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Characterizations of strong and statistical convergences

By MOHAMMAD KAZIM KHAN (Kent) and CIHAN ORHAN (Ankara)

Abstract. The two main objectives of the paper are to cast the concept of A-

uniform integrability in the measure-theoretic sense leading to showing that a sequence is

A-strongly convergent if and only if it is A-statistically convergent and it is A-uniformly

integrable. The second aim is to give an almost all subsequence characterization of

A-statistical convergence.

1. Introduction

Let x = (xk) be a given sequence of real (or complex) numbers. When the

notational convenience requires, xk will be denoted by x(k). Let A = (ank) be

an infinite matrix with nonnegative entries with each row adding up to one. The

class of such summability methods will be denoted by M
+, and such matrices

form the most commonly used class of summability methods. Their primary use

is to extend the notion of convergence for some properly divergent sequences. The

main results of this paper deal with the interplay of the following three modes of

convergence. Our approach is measure-theoretic, along the lines of Buck [2].

• A real sequence, x, is defined to be A-distributionally convergent to F , where
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F is a probability distribution on ℜ, if

lim
n→∞

∑

k:xk≤t

ank = F (t), (1)

for all t at which F is continuous.

• A real (or complex) sequence, x, is defined to be A-statistically convergent

to α if for any ǫ > 0, we have

lim
n→∞

∑

k:|xk−α|≥ǫ

ank = 0. (2)

The concepts of A-statistical convergence of a sequence, and the A-density

of a subset E of nonnegative integers are related. We say [9] that E has

A-density if

δA(E) := lim
n→∞

∑

k∈E

ank exists.

Of course a sequence x is A-statistically convergent to α if the set E = {k :

|xk − α| ≥ ǫ} has A-density zero, for every ǫ > 0.

• A real (or complex) sequence, x, is defined to be A-strongly summable

to α if

lim
n→∞

∑

k

|xk − α| ank = 0. (3)

The concept of strong summability was introduced by Hardy and Littlewood

[14] (cf. Boos [1]) in the context of summability of Fourier series. Statistical

convergence has been studied in various contexts (see, for instance, Zygmund

[30], Freedman and Sember [9]). It is well known (Freedman and Sember

[9], Connor [6], Kolk [19], Fridy and Orhan [12]) that if a sequence x is A-

strongly convergent to α then it is A-statistically convergent to α and that if a

sequence x is bounded and A-statistically convergent to α then x is A-strongly

convergent to α. For the converse result the assumption of boundedness of x is

not totally essential. Some attempts to relax this assumption have been made

(see Connor [6]). In the next section we will introduce the concept of an A-

uniformly integrable sequence x, and show that x is A-strongly convergent if and

only if it is A-statistically convergent and A-uniformly integrable. This provides

an answer to a problem left open by Connor [6].

Section three contains a subsequence characterization of A-statistical conver-

gence, which solves a problem left open in Miller [23].

Section four provides extensions of several results of the earlier sections when

the entries of a sequence x = (xk) is replaced by the entries of a matrix X = (xkn)

in the defining equations (1), (2), and (3).
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2. A-strong convergence and uniform integrability

It should be noted that both A-statistical convergence and A-strong conver-

gence could be defined over arbitrary metric spaces. However, since the conclu-

sions are based on some real continuous functions of the distance, without loss of

any generality, we will assume that the sequence x = (xk) is real valued.

For the characterization of A-statistical and A-strong convergence we intro-

duce the following concept for real sequences, however, again this concept can be

analogously defined over metric spaces.

Definition 2.1. Let A ∈ M
+. A sequence x = (xk) will be called A-uniformly

integrable if

lim
c→∞

sup
n

∑

k:|xk|>c

|xk| ank = 0.

In the above definition the assumption of A having nonnegative entries can

be dropped by using |ank| instead, nor does one need that the row sums be one.

For our later developments, however, the above definition will suffice.

To link up this notion of A-uniform integrability and to provide its various

characterizations, we introduce the following notation that we will use throughout

the paper. Define a sequence of functions fn : [0, 1] → {0, 1, 2, . . .}, where

fn(s) = k if and only if s ∈





k−1
∑

j=0

anj ,
k

∑

j=0

anj



 ,

for k = 1, 2, . . . and fn(s) = 0 if 0 ≤ s < an0. Next define gn(s) := x(fn(s)). We

have the following characterization of A-uniform integrability.

Lemma 2.1. Let x = (xk) be a given real sequence and let A ∈ M
+. Let

L1([0, 1], λ) be the space of Lebesgue integrable functions on [0, 1], and λ be the

Lebesgue measure. The following are equivalent.

• The sequence x is A-uniformly integrable.

• The set K = {gn, n ≥ 1} is uniformly integrable in L1.

• The set K = {gn, n ≥ 1} is relatively weakly compact in L1.

• K is bounded in L1 and the indefinite integrals of members of K are uniformly

countable additive.

• There exists a function Φ : ℜ → ℜ so that Φ is convex, even, Φ(0) = 0,

limx→∞ Φ(x)/x = ∞ and

sup
n

∑

k

Φ(|xk|) ank < ∞.
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Proof. A straight forward rewriting of the Lebesgue integrals concerning

gn(s) = x(fn(s)) in L1, shows that the first two parts are equivalent. The equiv-

alence of the second through fourth parts is the well known Dunford–Pettis theo-

rem [7]. The equivalence of the second and the last part is a result of de la Vallee

Poussin. �

We may remark that relative weak compactness has been characterized in

L1(B, µ), when B is a Banach space, see Ülger [29] and Diestel et. al. [8].

However, we will not need this generality for the results of this paper.

All bounded sequences are A-uniformly integrable. One may easily construct

unbounded sequences that are A-uniformly integrable when A ∈ M
+ is regular

and maxk ank → 0. In fact, if A ∈ M
+ has null columns and

lim inf
k

{

max
n

ank

}

= 0, (4)

then we may construct unbounded A-uniformly integrable sequences as follows.

Select column indices, K(0) < K(1) < . . . so that

max
n

an,K(m) < 2−m, m = 0, 1, 2, . . . .

Then choose increasing row indices N(j) such that if n > N(m) and k ≤ K(m)

then ank < 2−m. Now define a sequence y by yk := k + 1 if k = K(m) and zero

otherwise. Then for all n > N(m) note that

(Ay)n =

∞
∑

j=0

(j + 1) an,K(j) ≤
m

∑

j=0

(j + 1) 2−m +
∑

j>m

(j + 1) 2−j → 0.

Therefore, by the above de la Vallee Poussin characterization of A-uniform in-

tegrability, we see that the unbounded sequence x, defined by xk :=
√

yk, is

A-uniformly integrable. In fact, the condition (4) may also be dispensed with,

by using the Mazur–Orlicz theorem [20], [21], [10] as long as A sums a non-

convergent sequence. The collection of all A-uniformly integrable sequences is a

linear space.

The equivalence of A-strong convergence concept to the A-statistical con-

vergence concept for bounded sequences has appeared in several independent

sources such as Zygmund [30], Hill and Sledd [16], Fridy and Orhan [12],

Connor [6] and Kolk [19], some of which assume further conditions on the ma-

trix A. Boundedness of the sequence x is, of course, unnecessarily restrictive.

The following theorem shows that the natural condition for the sequence x, for

characterizing A-strong convergence via A-statistical convergence, is A-uniform

integrability. This provides an answer to a question left open by Connor [6].
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Theorem 2.1. Let A ∈ M
+. Let x = (xk) be a real sequence. The following

statements are equivalent.

(i) The sequence x is A-distributionally convergent to F and x is A-uniformly

integrable, where F is the characteristic function of the half line [0,∞).

(ii) The sequence x is A-statistically convergent to 0 and x is A-uniformly inte-

grable.

(iii) The sequence x is A-strongly convergent to 0.

Proof. For any ǫ > 0, we see that
∑

k:|xk|>ǫ

ank ≤
∑

k:xk≤−ǫ

ank +
∑

k

ank −
∑

k:xk≤ǫ

ank → 0 + 1 − 1 = 0.

This gives that (i) implies (ii). When (ii) holds, by Lemma 2.1 there exists a

convex Φ so that x/Φ(x) → 0 as x gets large. For any ǫ > 0, this gives an L > 0

so that x/Φ(x) < ǫ for all x > L. Define a bounded sequence yk = xk when

|xk| ≤ L and zero otherwise. Note that (yk) is also A-statistically convergent to

zero. Since it is bounded, (yk) is A-strongly convergent to zero. Using 0/0 to

represent zero, we have

lim sup
n

∑

k

|xk| ank ≤ ǫ sup
n

∑

k

Φ(|xk|) ank + lim sup
n

∑

k

|yk| ank.

This implies that (ii) implies (iii). To show that (iii) implies (i), for any t < 0, we

have
∑

k:xk≤t

ank ≤ −1

t

∑

k

|xk| ank → 0.

A similar argument shows that, for t > 0,
∑

k:xk≤t ank → 1. Finally, to show

that x must be A-uniformly integrable, let ǫ > 0. There exists a positive integer

N so that
∑

k |xk|ank < ǫ for all n ≥ N . Since
∑

k |xk|ank < ∞, for each n =

1, 2, . . . , N−1, choose a positive integer K large enough so that
∑

k>K |xk|ank < ǫ

for all n < N . Now, whenever c > max{|x1|, . . . , |xK |}, we see that

sup
n

∑

k:|xk|>c

|xk| ank < ǫ.

This finishes the proof. �

We should point out that the spaces of A-uniformly integrable sequences are

also extremely useful in characterizing the multiplier spaces, as well as character-

izing A-statistical convergence by a single matrix summability method. For more

on this direction, see Khan and Orhan [18].
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3. A-statistical convergence of subsequences

To date subsequence characterization of A-statistical convergence is not fully

understood if one identifies subsequences by the dyadic expansion of points in

(0, 1] and the subsequences are “chosen” with respect to the Lebesgue measure

over (0, 1]. The only known example is for the Cesáro method, due to Miller

[23]. We will give a way of identifying those summability methods A for which

such a characterization will hold. As examples we will show that all the classical

summability methods of convolution type (such as the Euler family, Borel matrix

method, the circle family) have this property.

If x = (xk) is a sequence, a subsequence (xkj
) will be identified by the dyadic

expansions of points of (0, 1]. Notationally,

S(x, ω) = (xk1
, xk2

, . . . ),

where ω has the dyadic expansion (ek(ω)) which takes value 1 over the positive

integers k1, k2, . . . and zero otherwise. In this section the phrase ‘almost all

subsequences’ may be identified with a subset of the set of normal numbers that

has Lebesgue measure one.

The following theorem gives a general class of summability methods for which

the above mentioned characterization can be provided. The class of summability

methods that we will consider in the theorem is defined as follows.

Definition 3.1. Let A ∈ M
+. We will say that A has the “density translativity

property” if for any subset E of positive integers with A-density zero, and for

almost all subsequences of positive integers (m1, m2, . . . ),

lim
n→∞

∞
∑

k=1

an,kI(mk ∈ E) = 0.

(Here the notation I(k ∈ E) stands for 1 if k ∈ E and zero otherwise.)

As we will show below, besides the Cesáro method, most of the usual regular

summability methods, such as Euler, Borel, circle and random walk family of

methods have the above density translativity property. First we present the main

result of this section when x is a complex sequence but the result goes, without

change, to arbitrary metric space valued sequences.

Theorem 3.1. Let A ∈ M
+ be regular and let x be a sequence. Let

([0, 1], B, λ) be the Lebesgue measure space. The summability method A has

the density translativity property if and only if the following two statements are

equivalent.
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• The sequence x is A-statistically convergent to α.

• λ({ω : S(x, ω) is A-statistically convergent to α}) = 1.

Proof. Let A have the density translativity property and assume that the

first statement is true. This gives that there exists a set E with δA(E) = 0 and

x is convergent to α over Ec. Miller [23] proves this result for triangles, however,

one may extend this result to arbitrary regular methods in M
+ by replacing A

with a boundedly equivalent triangle in M
+ (see also [19]).

For any ǫ > 0, get M so that

|xk − α| < ǫ, k > M, k 6∈ E.

Next, for any subsequence S(x, ω), note that

∑

k:|Sk(x,ω)−α|≥ǫ

ank =
∑

k≤M :|Sk(x,ω)−α|≥ǫ

ank +
∑

k>M :|Sk(x,ω)−α|≥ǫ

ank

≤
∑

k≤M

ank +
∑

k>M :|Sk(x,ω)−α|≥ǫ

ank

≤
∑

k≤M

ank +
∑

k>M :mk∈E

ank

≤
∑

k≤M

ank +

∞
∑

k=0

ank I(mk ∈ E).

The first sum goes to zero by the regularity of A, and the last sum goes to zero

for almost all ω since A has the density translativity property.

On the other hand if ω is a normal number having dyadic expansion (ek(ω))

then ω′, defined to have the dyadic expansion (1−ek(ω)), is also a normal number.

The given information implies that there exists a pair ω, ω′ of normal numbers

with the property that both S(x, ω), S(x, ω′) are A-statistically convergent to α.

So, we see that x must be A-statistically convergent to α.

The converse follows easily by using the fact that for bounded sequences

A-strong convergence is equivalent to A-statistical convergence. �

Example 3.1. In the following we outline some of the classical summability

methods that have the density translativity property.

(1) It is easy to show that if A, B are equivalent over bounded sequences and

one of them has the density translativity property then so does the other.

(2) The Cesáro method has the density translativity property. Indeed, let E have
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Cesáro density zero. Note that if mn

n → 2, as n gets large, we have

1

n

n
∑

k=1

I(mk ∈ E) ≤ mn

n

I(1 ∈ E) + I(2 ∈ E) + · · · + I(mn ∈ E)

mn
→ 0.

Using the result of item (1), and the fact that for bounded sequences all

Cesáro (C, k) methods and the Abel method are equivalent and that (C, k)

method is equivalent to Hölder (H, k) method, we notice that (C, k), (H, k),

for all k ≥ 1 and the Abel method have the density translativity property.

(3) To show that all the regular circle family of methods have the density transla-

tivity property, we consider a slightly more general family of convolution

methods with finite (positive) variance. Such a method, A = (ank) is con-

structed by the Cauchy products of a sequence p = (pk), pk ≥ 0,
∑

k pk = 1.

Namely, a1k = pk and an+1,k = (an,· ∗ p)k. Denote by a =
∑

k kpk and

σ2 =
∑

k(k− a)2pk as the mean and variance of p. For any ǫ ∈ (0, 1), choose

M large enough so that

1√
2π

∫

ℜ\[−M,M ]

e−t2/2 dt < ǫ. (5)

Now note that row maximum of any such method is of the order of n−1/2.

Therefore, for some constant K,

∞
∑

k=0

ankI(mk ∈ E) =
∞
∑

k:|k−na|>σM
√

n

ankI(mk ∈ E)

+
∞
∑

k:|k−na|≤σM
√

n

ankI(mk ∈ E)

≤
∞
∑

k:|k−na|>σM
√

n

ank +
K√
n

∞
∑

k:|k−na|≤σM
√

n

I(mk ∈ E)

≤
∞
∑

k:|k−na|>σM
√

n

ank +
K

∑2Mσ
√

n
ℓ=1 G∗

ℓ√
n

1
∑2Mσ

√
n

ℓ=1 G∗
ℓ

×
mna−Mσ

√
n+
P

2Mσ
√

n

ℓ=1
G∗

ℓ
∑

k=mna−Mσ
√

n

I(k ∈ E),

where G∗
ℓ = Gna−Mσ

√
n+ℓ. By the central limit theorem and (5) the first sum

can be made smaller than 2ǫ for all large n. The fact that the expression
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∑2Mσ
√

n
ℓ=1 G∗

ℓ/
√

n converges is by a result of Chow [4] concerning delayed

sums. To show that the remaining term goes to zero, we use the fact that

the A-density of a set E is zero if and only if (for any δ > 0)

1√
n

∑

ℓ∈[n,n+δ
√

n )

I(ℓ ∈ E) → 0. (6)

This gives that, for any a > 0,

1√
na

∑

ℓ∈[na,na+δ
√

an )

I(ℓ ∈ E) → 0.

Now consider

1√
na

∑

ℓ∈[na−Mσ
√

n,na+Mσ
√

n )

I(ℓ ∈ E)

=
1√
na

∑

ℓ∈[na−Mσ
√

n,na)

I(ℓ ∈ E) +
1√
na

∑

ℓ∈[na,na+Mσ
√

n )

I(ℓ ∈ E).

Here the second sum goes to zero. To show that the first sum also goes to

zero, note that we need to see if bn := na − Mσ
√

n has the property that

[bn, bn + δ
√

bn ) contains the interval [bn, na), for some δ > 0. This is indeed

the case if we take δ = 2Mσ/
√

a.

We should remark here that analogous results for (C, 1)-summability of al-

most all subsequences were studied by Buck and Pollard [3] and Tsuchikura

[28]. The A-summability of almost all subsequences, for arbitrary regular matrices

A ∈ M
+, is still an open problem.

4. Summability of double arrays

In this section we point out that several of our earlier results carry over to

the case when X = (xkn) is a double array and we define A summability of X by

lim
n→∞

∞
∑

k=0

xkn ank = α. (7)

The concepts of A-distributional convergence of X , A-statistical convergence of X

and A-strong convergence of X are defined analogously by replacing the term xk
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by xkn in our defining equations (1), (2) and (3). Lemma 2.1, and Theorem 2.1,

continue to hold in this generality. The proofs, being identical to the sequence

case, are omitted.

We should remark that there are other forms of summability concepts for

double arrays, [13], [24], [25] and [26]. We will, however, limit our discussion to

the form ( (7)).

Summability of matrices, as defined in ( (7)), commonly arises in approx-

imation theory, probability and statistics contexts. For instance, central limit

theorem of triangular arrays [5], [11]; limit theorems concerning random ma-

trices [22]; limit theorems concerning order statistics [27]; and various positive

linear approximation operators [15], [17], and [11]. In some of these contexts the

four summability methods that play a prominent role are the Euler, logarithmic,

Cesáro and Abel summability methods.

It is natural to ask how one should specify regularity in the context of summa-

bility of double arrays. A plausible definition is to say that A is “matrix-regular”

if for any bounded matrix X that is Pringsheim convergent to α (which means

that for any ǫ > 0 there exists an N so that |xkn −α| < ǫ for all n, k ≥ N) implies

that (7) holds. However, one can easily show that A is “matrix-regular” if and

only if A is regular in the classical sense. However, this similarity ends here, as the

following remarks show, the classical comparison results in the sequence context

fail to hold in this matrix context even at the very basic level.

For instance, consider the classical Bernstein polynomial operator of approx-

imation theory,

Bn(f, r) :=

n
∑

k=0

f(k/n)

(

n

k

)

rk(1 − r)n−k, n ≥ 1.

If we take A = (enk(r)), where enk(r) :=
(

n
k

)

rk(1−r)n−k, to be the Euler method

and T = (tkn), where tkn = f(k/n), then the pointwise convergence of Bn(f, r) to

f(r) is the same as the A summability of the matrix T according to Definition 7.

When f ∈ C[0, 1] we see that the pointwise convergence of Bernstein polyno-

mial is equivalent to saying that the nodes matrix X = (xkn), where xkn = k/n,

is A-distributionally (or equivalently A-statistically) convergent to r. Since f is

bounded, this is equivalent to saying that X is A-strongly convergent to r. The

fact that this is always the case for any f ∈ C[0, 1] is well known.

However, X is Cesáro-distributionally convergent to the uniform distribution,

since
∑

k:(k/n)≤t

1

n
=

[nt]

n
→ t, for t ∈ (0, 1).
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Hence, for double arrays, even boundedness of X does not imply that, for matrix

summability, the Cesáro and Euler methods are consistent, let alone the question

of whether one includes the other.

Another point of departure occurs when A-statistical convergence of a se-

quence is characterized by the existence of a set E with δA(Ec) = 0 and x is

convergent over E. This result fails to carry over to our definition of A-statistical

convergence of a double array. A simple example demonstrating this fact is to

take X = I to be the identity matrix. No infinite submatrix of I is Pringsheim

convergent to zero, however, I is A-statistically convergent to 0 when the diagonal

terms of A go to zero.
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