}, \ldots, m_{r}\right)$ of weights, let $A=\sum_{i=1}^{r} d_{i} m_{i} / \sum_{i=1}^{r} m_{i}$ be the weighted average.
(a) (Chisala 1994) There exists a cyclic permutation σ on the indices such that for every $k \in\{1, \ldots, r\}$, the partial weighted averages $\sum_{i=1}^{k} d_{\sigma(i)} m_{\sigma(i)} /$ $\sum_{i=1}^{k} m_{\sigma(i)}$ are bounded above by A.
(b) There exists a cyclic permutation τ on the indices such that for every $k \in$ $\{1, \ldots, r\}$, the partial weighted averages $\sum_{i=1}^{k} d_{\tau(i)} m_{\tau(i)} / \sum_{i=1}^{k} m_{\tau(i)}$ are bounded below by A.

The proof of part (b) follows from part (a) by considering $\left(-d_{1}, \ldots,-d_{r}\right)$.
We call a word $w \in F_{r}^{n}$, its gaps vector, and its code subdiagonal if the r-tuple

$$
\begin{equation*}
\left(\frac{q_{1}}{1}, \frac{q_{2}}{2}, \ldots, \frac{q_{r}}{r}\right) \tag{10}
\end{equation*}
$$

satisfies part (a) of Chisala's Lemma (with $A=\alpha$); or, equivalently, if $q_{i} \leq i \alpha$ for $1 \leq i \leq r$. Similarly, w is superdiagonal if (10) satisfies part (b) of Chisala's Lemma, or, equivalently, if $q_{i} \geq i \alpha$. Note that the word with code $(\alpha, 2 \alpha, \ldots, r \alpha)$, where necessarily $\alpha \in\{0,1,2, \ldots\}$, is both sub- and superdiagonal.

For example, if $w_{1} \in F_{5}^{15}$ has gaps vector $D_{1}=(1,4,2,0,3)$ and density $\alpha=2$, then w_{3} is a subdiagonal rotation with $D_{3}=(2,0,3,1,4)$ and $Q_{3}=(2,2,5,6,10)$, while w_{2} is superdiagonal with $D_{2}=(4,2,0,3,1)$ and $Q_{2}=$ $(4,6,6,9,10)$.

6. Deviations

We measure and compare a word's rotations using the maximum signed difference $q_{i}-i \alpha$.

Definition 3. Let $w_{1} \in F_{r}^{n}$ have density α and code $Q_{1}=\left(q_{1}, \ldots, q_{r}\right)$. The deviation vector of w_{1} is

$$
\Delta_{1}=\left(q_{1}-\alpha, q_{2}-2 \alpha, \ldots, q_{r}-r \alpha\right)
$$

and $q_{j}-j \alpha$ is the j th deviation, $1 \leq j \leq r$. The quantity

$$
h\left(w_{1}\right)=\max _{1 \leq j \leq r}\left(q_{j}-j \alpha\right)
$$

is the maximum deviation for w_{1}. For any $w_{i} \sim w_{1}$ we write $h_{i}=h\left(w_{i}\right)$.
Let $(y)^{j}$ be the j-tuple (y, y, \ldots, y). Given a word and one of its rotations,
we now show that special vertical translations of their deviation vectors produce two new vectors which are again cyclic permutations of each other.

Proposition 3. Given $w_{1} \in F_{r}^{n}$, and adding termwise,

$$
\Delta_{1}+\left(h_{i}\right)^{r} \sim \Delta_{i}+\left(h_{1}\right)^{r}
$$

for any $w_{i} \sim w_{1}$.
Proof. Suppose $h_{1}=q_{k}-k \alpha$ for some $k \in\{1, \ldots, r\}$. Using equation (9), we find that $h_{i}=\left(q_{k}-q_{i-1}\right)-(k-i+1) \alpha$. Writing $\left(y_{m}\right)_{m=1}^{r}$ for the r-tuple $\left(y_{1}, y_{2}, \ldots, y_{r}\right)$, we then have

$$
\begin{align*}
\Delta_{1}+\left(h_{i}\right)^{r} & =\left(q_{m}-m \alpha\right)_{m=1}^{r}+\left(q_{k}-q_{i-1}-(k-i+1) \alpha\right)_{m=1}^{r} \\
& =\left(q_{m}+q_{k}-q_{i-1}-(m+k-i+1) \alpha\right)_{m=1}^{r} \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
\Delta_{i}+\left(h_{1}\right)^{r} & =\left(q_{m}-q_{i-1}-(m-i+1) \alpha\right)_{m=i \bmod r}^{(i+r-1) \bmod r}+\left(q_{k}-k \alpha\right)_{m=i \bmod r}^{(i+r-1) \bmod r} \\
& =\left(q_{m}+q_{k}-q_{i-1}-(m+k-i+1) \alpha\right)_{m=i \bmod r}^{(i+r-1) \bmod r} \tag{12}
\end{align*}
$$

Equations (11) and (12) are identical, save for the limits on the index m, which cycles once through the numbers $1, \ldots, r$ in both cases.

As an example, take $w_{1} \in F_{5}^{12}$ having $D_{1}=(1,1,3,2,0)$ and $\alpha=\frac{7}{5}$. Then $Q_{1}=(1,2,5,7,7), \Delta_{1}=\left(-\frac{2}{5},-\frac{4}{5}, \frac{4}{5}, \frac{7}{5}, 0\right)$, and $h_{1}=\frac{7}{5}$. We also have $Q_{3}=$ $(3,5,5,6,7), \Delta_{3}=\left(\frac{8}{5}, \frac{11}{5}, \frac{4}{5}, \frac{2}{5}, 0\right)$, and $h_{3}=\frac{11}{5}$. We see that

$$
\Delta_{1}+\left(h_{3}\right)^{5}=\left(\frac{9}{5}, \frac{7}{5}, 3, \frac{18}{5}, \frac{11}{5}\right) \sim\left(3, \frac{18}{5}, \frac{11}{5}, \frac{9}{5}, \frac{7}{5}\right)=\Delta_{3}+\left(h_{1}\right)^{5}
$$

For rotations of a given w_{1}, the largest maximum deviation occurs for a superdiagonal rotation, while the smallest is attained when every difference $q_{j}-j \alpha$ is at most 0 , namely when the rotation is subdiagonal. (Note that the only superdiagonal code with maximum deviation 0 is $(\alpha, 2 \alpha, \ldots, r \alpha)$, where necessarily $\alpha \in\{0,1,2, \ldots\}$.) Proposition 3 for subdiagonal rotations merits special mention.

Corollary 1. Let w_{m} be a subdiagonal rotation of $w_{1} \in F_{r}^{n}$. Then $\Delta_{1} \sim$ $\Delta_{m}+\left(h_{1}\right)^{r}$.

With this corollary we set the stage for making subdiagonal rotations the standard against which all other rotations are measured; this will be developed further in Section 8.

7. Code functions

We now apply these properties of codes and deviation vectors to the polynomial part of the rational function of Proposition 1. Here, a is a parameter to be varied through nonnegative values, and we make extensive use of the quantity

$$
\lambda=b^{-\alpha}
$$

Let $S=\left(s_{1}, \ldots, s_{j}\right)$ be any sequence of nonnegative integers, and define u : $S \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
u(S, x)=\sum_{i=1}^{j} b^{s_{i}} x^{i-1} \tag{13}
\end{equation*}
$$

Definition 4. For $w_{1} \in F_{r}^{n}$, let $w_{i} \sim w_{1}$ have code Q_{i}. We call $u\left(Q_{i}, a\right)$ (also written $u_{i}(a)$ or $\left.u_{i}\right)$ the i th code function of w_{1}.

Code functions will be called sub- or superdiagonal in accordance with their corresponding cycle point words.

Figure 1 shows the code functions corresponding to the ten rotations of the word $w_{1} \in F_{10}^{30}$ whose gaps vector is $D_{1}=(4,2,5,1,1,0,1,2,3,1)$ and whose density is $\alpha=2$. Here $b=\frac{1}{2}$. The code functions for the perigee words are drawn in bold lines, and the upper sections of the curves are shown with compressed vertical scale for clarity. The codes for w_{1} 's rotations are listed in Table 2.

D_{1}	$(4$,	2,	5,	1,	1,	0,	1,	2,	3,	$1)$	h_{i}	$u_{i}(\lambda)$
Q_{1}	$(4$,	6,	11,	12,	13,	13,	14,	16,	19,	$20)$	5	$151 / 128$
Q_{2}	$(2$,	7,	8,	9,	9,	10,	12,	15,	16,	$20)$	3	$151 / 32$
Q_{3}	$(5$,	6,	7,	7,	8,	10,	13,	14,	18,	$20)$	3	$151 / 32$
Q_{4}	$(1$,	2,	2,	3,	5,	8,	9,	13,	15,	$20)$	0	$151 / 4$
Q_{5}	$(1$,	1,	2,	4,	7,	8,	12,	14,	19,	$20)$	1	$151 / 8$
Q_{6}	$(0$,	1,	3,	6,	7,	11,	13,	18,	19,	$20)$	2	$151 / 16$
Q_{7}	$(1$,	3,	6,	7,	11,	13,	18,	19,	20,	$20)$	4	$151 / 64$
Q_{8}	$(2$,	5,	6,	10,	12,	17,	18,	19,	19,	$20)$	5	$151 / 128$
Q_{9}	$(3$,	4,	8,	10,	15,	16,	17,	17,	18,	$20)$	5	$151 / 128$
Q_{10}	$(1$,	5,	7,	12,	13,	14,	14,	15,	17,	$20)$	4	$151 / 64$

Table 2. Gaps vector D_{1} and codes Q_{i} for the code functions of Figure 1 , with maximum deviations h_{i} and the code function values at $a=\lambda$.

We see in this example that, for fixed b, the minimal code function (and thus the perigee word) depends on a, and this is true in general. Proof of the following formal statement is left to the reader.

Figure 1. The code functions of the ten rotations of the word whose gaps vector is $D_{1}=(4,2,5,1,1,0,1,2,3,1)$, where $b=\frac{1}{2}$.

Proposition 4. In $\Psi\left(a_{0}, b\right)$ with $a_{0} \in \mathbb{R}_{+} \backslash\{\lambda\}, w_{i}$ is a perigee word precisely when $u_{i}\left(a_{0}\right)$ is minimal over all $i \in\{1, \ldots, r\}$.

8. Ordering of the code functions at $a=\lambda$

Although every rotation w_{i} yields an undefined cycle point at $a=\lambda$, the code function values $u_{i}(\lambda)$ are finite and, it turns out, in a convenient order. As the reader may surmise from the last two columns of Table 2, there is an elegant relationship between $h_{i}, u_{i}(\lambda)$, and subdiagonal rotations.

Theorem 3. In $\Psi(a, b)$, let $w_{1} \in F_{r}^{n}$ have code function u_{1}, maximum deviation h_{1}, and density α. Let $w_{m} \sim w_{1}$ be subdiagonal with code function u_{m}. Then

$$
\begin{equation*}
u_{1}(\lambda)=b^{h_{1}} u_{m}(\lambda) \tag{14}
\end{equation*}
$$

This formula says that, in a given n-cycle, a code function's value at $a=\lambda$ is a multiple of any subdiagonal code function's value at λ, where the multiplier
is a monotone function of the maximum deviation. (If w_{1} is itself subdiagonal, then $h_{1}=0$, and (14) holds trivially.)

Proof. We employ the function $u(S, x)$ from equation (13), using various values for x and sequences S. Begin with

$$
\begin{equation*}
u_{1}(\lambda)=u\left(Q_{1}, \lambda\right)=\sum_{i=1}^{r} b^{q_{i}}\left(b^{-\alpha}\right)^{i-1}=b^{\alpha} \sum_{i=1}^{r} b^{q_{i}-i \alpha}=b^{\alpha} u\left(\Delta_{1}, 1\right) \tag{15}
\end{equation*}
$$

Because w_{m} is subdiagonal, we know from Corollary 1 that Δ_{1} is simply a cyclic permutation of $\Delta_{m}+\left(h_{1}\right)^{r}$. Thus $u\left(\Delta_{1}, 1\right)=u\left(\Delta_{m}+\left(h_{1}\right)^{r}, 1\right)$. Substitution in (15) yields

$$
\begin{aligned}
u\left(Q_{1}, \lambda\right) & =b^{\alpha} u\left(\Delta_{m}+\left(h_{1}\right)^{r}, 1\right)=b^{\alpha} b^{h_{1}} u\left(\Delta_{m}, 1\right) \\
& =b^{h_{1}} u\left(Q_{m}, \lambda\right)=b^{h_{1}} u_{m}(\lambda)
\end{aligned}
$$

If $h_{i}<h_{1}$, and w_{m} is subdiagonal, then by Theorem 3 we have $u_{i}(\lambda)=$ $b^{h_{i}} u_{m} \lambda>b^{h_{1}} u_{m} \lambda=u_{1}(\lambda)$. Indeed, we can say

Corollary 2. Given $w_{i} \sim w_{1} \in F_{r}^{n}$.
(a) If $h_{i}<h_{1}$, then $u_{i}(\lambda)>u_{1}(\lambda)$.
(b) If $h_{i}=h_{1}$, then $u_{i}(\lambda)=u_{1}(\lambda)$.

It follows that the points $u_{i}(\lambda)$ are partially ordered. Since subdiagonal rotations have the smallest maximum deviation $\left(h_{i}=0\right)$, and superdiagonal rotations have the largest, Corollary 2 implies that the subdiagonal code functions intersect the line $a=\lambda$ at the highest point, while the superdiagonal code functions meet the line at the lowest point. This is illustrated in Figure 1, where u_{4} is subdiagonal and u_{1}, u_{8}, and u_{9} are superdiagonal. (This example was constructed to show that, additionally, the perigee word need not be superdiagonal in intervals not containing λ, as shown by w_{3} and w_{7} on $(0, \gamma)$ and (μ, ∞), respectively.)

9. Code function bounds

Two final lemmas are needed to prove the Maximal Perigee Property; the first establishes upper and lower bounds, respectively, on super- and subdiagonal code functions at $a=\lambda$ over all words in F_{r}^{n}.

Lemma 2. Let $w_{1} \in F_{r}^{n}$ have density α and sub- and superdiagonal rotations w_{m} and w_{k}, respectively. Then

$$
\begin{equation*}
u_{k}(\lambda) \leq r b^{\alpha} \leq u_{m}(\lambda) \tag{16}
\end{equation*}
$$

Proof. If w_{m} is subdiagonal with code $\left(q_{m, 1}, q_{m, 2}, \ldots, q_{m, r}\right)$, then $q_{m, i}-$ $i \alpha \leq 0$, and hence $b^{q_{m, i}-i \alpha} \geq 1$ for $i \in\{1, \ldots, r\}$. Thus

$$
u_{m}(\lambda)=\sum_{i=1}^{r} b^{q_{m, i}} \lambda^{i-1}=b^{\alpha} \sum_{i=1}^{r} b^{q_{m, i}-i \alpha} \geq r b^{\alpha}
$$

The derivation for the left-hand inequality in (16) is similar.
Lemma 3. The only superdiagonal word in F_{r}^{n} whose maximum deviation is less than 1 is the word whose code is $(\lceil\alpha\rceil,\lceil 2 \alpha\rceil, \ldots,\lceil r \alpha\rceil)$.

Proof. For any $w_{1} \in F_{r}^{n}$, every g-rank q_{i} is an integer. If $\alpha \notin\{0,1,2, \ldots\}$, then w_{1} 's superdiagonality and the condition $0<\max \left(q_{i}-i \alpha\right)<1$ imply that $i \alpha \leq q_{i}<i \alpha+1$ for each $i \in\{1, \ldots, r\}$, except for at least one i for which $i \alpha<q_{i}<i \alpha+1$. But the only such integers are $q_{i}=\lceil i \alpha\rceil$. As noted at the end of Section 6 , the only superdiagonal code of maximum deviation 0 has $\alpha \in$ $\{0,1,2, \ldots\}$; we thus have $i \alpha=\lceil i \alpha\rceil$ for each i, and again the lemma holds.

10. Proof of the Maximal Perigee Property

To prove the Maximal Perigee Property, we show that, for the particular value $a=\lambda$, the maximal perigee word $w_{\max } \in P_{r}^{n}$ has code $(\lceil\alpha\rceil,\lceil 2 \alpha\rceil, \ldots,\lceil r \alpha\rceil)$. It will then follow that this $w_{\max }$ is unique and minimal over all $a \in \mathbb{R}_{+}$.

Since the case $r=n$ is trivially true, assume $\alpha \neq 0$. By Corollary 2 , the minimal code function among a given word's rotations is superdiagonal at $a=\lambda$. To obtain the largest such minimal function, we seek a superdiagonal $w_{1} \in F_{r}^{n}$ for which the nonnegative quantity

$$
\begin{equation*}
r b^{\alpha}-u_{1}(\lambda) \tag{17}
\end{equation*}
$$

from Lemma 2 is minimized. Using Theorem 3, we may write this as

$$
\begin{equation*}
0 \leq r b^{\alpha}-b^{h_{1}} u_{m}(\lambda) \tag{18}
\end{equation*}
$$

where w_{m} is a subdiagonal rotation of w_{1}. From Lemma 2 we also have $u_{m}(\lambda) \geq$ $r b^{\alpha}$. Therefore

$$
-b^{h_{1}} u_{m}(\lambda) \leq-b^{h_{1}} r b^{\alpha}
$$

and this, combined with equations (17) and (18), yields

$$
0 \leq r b^{\alpha}-u_{1}(\lambda)=r b^{\alpha}-b^{h_{1}} u_{m}(\lambda) \leq r b^{\alpha}-r b^{\alpha+h_{1}}
$$

or, more simply,

$$
r b^{\alpha+h_{1}} \leq u_{1}(\lambda) \leq r b^{\alpha}
$$

The smallest possible h_{1} minimizes the range of $u_{1}(\lambda)$. Therefore the terms of the desired superdiagonal Q_{1} are the r integers on or above, and closest to, the line $y=\alpha x$; that is, $Q_{1}=(\lceil\alpha\rceil,\lceil 2 \alpha\rceil, \ldots,\lceil r \alpha\rceil)$. Furthermore, Lemma 3 implies that u_{1} is unique; it is the only code function whose value at $a=\lambda$ lies in the interval $\left(r b^{\alpha+1}, r b^{\alpha}\right.$. We conclude that the Maximal Perigee Property holds at $a=\lambda$; that is, at this one value of $a, w_{1}=w_{\max }$ and $Q\left(w_{1}\right)=Q\left(w_{\max }\right)=$ $(\lceil\alpha\rceil,\lceil 2 \alpha\rceil, \ldots,\lceil r \alpha\rceil)$.

We now prove that this same u_{1} is the maximal minimum code function for all $a \in \mathbb{R}_{+}$. Write $Q_{1}=\left(q_{1,1}, q_{1,2}, \ldots, q_{1, r}\right)$, where $q_{1, j}=\lceil j \alpha\rceil$. We find the rotated code $Q_{i}=\left(q_{i, 1}, q_{i, 2}, \ldots, q_{i, r}\right), i \in\{1, \ldots, r\}$, using Proposition 2:

$$
q_{i, j}= \begin{cases}\lceil(i+j-1) \alpha\rceil-\lceil(i-1) \alpha\rceil, & j \in\{1, \ldots, r-i+1\} \\ \lceil r \alpha\rceil+\lceil(i+j-r-1) \alpha\rceil-\lceil(i-1) \alpha\rceil, & j \in\{r-i+2, \ldots, r\}\end{cases}
$$

But the latter case reduces as follows:

$$
\begin{aligned}
\lceil r \alpha\rceil+\lceil(i+j-r-1) \alpha\rceil-\lceil(i-1) \alpha\rceil & =n-r+\lceil(i+j-1) \alpha\rceil \\
-(n-r)-\lceil(i-1) \alpha\rceil & =\lceil(i+j-1) \alpha\rceil-\lceil(i-1) \alpha\rceil,
\end{aligned}
$$

so in fact

$$
\begin{equation*}
q_{i, j}=\lceil(i+j-1) \alpha\rceil-\lceil(i-1) \alpha\rceil \tag{19}
\end{equation*}
$$

for all $j \in\{1, \ldots, r\}$. Because $\lceil x\rceil+\lceil y\rceil \geq\lceil x+y\rceil$ for nonnegative real numbers x and y, equation (19) allows us to write

$$
\begin{align*}
\lceil j \alpha\rceil+\lceil(i-1) \alpha\rceil & \geq\lceil(i+j-1) \alpha\rceil \\
\lceil j \alpha\rceil & \geq\lceil(i+j-1) \alpha\rceil-\lceil(i-1) \alpha\rceil \\
q_{1, j} & \geq q_{i, j} . \tag{20}
\end{align*}
$$

Observe, however, that equality cannot hold in (20) for all $j \in\{1, \ldots, r\}$; if it did, we would have $Q_{1} \sim Q_{i}$, which is possible only when $w_{1}=f^{n}$ and $\alpha=0$. Therefore, $b^{q_{1, j}} \leq b^{q_{i, j}}$ for $j \in\{1, \ldots, r\}$, except for at least one j^{\prime} for which $b^{q_{1, j^{\prime}}}<b^{q_{i, j^{\prime}}}$. Thus

$$
u_{1}(a)=\sum_{j=1}^{r} b^{q_{1, j}} a^{j-1}<\sum_{j=1}^{r} b^{q_{i, j}} a^{j-1}=u_{i}(a)
$$

for $i \in\{2, \ldots, r\}$. By Proposition 4, it follows that x_{1} is less than any other cycle point x_{i} for any nonnegative a. We conclude that $w_{1}=w_{\max }$ for all $a \in \mathbb{R}_{+}$, and the proof of the Maximal Perigee Property is complete.

References

[1] E. G. Belaga, Effective polynomial upper bounds to perigees and numbers of $(3 x+d)$-cycles of a given oddlength, Acta Arithmetica 106, no. 2 (2003), 197-206.
[2] V. Bergelson, M. Misiurewicz, and S. Senti, Affine actions of a free semigroup on the real line, Ergodic Theory Dynam. Systems 26, no. 5 (2006), 1285-1305.
[3] B. P. Chisala, Cycles in Collatz sequences, Publ. Math. Debrecen 45 (1994), 35-39.
[4] G. J. Wirsching, The Dynamical System Generated by the $3 n+1$ Function, Vol. 1681, Lect. Notes in Math., Springer-Verlag, Berlin Heidelberg, 1998.

DIXON J. JONES
5112 FAIRCHILD AVE
FAIRBANKS, ALASKA
USA 99709-4523
E-mail: djjones@alaska.edu
(Received June 26, 2008; revised August 19, 2009)

[^0]: 2000 Mathematics Subject Classification: 37E15, 39B12.
 Key words and phrases: cycle point word, cycle word code, f-rank, g-rank, gaps vector, iterated function system, perigee, periodic orbit, subdiagonal, superdiagonal.
 Jake Stroh read an early draft of this paper, Walt Tape and Marion Avrilyn Jones commented on parts of later drafts, and Mitch Roth and Marty Getz provided Mathematicaß help. I am grateful for their assistance and for the anonymous referee's useful comments.

[^1]: ${ }^{1}$ The gaps vector is the mirror image of the encoding vector defined in [4, pp. 38-39].

[^2]: ${ }^{2}$ When the residues modulo r are used as indices, we take them to be $\{1, \ldots, r\}$ rather than the usual $\{0, \ldots, r-1\}$.

