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Parameter-independent structure in periodic orbits

of an iterated function system on the real line

By DIXON J. JONES (Fairbanks, Alaska)

Abstract. For the iterated function system on R comprising the maps f(x) =

ax + 1 and g(x) = bx, with a > 0 and 0 < b < 1, we represent each n-cycle by the

composition (or word) in f and g corresponding to the cycle’s point of least magnitude

(or perigee). These representations are partitioned into equivalence classes using simple

combinatorial criteria. Associated with each n-cycle are n polynomials in a and b whose

values at a special value of a are partially ordered. An example is given showing that,

for fixed b, the perigee word of an n-cycle is a function of a; but the ordering of the

polynomial values enables us to prove that the maximal perigee word in each equivalence

class is independent of the parameters a and b.

1. Introduction

Let Ψ(a, b) be the iterated function system on R comprising the maps

f(x) = ax + 1 and g(x) = bx, (1)

where a > 0 and 0 < b < 1. The dynamics of this system for a > 1 are considered

in [2]. Here we present some combinatorial properties of Ψ’s cycle structure which

are independent of the parameters a and b; in particular, these properties hold

whether or not f is a contraction.
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Given the maps f and g defined in (1), and a positive integer n, choose

functions ti, 1 ≤ i ≤ n, from the set {f, g}, and compose them by right-to-left

concatenation. We call w = tntn−1 · · · t1 the word for the cycle point x1 satisfying

tntn−1 · · · t1(x1) = x1.

Since the word gn yields just the trivial cycle point x1 = 0 for all n ∈ N and all

b ∈ (0, 1), we exclude words of this form in what follows. Let Σn be the set of

n-letter words on the symbols f and g in which f appears at least once. The

cyclic permutations, or rotations, of a word w ∈ Σn yield the set of cycle points

{x1, x2, . . . , xn}, in which the (not necessarily unique) point of least magnitude

or perigee of the cycle [1] is generated by its corresponding perigee word. We use

the following combinatorial properties of cycle words.

Definition 1. Given w ∈ Σn.

(a) The f -rank of w, denoted by r, is its number of fs. Note r ≥ 1.

(b) The density, denoted by α, is the ratio (n − r)/r of the number of gs to fs

in w.

(c) The base markers in w are the fs indexed from left to right and from 1 to r

in w.

(d) For 2 ≤ i ≤ r, the ith gap di is the number of gs between base markers fi−1

and fi, while d1 is the number of gs to the left of f1. The ordered r-tuple

D(w) = (d1, d2, . . . , dr) is the gaps vector of w.1

(e) The g-rank of base marker fi is the number of gs to its left in w, and is

denoted by qi. Equivalently, it is the sum of gaps d1 + d2 + · · · + di. The

ordered r-tuple Q(w) = (q1, q2, . . . , qr) is the cycle word code, or more briefly

the code of w.

For example, ggf1gf2f3ggf4f5 shows the base markers labeled for the word

w = ggfgffggff ∈ Σ10, for which D(w) = (2, 1, 0, 2, 0) and Q(w) = (2, 3, 3, 5, 5).

Given a and b, a word’s length and code determine its cycle point.

Proposition 1. For n ∈ N and 1 ≤ r ≤ n, let w ∈ Σn have code (q1, q2, . . . , qr)

and density α. Then

x1 =
1

1 − (abα)r

r
∑

i=1

bqiai−1 (2)

is the unique point satisfying w(x1) = x1.

1The gaps vector is the mirror image of the encoding vector defined in [4, pp. 38–39].
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Proof. We show that

w(x) = arbn−rx +

r
∑

i=1

bqiai−1, (3)

from which the result follows. For m ≥ 0 and n > m, define Σn
m to be the set of

words w that can be written w = tn . . . tm+2fgm, where ti ∈ {f, g}, so that

Σn =
⋃

m<n

Σn
m.

For each m ≥ 0 we prove by induction on n that, for all n > m,

w ∈ Σn
m =⇒ w(x) = arbn−rx +

r
∑

i=1

bqiai−1. (4)

For the initial step, fix m ≥ 0, use the base value n = m + 1, and let w ∈ Σm+1
m .

Then w = fgm, r = 1, q1 = 0, and

fgm(x) = abmx + 1 = arb(m+1)−rx +

r
∑

i=1

bqiai−1, (5)

as required. For the inductive step, let n > m, and assume (4). Let w =

tn+1 . . . tm+2 f gm ∈ Σn+1
m , where Q(w) = (q1, . . . , qr). Write w = tn+1w

′, where

w′ has length n. If tn+1 = f , then q1 = 0, Q(w′) = (q2, . . . , qr), and

w(x) = a

(

ar−1bn−(r−1)x +
r

∑

i=2

bqiai−1

)

+ 1. (6)

If tn+1 = g, on the other hand, then Q(w′) = (q1 − 1, q2 − 1, . . . , qr − 1), and

w(x) = b

(

arbn−rx +

r
∑

i=1

bqi−1ai−1

)

. (7)

The induction hypothesis is confirmed, since both (6) and (7) reduce to

w(x) = arb(n+1)−rx +

r
∑

i=1

bqiai−1. �

Note that, if a = b−α, we have division by 0 in equation (2), and the cycle

point does not exist; we return to this important fact in Section 7.
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2. Representing cycles by perigee words

In general, the correspondence between a cycle point word in Σn and its code

is not a bijection. For instance, the words ggfgf , ggfgfg, ggfgfgg, and so on all

have gaps vector (2, 1) and code (2, 3). We now define a subset Fn of Σn which

contains all the perigee words, and in which every word is uniquely represented

by its gaps vector, or, equivalently, by its code.

Definition 2. For each n ∈ N and for 1 ≤ r ≤ n,

Fn = {w ∈ Σn | w = tntn−1 · · · t2t1 with t1 = f},

Fn
r = {w ∈ Fn | w has f -rank r},

Pn
r = {w ∈ Fn

r | w is a perigee word}.

Fn
r contains Pn

r because, if tn . . . t2g(x1) = x1, then |x2| = |g(x1)| < |x1|;

hence x1 cannot be the perigee, and no word ending in g can be a perigee word.

The sets Pn
r are equivalence classes imposed on the set of n-length perigee words

by the relation “possesses r letters f” for 1 ≤ r ≤ n. Table 1 shows the P 7
r for

r = 1, . . . , 7 in Ψ
(

5
3 , 1

2

)

. By construction, the perigees in this table increase in

absolute value within each Pn
r .

Note that, for every w ∈ Fn
r , the base marker fr is always rightmost and its

g-rank is always n− r, so all words in Fn
r have qr = n− r = rα. Furthermore, the

allowable rotations of any w ∈ Fn
r put each f in the rightmost position exactly

once; consequently, w admits of r such rotations and r (not necessarily distinct)

cycle points. Finally, we have the useful property that any allowable rotation of

a word in Fn
r yields a corresponding cyclic permutation of its gaps vector. That

is, for w ∈ Fn
r and 1 ≤ i ≤ r, w’s ith gap di is the number of gs between base

markers fi−1 and fi, indices taken modulo r.2 This follows because none of the

gs counted by d1 lie to the right of fr for any word in Fn
r .

While there is an obvious bijection between words in Fn
r and their codes,

we do not claim a bijection between words and cycle points. Distinct cycles

need not be disjoint; for instance, in Ψ(2, 1
2 ), the cycle words ggggffgfggf and

gggfggffggf both yield the perigee 3
7 . However, disjoint cycles are not required

here.

2When the residues modulo r are used as indices, we take them to be {1, . . . , r} rather than the

usual {0, . . . , r − 1}.
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set perigee word code perigee decimal

P 7
1 ggggggf (6) 3/187 0.01604

P 7
2 gggggff (5, 5) 24/263 0.09125

ggggfgf (4, 5) 33/263 0.12548

gggfggf (3, 5) 51/263 0.19392

P 7
3 ggggfff (4, 4, 4) 147/307 0.47883

gggfgff (3, 4, 4) 174/307 0.56678

gggffgf (3, 3, 4) 219/307 0.71336

ggfggff (2, 4, 4) 228/307 0.74267

ggfgfgf (2, 3, 4) 273/307 0.88925

P 7
4 gggffff (3, 3, 3, 3) 816/23 35.47826

ggfgfff (2, 3, 3, 3) 39 39.00000

ggffgff (2, 2, 3, 3) 1032/23 44.86957

gfggfff (1, 3, 3, 3) 1059/23 46.04348

gfgfgff (1, 2, 3, 3) 1194/23 51.91304

P 7
5 ggfffff (2, 2, 2, 2, 2) −4323/2153 −2.00790

gfgffff (1, 2, 2, 2, 2) −4566/2153 −2.12076

gffgfff (1, 1, 2, 2, 2) −4971/2153 −2.30887

P 7
6 gffffff (1, 1, 1, 1, 1, 1) −22344/14167 −1.57719

P 7
7 fffffff (0, 0, 0, 0, 0, 0, 0) −3/2 −1.50000

Table 1. The distinct perigee words of length 7, with their codes and

perigee values, for f := f(x) = 5
3
x + 1 and g := g(x) = x

2
.

3. Minimal and maximal perigees

Our main results show that the minimal and maximal perigee words in each

equivalence class may be characterized purely combinatorially.

Theorem 1. In Ψ(a, b), the minimal perigee word with density α in Pn
r is

wmin = grαf r, whose code is the r-tuple

Q(wmin) = (rα, rα, . . . , rα).

Proof. Let grαf r(y) = y. Given any w 6= grαf r ∈ Fn
r , with Q(w) =

(q1, . . . , qr), there exists an integer j, 1 ≤ j ≤ r, for which

qi < rα, 1 ≤ i ≤ j,

qi ≤ rα, j + 1 ≤ i ≤ r.
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By Proposition 1 with 0 < b < 1, the cycle point x1 for w satisfies

x1 =
1

1 − (abα)r

r
∑

i=1

bqiai−1 >
1

1 − (abα)r

r
∑

i=1

brαai−1 = y,

and the theorem follows. �

Theorem 2 (Maximal Perigee Property). In Ψ(a, b), the maximal perigee

word wmax ∈ Pn
r with density α has code

Q(wmax) = (⌈α⌉, ⌈2α⌉, . . . , ⌈rα⌉) ,

where ⌈·⌉ is the ceiling function.

For example, n = 7 and r = 4 yield α = 3
4 , and the maximal perigee word

code in P 7
4 is

(⌈

3

4

⌉

,

⌈

2 · 3

4

⌉

,

⌈

3 · 3

4

⌉

,

⌈

4 · 3

4

⌉)

= (1, 2, 3, 3),

as in Table 1. (The result holds trivially when α = 0, that is, when r = n.)

An inquiry into general n-cycles follows, culminating in a proof of Theorem 2.

In Section 4 we show how to use a word’s code to calculate the code of any

rotation. A lemma of Chisala (Section 5) implies that, among a word’s rotated

codes, there are at least two “extremal” codes: one which is superdiagonal and

one subdiagonal. In Section 6 we introduce the deviation vector and maximum

deviation of a word, and prove that the deviation vectors of a word’s rotations

become cyclic permutations of each other under a particular vertical translation;

a special case involving subdiagonal words is crucial later.

Section 7 gives the name code function to the polynomial part of equation

(2), along with an example showing that, for a given value of the parameter a

and for fixed b, the perigee of a cycle corresponds to the minimal code function.

Although no cycle points exist when a = b−α, the code functions for a word

and its rotations are well-defined for this value of a, and in Section 8 we show

that the code function values at a = b−α are partially ordered, with the smallest

and largest values corresponding to super- and subdiagonal codes, respectively.

Section 9 establishes upper and lower bounds for super- and subdiagonal code

function values at a = b−α, respectively, over all words in Fn
r , and we prove that

the only superdiagonal word in Fn
r whose maximum deviation is less than 1 is

the word whose code is (⌈α⌉, ⌈2α⌉, . . . , ⌈rα⌉). Finally, Section 10 employs these

results to prove the Maximal Perigee Property.

We are less interested here with the cycle point values xi than with their

combinatorial representations, largely because the interesting aspects of the rep-

resentations occur when the parameter values preclude the existence of the points.
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4. Rotations of codes

We begin by showing how codes change when the words they belong to are

rotated. We use the following notation, where i and j ∈ {1, . . . , r}. Given w ∈ Fn
r

with D(w) = (d1, . . . , dr), wi is the rotation of w whose gaps vector begins with di.

(Hence w1 = w.) D(wi) is abbreviated Di, and likewise Qi = Q(wi). xi is the

cycle point for wi; that is, wi(xi) = xi. Lastly, we write y ∼ z if y is a cyclic

permutation of z. (For a given w1, we have wi ∼ wj and Di ∼ Dj , but Qi ∼ Qj

only for w = fn).

Proposition 2. If w1 ∈ Fn
r has code Q1 = (q1, q2, . . . , qr), then the rotation

wi, 1 ≤ i ≤ r, has code Qi = (q1
′, q2

′, . . . , qr
′), where

qj
′ =

{

qi+j−1 − qi−1, j ∈ {1, . . . , r − i + 1}

qr + qi+j−r−1 − qi−1, j ∈ {r − i + 2, . . . , r}
, (8)

and where we define q0 = d0 = 0.

Proof sketch. The gaps vector for wi is

Di = (di, di+1, . . . , dr, d1, . . . , di−1),

so Di = (d1
′, d2

′, . . . , dr
′) has

dj
′ =

{

di+j−1, j ∈ {1, . . . , r − i + 1}

di+j−r−1, j ∈ {r − i + 2, . . . , r}
.

The formulas (8) then follow directly. The definitions q0 = d0 = 0 preserve

identity when i = 1. �

The transformation in Proposition 2 may also be expressed as

qj−i+1
′ = qj − qi−1, 1 ≤ j ≤ r, (9)

where arithmetic is performed modulo n− r, and the indices are calculated mod-

ulo r. The formulas (8) will be used in the final proof of the Maximal Perigee

Property (Section 10), while (9) will be applied in Section 6.

5. Chisala’s Lemma, and sub- and superdiagonal codes

We now invoke a modified lemma of Chisala [3] to define two kinds of words

which are “extremal,” in the sense that all the partial averages of the g-ranks are

either no less than or no greater than the word’s density.
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Lemma 1. Given a sequence D = (d1, . . . , dr) of real numbers and a se-

quence M = (m1, . . . , mr) of weights, let A =
∑r

i=1 dimi/
∑r

i=1 mi be the

weighted average.

(a) (Chisala 1994) There exists a cyclic permutation σ on the indices such that

for every k ∈ {1, . . . , r}, the partial weighted averages
∑k

i=1 dσ(i)mσ(i)/
∑k

i=1 mσ(i) are bounded above by A.

(b) There exists a cyclic permutation τ on the indices such that for every k ∈

{1, . . . , r}, the partial weighted averages
∑k

i=1 dτ(i)mτ(i)/
∑k

i=1 mτ(i) are

bounded below by A.

The proof of part (b) follows from part (a) by considering (−d1, . . . ,−dr).

We call a word w ∈ Fn
r , its gaps vector, and its code subdiagonal if the

r-tuple
(q1

1
,
q2

2
, . . . ,

qr

r

)

(10)

satisfies part (a) of Chisala’s Lemma (with A = α); or, equivalently, if qi ≤ iα

for 1 ≤ i ≤ r. Similarly, w is superdiagonal if (10) satisfies part (b) of Chisala’s

Lemma, or, equivalently, if qi ≥ iα. Note that the word with code (α, 2α, . . . , rα),

where necessarily α ∈ {0, 1, 2, . . .}, is both sub- and superdiagonal.

For example, if w1 ∈ F 15
5 has gaps vector D1 = (1, 4, 2, 0, 3) and den-

sity α = 2, then w3 is a subdiagonal rotation with D3 = (2, 0, 3, 1, 4) and

Q3 = (2, 2, 5, 6, 10), while w2 is superdiagonal with D2 = (4, 2, 0, 3, 1) and Q2 =

(4, 6, 6, 9, 10).

6. Deviations

We measure and compare a word’s rotations using the maximum signed dif-

ference qi − iα.

Definition 3. Let w1 ∈ Fn
r have density α and code Q1 = (q1, . . . , qr). The

deviation vector of w1 is

∆1 = (q1 − α, q2 − 2α, . . . , qr − rα),

and qj − jα is the jth deviation, 1 ≤ j ≤ r. The quantity

h(w1) = max
1≤j≤r

(qj − jα).

is the maximum deviation for w1. For any wi ∼ w1 we write hi = h(wi).

Let (y)j be the j-tuple (y, y, . . . , y). Given a word and one of its rotations,
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we now show that special vertical translations of their deviation vectors produce

two new vectors which are again cyclic permutations of each other.

Proposition 3. Given w1 ∈ Fn
r , and adding termwise,

∆1 + (hi)
r ∼ ∆i + (h1)

r

for any wi ∼ w1.

Proof. Suppose h1 = qk − kα for some k ∈ {1, . . . , r}. Using equation (9),

we find that hi = (qk − qi−1) − (k − i + 1)α. Writing (ym)r
m=1 for the r-tuple

(y1, y2, . . . , yr), we then have

∆1 + (hi)
r =

(

qm − mα
)r

m=1
+

(

qk − qi−1 − (k − i + 1)α
)r

m=1

=
(

qm + qk − qi−1 − (m + k − i + 1)α
)r

m=1
, (11)

and

∆i + (h1)
r =

(

qm − qi−1 − (m − i + 1)α
)(i+r−1)mod r

m=i mod r
+

(

qk − kα
)(i+r−1)mod r

m=i mod r

=
(

qm + qk − qi−1 − (m + k − i + 1)α
)(i+r−1)mod r

m=i mod r
. (12)

Equations (11) and (12) are identical, save for the limits on the index m, which

cycles once through the numbers 1, . . . , r in both cases. �

As an example, take w1 ∈ F 12
5 having D1 = (1, 1, 3, 2, 0) and α = 7

5 . Then

Q1 = (1, 2, 5, 7, 7), ∆1 =
(

− 2
5 ,− 4

5 , 4
5 , 7

5 , 0
)

, and h1 = 7
5 . We also have Q3 =

(3, 5, 5, 6, 7), ∆3 =
(

8
5 , 11

5 , 4
5 , 2

5 , 0
)

, and h3 = 11
5 . We see that

∆1 + (h3)
5 =

(

9

5
,
7

5
, 3,

18

5
,
11

5

)

∼

(

3,
18

5
,
11

5
,
9

5
,
7

5

)

= ∆3 + (h1)
5.

For rotations of a given w1, the largest maximum deviation occurs for a su-

perdiagonal rotation, while the smallest is attained when every difference qj − jα

is at most 0, namely when the rotation is subdiagonal. (Note that the only su-

perdiagonal code with maximum deviation 0 is (α, 2α, . . . , rα), where necessarily

α ∈ {0, 1, 2, . . .}.) Proposition 3 for subdiagonal rotations merits special mention.

Corollary 1. Let wm be a subdiagonal rotation of w1 ∈ Fn
r . Then ∆1 ∼

∆m + (h1)
r.

With this corollary we set the stage for making subdiagonal rotations the

standard against which all other rotations are measured; this will be developed

further in Section 8.
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7. Code functions

We now apply these properties of codes and deviation vectors to the polyno-

mial part of the rational function of Proposition 1. Here, a is a parameter to be

varied through nonnegative values, and we make extensive use of the quantity

λ = b−α.

Let S = (s1, . . . , sj) be any sequence of nonnegative integers, and define u :

S × R → R by

u(S, x) =

j
∑

i=1

bsixi−1. (13)

Definition 4. For w1 ∈ Fn
r , let wi ∼ w1 have code Qi. We call u(Qi, a) (also

written ui(a) or ui) the ith code function of w1.

Code functions will be called sub- or superdiagonal in accordance with their

corresponding cycle point words.

Figure 1 shows the code functions corresponding to the ten rotations of the

word w1 ∈ F 30
10 whose gaps vector is D1 = (4, 2, 5, 1, 1, 0, 1, 2, 3, 1) and whose

density is α = 2. Here b = 1
2 . The code functions for the perigee words are drawn

in bold lines, and the upper sections of the curves are shown with compressed

vertical scale for clarity. The codes for w1’s rotations are listed in Table 2.

D1 (4, 2, 5, 1, 1, 0, 1, 2, 3, 1) hi ui(λ)

Q1 (4, 6, 11, 12, 13, 13, 14, 16, 19, 20) 5 151/128

Q2 (2, 7, 8, 9, 9, 10, 12, 15, 16, 20) 3 151/32

Q3 (5, 6, 7, 7, 8, 10, 13, 14, 18, 20) 3 151/32

Q4 (1, 2, 2, 3, 5, 8, 9, 13, 15, 20) 0 151/4

Q5 (1, 1, 2, 4, 7, 8, 12, 14, 19, 20) 1 151/8

Q6 (0, 1, 3, 6, 7, 11, 13, 18, 19, 20) 2 151/16

Q7 (1, 3, 6, 7, 11, 13, 18, 19, 20, 20) 4 151/64

Q8 (2, 5, 6, 10, 12, 17, 18, 19, 19, 20) 5 151/128

Q9 (3, 4, 8, 10, 15, 16, 17, 17, 18, 20) 5 151/128

Q10 (1, 5, 7, 12, 13, 14, 14, 15, 17, 20) 4 151/64

Table 2. Gaps vector D1 and codes Qi for the code functions of Figure

1, with maximum deviations hi and the code function values at a = λ.

We see in this example that, for fixed b, the minimal code function (and thus

the perigee word) depends on a, and this is true in general. Proof of the following

formal statement is left to the reader.
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Figure 1. The code functions of the ten rotations of the word whose

gaps vector is D1 = (4, 2, 5, 1, 1, 0, 1, 2, 3, 1), where b = 1
2
.

Proposition 4. In Ψ(a0, b) with a0 ∈ R+\{λ}, wi is a perigee word precisely

when ui(a0) is minimal over all i ∈ {1, . . . , r}.

8. Ordering of the code functions at a = λ

Although every rotation wi yields an undefined cycle point at a = λ, the

code function values ui(λ) are finite and, it turns out, in a convenient order. As

the reader may surmise from the last two columns of Table 2, there is an elegant

relationship between hi, ui(λ), and subdiagonal rotations.

Theorem 3. In Ψ(a, b), let w1 ∈ Fn
r have code function u1, maximum

deviation h1, and density α. Let wm ∼ w1 be subdiagonal with code function

um. Then

u1(λ) = bh1um(λ). (14)

This formula says that, in a given n-cycle, a code function’s value at a = λ

is a multiple of any subdiagonal code function’s value at λ, where the multiplier
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is a monotone function of the maximum deviation. (If w1 is itself subdiagonal,

then h1 = 0, and (14) holds trivially.)

Proof. We employ the function u(S, x) from equation (13), using various

values for x and sequences S. Begin with

u1(λ) = u(Q1, λ) =

r
∑

i=1

bqi(b−α)i−1 = bα

r
∑

i=1

bqi−iα = bαu(∆1, 1). (15)

Because wm is subdiagonal, we know from Corollary 1 that ∆1 is simply a cyclic

permutation of ∆m + (h1)
r. Thus u(∆1, 1) = u(∆m + (h1)

r, 1). Substitution in

(15) yields

u(Q1, λ) = bαu(∆m + (h1)
r, 1) = bαbh1u(∆m, 1)

= bh1u(Qm, λ) = bh1um(λ). �

If hi < h1, and wm is subdiagonal, then by Theorem 3 we have ui(λ) =

bhiumλ > bh1umλ = u1(λ). Indeed, we can say

Corollary 2. Given wi ∼ w1 ∈ Fn
r .

(a) If hi < h1, then ui(λ) > u1(λ).

(b) If hi = h1, then ui(λ) = u1(λ).

It follows that the points ui(λ) are partially ordered. Since subdiagonal rota-

tions have the smallest maximum deviation (hi = 0), and superdiagonal rotations

have the largest, Corollary 2 implies that the subdiagonal code functions intersect

the line a = λ at the highest point, while the superdiagonal code functions meet

the line at the lowest point. This is illustrated in Figure 1, where u4 is subdi-

agonal and u1, u8, and u9 are superdiagonal. (This example was constructed to

show that, additionally, the perigee word need not be superdiagonal in intervals

not containing λ, as shown by w3 and w7 on (0, γ) and (µ,∞), respectively.)

9. Code function bounds

Two final lemmas are needed to prove the Maximal Perigee Property; the

first establishes upper and lower bounds, respectively, on super- and subdiagonal

code functions at a = λ over all words in Fn
r .

Lemma 2. Let w1 ∈ Fn
r have density α and sub- and superdiagonal rotations

wm and wk, respectively. Then

uk(λ) ≤ rbα ≤ um(λ). (16)
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Proof. If wm is subdiagonal with code (qm,1, qm,2, . . . , qm,r), then qm,i −

iα ≤ 0, and hence bqm,i−iα ≥ 1 for i ∈ {1, . . . , r}. Thus

um(λ) =

r
∑

i=1

bqm,iλi−1 = bα

r
∑

i=1

bqm,i−iα ≥ rbα.

The derivation for the left-hand inequality in (16) is similar. �

Lemma 3. The only superdiagonal word in Fn
r whose maximum deviation

is less than 1 is the word whose code is (⌈α⌉, ⌈2α⌉, . . . , ⌈rα⌉).

Proof. For any w1 ∈ Fn
r , every g-rank qi is an integer. If α /∈ {0, 1, 2, . . .},

then w1’s superdiagonality and the condition 0 < max(qi − iα) < 1 imply that

iα ≤ qi < iα + 1 for each i ∈ {1, . . . , r}, except for at least one i for which

iα < qi < iα + 1. But the only such integers are qi = ⌈iα⌉. As noted at the

end of Section 6, the only superdiagonal code of maximum deviation 0 has α ∈

{0, 1, 2, . . .}; we thus have iα = ⌈iα⌉ for each i, and again the lemma holds. �

10. Proof of the Maximal Perigee Property

To prove the Maximal Perigee Property, we show that, for the particular value

a = λ, the maximal perigee word wmax ∈ Pn
r has code

(

⌈α⌉, ⌈2α⌉, . . . , ⌈rα⌉
)

. It

will then follow that this wmax is unique and minimal over all a ∈ R+.

Since the case r = n is trivially true, assume α 6= 0. By Corollary 2, the

minimal code function among a given word’s rotations is superdiagonal at a = λ.

To obtain the largest such minimal function, we seek a superdiagonal w1 ∈ Fn
r

for which the nonnegative quantity

rbα − u1(λ) (17)

from Lemma 2 is minimized. Using Theorem 3, we may write this as

0 ≤ rbα − bh1um(λ), (18)

where wm is a subdiagonal rotation of w1. From Lemma 2 we also have um(λ) ≥

rbα. Therefore

−bh1um(λ) ≤ −bh1rbα,

and this, combined with equations (17) and (18), yields

0 ≤ rbα − u1(λ) = rbα − bh1um(λ) ≤ rbα − rbα+h1 .



64 Dixon J. Jones

or, more simply,

rbα+h1 ≤ u1(λ) ≤ rbα.

The smallest possible h1 minimizes the range of u1(λ). Therefore the terms of

the desired superdiagonal Q1 are the r integers on or above, and closest to, the

line y = αx; that is, Q1 = (⌈α⌉, ⌈2α⌉, . . . , ⌈rα⌉). Furthermore, Lemma 3 implies

that u1 is unique; it is the only code function whose value at a = λ lies in the

interval (rbα+1, rbα]. We conclude that the Maximal Perigee Property holds at

a = λ; that is, at this one value of a, w1 = wmax and Q(w1) = Q(wmax) =

(⌈α⌉, ⌈2α⌉, . . . , ⌈rα⌉).

We now prove that this same u1 is the maximal minimum code function for

all a ∈ R+. Write Q1 = (q1,1, q1,2, . . . , q1,r), where q1,j = ⌈jα⌉. We find the

rotated code Qi = (qi,1, qi,2, . . . , qi,r), i ∈ {1, . . . , r}, using Proposition 2:

qi,j =

{

⌈(i + j − 1)α⌉ − ⌈(i − 1)α⌉, j ∈ {1, . . . , r − i + 1}

⌈rα⌉ + ⌈(i + j − r − 1)α⌉ − ⌈(i − 1)α⌉, j ∈ {r − i + 2, . . . , r}

But the latter case reduces as follows:

⌈rα⌉ + ⌈(i + j − r − 1)α⌉ − ⌈(i − 1)α⌉ = n − r + ⌈(i + j − 1)α⌉

− (n − r) − ⌈(i − 1)α⌉ = ⌈(i + j − 1)α⌉ − ⌈(i − 1)α⌉,

so in fact

qi,j = ⌈(i + j − 1)α⌉ − ⌈(i − 1)α⌉ (19)

for all j ∈ {1, . . . , r}. Because ⌈x⌉ + ⌈y⌉ ≥ ⌈x + y⌉ for nonnegative real numbers

x and y, equation (19) allows us to write

⌈jα⌉ + ⌈(i − 1)α⌉ ≥ ⌈(i + j − 1)α⌉

⌈jα⌉ ≥ ⌈(i + j − 1)α⌉ − ⌈(i − 1)α⌉

q1,j ≥ qi,j . (20)

Observe, however, that equality cannot hold in (20) for all j ∈ {1, . . . , r}; if it

did, we would have Q1 ∼ Qi, which is possible only when w1 = fn and α = 0.

Therefore, bq1,j ≤ bqi,j for j ∈ {1, . . . , r}, except for at least one j′ for which

bq
1,j′ < bqi,j′ . Thus

u1(a) =

r
∑

j=1

bq1,j aj−1 <

r
∑

j=1

bqi,j aj−1 = ui(a)

for i ∈ {2, . . . , r}. By Proposition 4, it follows that x1 is less than any other cycle

point xi for any nonnegative a. We conclude that w1 = wmax for all a ∈ R+, and

the proof of the Maximal Perigee Property is complete.
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