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A study of chaos for processes under small perturbations

By PIOTR OPROCHA (Kraków) and PAWE L WILCZYŃSKI (Kraków)

Abstract. The method of isolating segments was developed to prove topological

chaos (positive topological entropy) for Poincaré maps of time-periodic processes. The

authors recently proved that it may also be used to verify distributional chaos, when

the obtained semi-conjugacy covers a periodic point exactly one to one (so the solution

giving raise to this preimage is also periodic). When we make a small perturbation of

dynamics then usually the same isolating segments may be used (and as a result the

same semi-conjugacy but possibly on a different set is obtained), however the periodic

solution may be destroyed (then we have infinite set in the preimage), or if we are lucky,

it may bifurcate to a finite number of periodic solutions.

In this article we cover the case when two periodic solutions are continued from

the previous one. We prove that in this case distributional chaos survives. Homoclinic

and heteroclinic connections between these two solutions are also discussed.

1. Introduction

The name chaos in the context of discrete dynamical systems was first used

in 1975 by T. Li and J. Yorke in [8]. In this article we are concerned with the

definition of distributional chaos which extends approach of Li and Yorke and

was introduced in 1994 by Schweizer and Sḿıtal [15]. The motivation for this

definition was the fact that it is equivalent to positive topological entropy in the

case of interval maps; however it was later realized that it is no longer true when

dimension of the space is different than one (see [17] or [10] for the summary on

these relations), i.e. both notions are not related in general.
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In practice, it is hard to prove that a dynamical system exhibits distributional

chaos. First of all, we have to predict long time behavior of trajectories, much

more complex than in the case of sensitive dependence on initial conditions. Fur-

thermore, this notion does not transfer via semi-conjugacy [13] which makes the

task even harder (the usual tool to prove topological chaos, i.e. positive topolog-

ical entropy, is to apply semi-conjugacy arguments). There are many techniques

in the theory of dynamical systems which help to construct a semi-conjugacy with

symbolic dynamical systems and usually it is also possible to say something more

about the properties of the factor map. In [13] we gave sufficient conditions to

prove distributional chaos when the factor map is constructed in a neighborhood

of unique fixed point. Unfortunately, when we start to study a family of maps

(indexed by a continuous parameter) then usually the fixed point does not survive

and bifurcation occurs. This happens even in the simplest case of logistic map

of the compact interval (when the parameter increases, a fixed point explodes

becoming period 2 orbit). When a fixed point transforms to a periodic point or a

few fixed points (which is a result of a small perturbation applied to the system),

it seems intuitively that the dynamics is richer than before. Then, if the map was

chaotic before the perturbation it should remain chaotic (of course, in practice, it

may happen that repelling point becomes attracting so the dynamics may change

rapidly).

In this article we are concerned with the chaos of a Poincaré map induced by

time-periodic local process (nonautonomous ordinary differential equation). We

provide an example of local process with the property that stationary trajectory

is continued (after a small perturbation) to two periodic trajectories (fixed point

of the Poincaré map explodes becoming at least 2 fixed points). Then results of

[12] or [13] may not be applied because there are two trajectories which remain

close to the previous position of the stationary one (possibly with a heteroclinic

connection). Constructed semi-conjugacy which survives after a (small) perturba-

tion is applied, however the set on which it is defined may “grow” a lot (explosion

similar to the case of stationary trajectory may occur). Our idea is to present

a method which may help in that (and similar) situation. We also show how to

extend the method of isolating segments for proving the existence of heteroclinic

solutions.

We deal with the case of only two periodic solution bifurcating from the

trivial one since the problem of the greater number of them meets with some

difficulties (see Remark 6).
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In our considerations, we investigate the equation

ż =
(

1 + eiκt |z|
2
)
z2 −Ne−i π

3 (1.1)

when the parameter value N is between 0 and 0.01 and κ ∈ (0, 0.18]. When

N = 0 then we may apply results of [13], so in that case we know that the in-

duced local process exhibits uniform distributional chaos. We will use topological

tools like isolating segments and symbolic factors together with an analysis of the

vector field. Combination of these will allow us to answer what happens with

the dynamics when N increases. More specifically, it is possible to prove that

distributional chaos survives the perturbation and that numerous homoclinic and

heteroclinic solutions appear.

The article is organized as follows. In Section 2 we recall all definitions and

basic facts used in the further parts of the article. Section 3 develops all the

tools we need to study the equation (1.1). Our idea is to present them in a

way that they may be applied to other similar situations. Next, in Section 4

we present theorems on chaos and existence homoclinic and heteroclinic solutions

of (1.1) together with a sketchy description of the proof. Formal proof extends the

capacity of this publication and it will be presented in another article [14], which

ensure that our conclusions (about chaos in considered local process) contained

in Section 4 are mathematically rigorous.

2. Basic notions

2.1. Topological dynamics. Let (X, f) be a dynamical system on a compact

metric space. By positive orbit of x we mean the set

Orb+(x, f) =
{
x, f(x), f2(x), . . .

}
.

If additionally f is a homeomorphism, we may define its negative orbit and (full)

orbit by, respectively

Orb−(x, f) =
{
x, f−1(x), f−2(x), . . .

}
, Orb(x, f) = Orb−(x, f) ∪ Orb+(x, f).

A point y ∈ X is an ω-limit point (α-limit point) of a point x if it is an accumu-

lation point of the sequence x, f(x), f2(x), . . . (resp. x, f−1(x), f−2(x), . . . ). The

set of all ω-limit points (α-limit points) of x is called ω-limit set (resp. α-limit

set) of x and denoted ωf(x) (resp αf (x)). A point p ∈ X is said to be periodic



104 Piotr Oprocha and Pawe l Wilczyński

if fn(p) = p for some n ≥ 1. The set of all periodic points for f is denoted

by Per(f).

Let (X, f), (Y, g) be dynamical systems on compact metric spaces. A con-

tinuous map Φ : X → Y is called a semiconjugacy (or a factor map) between f

and g if Φ is surjective and Φ ◦ f = g ◦ Φ.

The specification property was introduced by Bowen in [3] for the first time

(see [16] or [4] for further examples of maps with specification property and their

basic characteristic). We recall the definition below, however we will use the

terminology introduced in [2].

Definition 1. Let (X, ρ) be a compact metric space. We say that f ∈ C(X)

has the weak specification property (briefly WSP) if, for any δ > 0, there is

a positive integer Nδ such that for any points y1, y2 ∈ X and any sequence

0 = j1 ≤ k1 < j2 ≤ k2 satisfying j2 − k1 ≥ Nδ there is a point x in X such that,

for m = 1, 2 and all integers i with jm ≤ i ≤ km, the following condition holds:

ρ(f i(x), f i(ym)) < δ. (2.1)

2.2. Shift spaces. Let A = {0, 1, . . . , n− 1}. We denote

Σn = A
Z, Σ+

n = A
N.

By a word, we mean any element of a free monoid A
∗ with the set of generators

equal to A. If x ∈ Σn and i < j then by x[i,j] we mean a sequence xi, xi+1, . . . , xj .

We may naturally identify x[i,j] with the word x[i,j] = xixi+1 . . . xj ∈ A
∗. It is

also very convenient to denote x[i,j) = x[i,j−1]. The same way we may define x[i,j]

and x[i,j) for x ∈ Σ+
n with the only difference that i ≥ 0.

We introduce a metric ρ in Σ+
n by

ρ(x, y) = 2−k, where k = min
{
m ≥ 0 : x[0,m] 6= y[0,m]

}
.

In the case of Σn we use the condition x[−m,m] 6= y[−m,m].

If a1 . . . am ∈ A
∗ then we define so called cylinder set :

[a1 . . . am] =
{
x ∈ Σ+

n : x[0,m) = a1 . . . am

}
.

It is well known that cylinder sets form a neighborhood basis for the space Σ+
n .

One can use a similar concept of cylinder set in the case of Σn, however in that

case the sequence a1 . . . am is centered over x0.

By the 0∞ we denote the element x ∈ Σn such that xi = 0 for all i ∈ Z (the

same for Σ+
n with the only difference that i ≥ 0). The usual map on Σn and Σ+

n
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is the shift map σ defined by σ(x)i = xi+1 for all i. Dynamical systems (Σn, σ)

and (Σ+
n , σ) are called full two-sided and full one-sided shift over n symbols.

If X ⊂ Σn is closed and invariant (i.e. σ(X) ⊂ X) then we say that X is a

shift (the same definition in the one-sided case). There are many equivalent ways

to define shifts, e.g. X is shift iff there exists a set (of forbidden words) F ⊂ A
∗

such that X = XF where

XF =
{
x ∈ Σn : x[i,j] /∈ F for every i ≤ j

}
.

One of the most important classes of shifts is the class of shifts of finite

type. It contains all shifts which can be defined by finite sets of forbidden words.

Equivalently, X ⊂ Σn is a shift of finite type if there is an integer m > 0 and

M ⊂ A
m such that

x ∈ X ⇐⇒ x[i,i+m) ∈M for all i ∈ Z

The same way one-sided shifts of finite type are defined. The class of shifts of

finite type coincides with the class of shifts such that σ is expansive and has

shadowing (see books [7], [9] for more details). A shift which may be obtained as

a factor of a shift of finite type is called a sofic shift.

Another way to define shifts of finite type and sofic shifts is to use directed

graphs and labeled directed graphs respectively, called their presentations (ele-

ments of shift are identified with bi-infinite paths on graph). The reader not

familiar with this approach is once again referred to [7] or [9].

2.3. Dynamical systems and Ważewski sets. Let X be a topological space

and W be its subset. Denote by clW the closure of W . The following definitions

come from [19]. Let D be an open subset of R × X . By a local flow on X we

mean a continuous map φ : D −→ X , such that three conditions are satisfied:

i) Ix = {t ∈ R : (t, x) ∈ D} is an open interval (αx, ωx) containing 0, for every

x ∈ X ,

ii) φ(0, x) = x, for every x ∈ X ,

iii) φ(s + t, x) = φ(t, φ(s, x)), for every x ∈ X and s, t ∈ R such that s ∈ Ix and

t ∈ Iφ(s,x).

In the sequel we write φt(x) instead of φ(t, x). We distinguish three subsets of W

given by

W− = {x ∈ W : φ([0, t] × {x}) 6⊂W, for every t > 0},

W+ = {x ∈ W : φ([−t, 0] × {x}) 6⊂W, for every t > 0},

W ∗ = {x ∈ W : φ(t, x) 6∈W, for some t > 0}.



106 Piotr Oprocha and Pawe l Wilczyński

It is easy to see that W− ⊂ W ∗. We call W− the exit set of W , and W+ the

entrance set of W . We call W a Ważewski set provided

(1) if x ∈W , t > 0, and φ([0, t] × {x}) ⊂ clW then φ([0, t] × {x}) ⊂W ,

(2) W− is closed relative to W ∗.

2.4. Processes. Let X be a topological space and Ω ⊂ R×R×X be an open set.

By a local process on X we mean a continuous map ϕ : Ω −→ X , such that

the following three conditions are satisfied:

i) ∀σ ∈ R, x ∈ X , {t ∈ R : (σ, t, x) ∈ Ω} is an open interval containing 0,

ii) ∀σ ∈ R, ϕ(σ, 0, ·) = idX ,

iii) ∀x ∈ X , σ, s ∈ R, t ∈ R if (σ, s, x) ∈ Ω, (σ + s, t, ϕ(σ, s, x)) ∈ Ω then

(σ, s + t, x) ∈ Ω and ϕ(σ, s + t, x) = ϕ(σ + s, t, ϕ(σ, s, x)).

For abbreviation, we write ϕ(σ,t)(x) instead of ϕ(σ, t, x).

Given a local process ϕ on X one can define a local flow φ on R ×X by

φ(t, (σ, x)) = (t+ σ, ϕ(σ, t, x)).

Let M be a smooth manifold and let v : R×M −→ TM be a time-dependent

vector field. We assume that v is regular enough to guarantee that for every

(t0, x0) ∈ R ×M the Cauchy problem

ẋ = v(t, x), (2.2)

x(t0) = x0 (2.3)

has a unique solution. Then the equation (2.2) generates a local process ϕ on M

by ϕ(t0,t)(x0) = x(t0, x0, t + t0), where x(t0, x0, ·) is the solution of the Cauchy

problem (2.2), (2.3).

Let T be a positive number. We assume that v is T -periodic in t. It follows

that the local process ϕ is T -periodic, i.e.,

∀σ, t ∈ R ϕ(σ+T,t) = ϕ(σ,t),

hence there is a one-to-one correspondence between T -periodic solutions of (2.2)

and fixed points of the Poincaré map PT = ϕ(0,T ).

2.5. Periodic isolating segments. Let X be a topological space and T be a

positive number. We assume that ϕ is a T -periodic local process on X .
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For any set Z ⊂ R ×X and a, b, t ∈ R, a < b we define

Zt = {x ∈ X : (t, x) ∈ Z},

Z[a,b] = {(t, x) ∈ Z : t ∈ [a, b]}.

Let π1 : R × X −→ R and π2 : R × X −→ X be projections on, time and

space variable respectively.

A compact set W ⊂ [a, b]×X is called an isolating segment over [a, b] for ϕ if

it is ENR (Euclidean neighborhood retract – cf. [5]) and there are W−−,W++ ⊂

W compact ENR’s (called, respectively, the proper exit set and proper entrance

set) such that

(1) ∂W = W− ∪W+,

(2) W− = W−− ∪ ({b} ×Wb) , W+ = W++ ∪ ({a} ×Wa),

(3) there exists homeomorphism h : [a, b]×Wa −→W such that π1 ◦h = π1 and

h([a, b] ×W−−
a ) = W−−, h([a, b] ×W++

a ) = W++.

Every isolating segment is also a Ważewski set (for the local flow associated to a

process ϕ). We say that an isolating segment W over [a, b] is (b− a)-periodic (or

simply periodic) if Wa = Wb, W−−
a = W−−

b and W++
a = W++

b . Let T > 0. Given

the set Z ⊂ [0, T ] ×X such that Z0 = ZT we define its infinite catenation by

Z∞ = {(t, z) ∈ R ×X : z ∈ Zt mod T } .

2.6. Continuation method. Let X be a metric space. We denote by ρ the

corresponding distance on R×X . Let ϕ be a local process on X , T > 0 and W,U

be two subsets of R ×X . We consider the following conditions (see [20], [23]):

(G1) W and U are T -periodic segments for ϕ which satisfy

U ⊂W, (U0, U
−−
0 ) = (W0,W

−−
0 ), (2.4)

(G2) there exists η > 0 such that for every (t, w) ∈ W−− and (t, z) ∈ U−−

there exists τ0 > 0 such that for 0 < τ < τ0 holds (t + τ, ϕ(t, τ, w)) 6∈ W ,

ρ((t+ τ0, ϕ(t,τ0)(w)),W ) > η and (t+ τ, ϕ(t, τ, z)) 6∈ U ,

ρ((t+ τ0, ϕ(t,τ0)(z)), U) > η.

Let K be a positive integer and let E[1], . . . , E[K] be disjoint closed subsets of

the essential exit set U−− which are T -periodic, i.e. E[l]0 = E[l]T , and such that

U−− =

K⋃

l=1

E[l].
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(In applications we will use the decomposition of U−− into connected compo-

nents). For n ∈ N, D ⊂ W0 and every finite sequence c = (c0, . . . , cn−1) ∈

{0, 1, . . . ,K}{0,1,...,n−1} we define Dc as a set of points satisfying the following

conditions:

(H1) ϕ(0,lT )(x) ∈ D for l ∈ {0, 1, . . . , n},

(H2) ϕ(0,lT+t)(x) ∈ Wt \W
−−
t for t ∈ [0, T ] and l ∈ {0, 1, . . . , n− 1},

(H3) for each l = 0, 1, . . . , n − 1, if cl = 0, then ϕ(0,lT+t)(x) ∈ Ut \ U
−−
t for

t ∈ (0, T ),

(H4) for each l = 0, 1, . . . , n − 1, if cl > 0, then ϕ(0,lT )(x) leaves U in time less

than T through E[cl].

Let Ω ⊂ R × R ×X be open and

[0, 1] × Ω ∋ (λ, σ, t, x) 7→ ϕλ
(σ,t)(x) ∈ X

be a continuous family of T -periodic local processes on X . We say that the

conditions (G1) and (G2) are satisfied uniformly (with respect to λ) if they are

satisfied with ϕ replaced by ϕλ and the same η in (G2) is valid for all λ ∈ [0, 1].

We write Dλ
c for the set defined by the conditions (H1)–(H4) for the local

process ϕλ.

The following theorem plays the crucial role in the method of continuation.

Theorem 2 (see [20], [22]). Let ϕλ be a continuous family of T -periodic

local processes such that (G1) and (G2) hold uniformly. Then for every n > 0

and every finite sequence c = (c0, . . . , cn−1) ∈ {0, 1, . . . ,K}{0,1,...,n−1} the fixed

point indices ind
(
ϕλ

(0,nT ) |(W0\W
−−

0
)λ
c

)
are correctly defined and equal each to

the other (i.e. do not depend on λ ∈ [0, 1]).

2.7. Distributional chaos. Let N denotes the set of positive integers and let f

be a continuous self map of a compact metric space (X, ρ). We define a function

ξf : X ×X × R × N −→ N by:

ξf (x, y, t, n) = #
{
i : ρ(f i(x), f i(y)) < t, 0 ≤ i < n

}

where #A denotes the cardinality of the set A. By the means of ξf we define the

following two functions:

Fxy(f, t) = lim inf
n→∞

1

n
ξf (x, y, t, n), F ∗

xy(f, t) = lim sup
n→∞

1

n
ξf (x, y, t, n).

For brevity, we often write ξ, Fxy(t), F ∗
xy(t) instead of ξf , Fxy(f, t), F ∗

xy(f, t)

respectively.
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Both functions Fxy and F ∗
xy are nondecreasing, Fxy(t) = F ∗

xy(t) = 0 for t < 0

and Fxy(t) = F ∗
xy(t) = 1 for t > diamX . Functions Fxy and F ∗

xy are called lower

and upper distribution functions, respectively.

Definition 3. A pair of points (x, y) ∈ X×X is called distributionally chaotic

(of type 1) if

(1) Fxy(s) = 0 for some s > 0,

(2) F ∗
xy(t) = 1 for all t > 0 .

A set containing at least two points is called distributionally scrambled set of

type 1 (or d-scrambled set for short) if any pair of its distinct points is distribu-

tionally chaotic.

A map f is distributionally chaotic (DC1) if it has an uncountable d-scramb-

led set. Distributional chaos is said to be uniform if a constant s from condition

(1) may be chosen the same for all the pairs of distinct points of d-scrambled set.

We remark here that the definition of distributional chaos was introduced to

extend approach proposed by Li and Yorke in their famous paper [8]. Then it

is clear why we use the name d-scrambled set. Namely each d-scrambled set is

also scrambled set as defined by Li and Yorke.

We also should mention that our notation is a slightly different compared to

that introduced by Schweizer and Sḿıtal (founders of distributional chaos) in

[15]. It is mainly because the definition of distributional chaos passed a very long

journey since its introduction (even its name changed as it was originally called

strong chaos). The definition we present is one of the strongest possibilities [1]

and is usually called distributional chaos of type 1 to be distinguished from other

two weaker definitions – DC2 and DC3.

Definition 4. We say that a T -periodic local process ϕ on M is (uniform) dis-

tributionally chaotic if there exists compact set Λ ⊂M invariant for the Poincaré

map PT = ϕ(0,T ) such that PT |Λ is (uniform) distributionally chaotic.

We say that the equation (2.2) is (uniform) distributionally chaotic if it

generates a local process which is (uniform) distributionally chaotic.

3. Main tools

Lemma 5. Let S ⊂ {0, 1}N be uncountable. There exists an uncountable

set A ⊂ S such that

# {i : ai = bi} = +∞, # {i : ai 6= bi} = +∞

for all a, b ∈ A, a 6= b.
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Proof. We define a relation ∼ on S × S by the formula

a ∼ b ⇐⇒ # {i : ai = bi} < +∞ or # {i : ai 6= bi} < +∞.

It is easy to verify that ∼ is an equivalence relation and that [a]∼ is at most

countable for any a. We define A to consist of exactly one representative of each

equivalence class [a]∼, a ∈ S. The quotient space S/ ∼ is uncountable, thus so

is A. �

Remark 6. If S = {0, 1, 2, . . . , n−1}N then a set A with the above properties

can be constructed easily (e.g. by application of Lemma 5). But in the case of

arbitrary uncountable subset S ⊂ {0, 1, 2, . . . , n−1}N the authors don’t know any

method of construction of the set A; surely in that case the proof of Lemma 5

doesn’t work since the set [a]∼ can be uncountable for some a ∈ S.

It can be shown that the relation

aRb ⇐⇒ # {i : ai 6= bi} < +∞

is an equivalence relation such that [a]R is at most countable for any a ∈ S. So

we can construct an uncountable subset A such that every distinct points of A

differ on infinitely many indices. By pigeonhole principle, among every n + 1

distinct elements of A, at least two ones coincide on infinitely many indices. Still

some arguments are missing to have a proof of Lemma 5 (for n > 2), however

the above observation allow us to reformulate the problem in the following way:

Let be given a simple graph with an uncountably many vertices. Among every

n + 1 vertices, there are at least two ones connected by an edge. Does it imply

the existence of a full subgraph with uncountably many vertices?

This observation was suggested to us by Micha l Misiurewicz.

Lemma 7. Let (X, d), (Y, ρ) be compact metric spaces, let f ∈ C(X), g ∈

C(Y ) and let Φ : X → Y be a semi-conjugacy. Suppose that Fxy(g, s) = 0 for

some s > 0. In that case there exists t > 0 (depending only on s) such that

Fpq(f, t) = 0 for every p ∈ Φ−1(x), q ∈ Φ−1(y).

Proof. The proof is straightforward. Namely, if t > 0 is an s-modulus

of continuity for Φ (note that Φ is uniformly continuous) then ξf (p, q, t, n) ≤

ξg(x, y, s, n) and the proof is finished. �

Theorem 8. Let (X, d), (Y, ρ) be compact metric spaces and let f ∈ C(X),

g ∈ C(Y ). Let Φ : X → Y be a semi-conjugacy such that #Φ−1(y) ≤ 2 for some

y ∈ Per(g). If g is surjective and has WSP then f is distributionally chaotic and

distributional chaos is uniform.
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Proof. It is well known (see e.g. [21, Lemma 6]) that a DC1 pair for some

iterate fk is also a DC1 pair for f . Then we may assume that y is a fixed point

of g. Let Φ−1(y) = {z1, z2} (we do not assume that z1 6= z2) and let λ = d(z1, z2).

The map g has WSP and is onto, thus (by [11]) there exists a d-scrambled set

S for g and increasing sequences mi, si such that for any x ∈ S the following

condition holds:

ρ(gj(x), y) <
1

i
for mi ≤ j ≤ mi + si, (3.1)

where

lim
i→∞

si

mi + si

= 1. (3.2)

By continuity arguments, for every integer i and points x ∈ S, v ∈ Φ−1(x) there

exists kv
i ∈ {1, 2} such that

d(f j(v), zkv

i
) < δi for mi ≤ j ≤ mi + si, (3.3)

where δi depends only on i and

lim
i→∞

δi = 0. (3.4)

Let S̃ ⊂ Φ−1(S) be an uncountable set with the property that Φ(p) 6= Φ(q) for

any distinct p, q ∈ S̃. We will show that S̃ contains a d-scrambled set for f .

For any p ∈ S̃ we define a sequence cp = kp
1 , k

p
2 , . . . . We have two possibilities:

(1) There exists an uncountable set A ⊂ S̃ such that cp = cq for any p, q ∈ A.

In that case we fix Ŝ = A.

(2) For any p ∈ S̃ the set {q ∈ S̃ : cp = cq} is at most countable. In that case,

{cp : p ∈ S̃} is uncountable and we may apply Lemma 5 obtaining a set

Ŝ ⊂ S̃ such that for any distinct p, q ∈ Ŝ it holds that

# {i : kp
i = kq

i } = +∞, # {i : kp
i 6= kq

i } = +∞.

We have just proved that there always exists a set Ŝ ⊂ S̃ such that the equality

#{i : kp
i = kq

i } = +∞ holds for any p, q ∈ Ŝ. By (3.3), we obtain

d(f j(p), f j(q)) < 2δµi
for all mµi

≤ j ≤ mµi
+ sµi

(3.5)

where {µi}
∞
i=1 ⊂ N is some strictly increasing sequence depending only on p and q.

Equalities (3.2) and (3.4) imply that F ∗
pq(t) = 1 for any parameter value t > 0.

By Lemma 7, the proof is finished. �
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Now we deal with the homoclinic solutions.

Proposition 9. Let (X, d), (Y, ρ) be compact metric spaces and f ∈ C(X),

g ∈ C(Y ). Let Φ : X → Y be a semi-conjugacy such that Φ−1(y) = {p1, . . . , pk} ⊂

Per(f) for some y ∈ Per(g) and k ∈ N. Then, for any z ∈ Y with the property

ωg(z) = αg(z) = Orb(y, g) and for any q ∈ Φ−1(z) there exist u, v ∈ Φ−1(y) such

that αf (q) = Orb(u, f) and ωf(q) = Orb(v, f).

Proof. Let us fix λ > 0 such that 3λ < d(s, r) for all s, r ∈
⋃k

i=1 Orb(pi, f),

s 6= r. Let δ > 0 be a λ modulus of continuity of f (δ < λ). Let us fix any z ∈ Y

satisfying ωg(z) = αg(z) = Orb(y, g) and fix any q ∈ Φ−1(z). For every ε > 0 the

set Φ−1(B̄(ε,Orb(y, g))) is compact so

⋂

ε>0

Φ−1(B̄(ε,Orb(y, g))) =

k⋃

i=1

Orb(pi, f).

This implies that there exists an integer N > 0 such that for any j ≥ N there

exists l(j) ∈ {1, . . . , k} with the property d(f j(q), f j(pl(j))) < δ. Thus

d(f j+1(pl(j)), f
j+1(q)) < λ

so

d(f j+1(pl(j)), f
j+1(pl(j+1))) ≤ d(f j+1(pl(j)), f

j+1(q))

+d(f j+1(q), f j+1(pl(j+1))) < λ+ δ < 3λ

which immediately implies that l(j + 1) = l(j). Combining this observation with

the inclusion ωf (q) ⊂
⋃k

i=1 Orb(pi, f) we obtain that ωf (q) = Orb(pl(N), f). It is

enough to fix v = pl(N). The case of αf is similar. �

Corollary 10. Let (X, d), (Y, ρ) be compact metric spaces and let f ∈ C(X),

g ∈ C(Y ). Let Φ : X → Y be a semi-conjugacy such that Φ−1(y) = {p1, p2} ⊂

Per(f) for some y ∈ Per(g). Additionally assume that g is surjective and has

WSP. Then there is an infinite set A ⊂ X and z ∈ A the following equalities hold

αf (z) = pi and ωf (z) = pj where i, j ∈ {1, 2} and i = j (homoclinic connection)

or i 6= j (heteroclinic connection).

4. Applications

In this section we investigate the equation (1.1) which is a pertubation of the

well known (see [23])

ż =
(

1 + eiκt |z|2
)
z2 (4.1)

We state the main theorem of this section
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Theorem 11. Let the inequalities

0 < κ ≤ 0.18, (4.2)

0 ≤ N ≤ 0.01 (4.3)

be satisfied. Then the equation (1.1) is uniform distributionally chaotic.

Remark 12. The pertubation has the form −Ne−2α. It is possible to state

similar theorems for every α ∈ (0, π). We chose α = π
6 to simplify technical

aspects of calculations since the choice of α affects the range of κ and N in (4.2)

and (4.3).

It is also possible to investigate homo- and heteroclinic solutions of (1.1).

Theorem 13. Let the inequalities (4.2) and

0 < N ≤ 0.01 (4.4)

be satisfied. In that case, the set of solutions of (1.1) which are

• homoclinic to ψ1,

• homoclinic to ψ2,

• heteroclinic from ψ1 to ψ2,

• heteroclinic from ψ2 to ψ1

is infinite (for each of the listed possibilities) where ψ1, ψ2 are the periodic so-

lutions which bifurcate from the trivial one for N = 0 such that R[ψ1] > 0 and

R[ψ2] < 0.

The detailed proofs of Theorem 11 and 13 are quite technical and performed

in many steps. For that reason we present below a general explanation why these

theorems hold, while detailed arguments are forwarded to another article [14],

which is sequel to the present one. Sketchy description below should help the

reader to understand the main idea hidden behind the proofs (and calculations).

Idea of the proof of Theorem 11. For N = 0 there is a trivial periodic

solution ψ ≡ 0 of the equation (1.1). It was proved in [23] that there exist a

compact subset Ĩ of the Poincaré section C and semiconjugacy g : Ĩ −→ g(Ĩ) ⊂ Σ4

of σ|
g(eI) and ϕ(0,T ) such that Π ⊂ g(Ĩ) where Π is a sofic shift which presentation

is given in Figure 1.

The set Ĩ is the set of all initial conditions such that the solutions passing

through them stay inside the infinite catenation W∞ of the segment W (see Fig-

ure 2 (a)). The trivial solution is the only one which is completely contained
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1

0

0

0

0

2

3

Figure 1. Presentation of the sofic shift Π.

(a) (b)

(c) (d) (e)

t t

t

Figure 2. Isolating segments (a) W , (b) U , (c) V (ξ) and sets (d) Z

and (e) bZ. Sets W−−, U−−, V (ξ)−− are marked in grey.

in U∞ (see Figure 2 (b)), thus it is coded by 0∞ ∈ Π. The existence of distribu-

tional chaos follows by the results of [13].

By the continuation method (Theorem 2), a conjugacy with Π can also be

obtained with N satisfying (4.4). The only difference is that the trivial solution

bifurcates into two solutions ψ1 and ψ2. Moreover, ψ1 and ψ2 are the only solu-

tions which are fully contained in U∞ so they are both coded by 0∞ ∈ Π. The

existence of distributional chaos follows now by Theorem 8. �
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Idea of the proof of Theorem 13. By Corollary 10 we see that there

must be homoclinic or heteroclinic connections. Theorem 13 specifies that all

possible connections are present in the system. The proof relies on the fact, that

the segment W can be partitioned in a way, such that trajectory can visit (or

leave) prescribed regions only if its symbolic itinerary contains specific sequence

of symbols. It is the main tool to control the future and the past behavior of

the orbit (in terms of solutions ψ1 and ψ2 it must approach). This is the main

technique of the proof, which involves a deep analysis of the vector field. �
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