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On continuous solutions of n-th order polynomial-like
iterative equations

By WENMENG ZHANG (Chengdu) and WEINIAN ZHANG (Chengdu)

Abstract. Many efforts have been made to present all continuous solutions of

the iterative equation
Pn

i=0 λif
i(x) = c but for general n only the case of c = 0 was

considered and no nonhyperbolic cases were discussed. In this paper we first prove that

all continuous solutions are decided totally by those real characteristic roots, which not

only gives a method to lower the order when complex characteristic roots are involved

but also partly answers the question raised in Remark 8 in [Aequationes Math. 2004,

67: 80–105]. Then we find all continuous solutions of the equation with c = 0 in the

case of smallest characteristic root being 1. Furthermore, we prove that in the case of

all characteristic roots being 1 the equation with c 6= 0 has no continuous real solutions

when n is even.

1. Introduction

Since C. Babbage [1] solved the functional equation fn(x) = x, where x ∈

R, n ≥ 2 is an integer and fn denotes the n-th iterate of the unknown function f ,

i.e., fn(x) = f(fn−1(x)) and f0(x) = x, more and more attentions have been paid

to the iterative root problem and the more general forms of iterative equation,

where iteration of the unknown function is included as the main operation ([2],

[6]). Among those forms an interesting one is the linear combination of iterates

λnf
n(x) + λn−1f

n−1(x) + · · · + λ1f(x) + λ0x = F (x), (1)

called the polynomial-like iterative equation, where λi ∈ R.
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Although many results (e.g. [5], [13], [15], [17], [18]) on existence of solutions

are given for equation (1) with some nonlinear F , it is of special interests to find

all continuous solutions of (1), even with constant F , i.e.,

λnf
n(x) + λn−1f

n−1(x) + · · · + λ1f(x) + λ0x = c,

where c is a real constant. Since c is arbitrary, with out loss of generality, we may

put λn = 1 in this equation, i.e,

fn(x) + λn−1f
n−1(x) + · · · + λ1f(x) + λ0x = c, (2)

In 1974, motivated by Euler’s equation f(x + f(x)) = f(x) (see [14]), Nabeya

([10]) discussed the generalized equation f(p+qx+rf(x)) = a+bx+cf(x), which

actually can be transformed into the form (2) for n = 2. He presented all iterates

fk in the form of linear combination of f0 and f1 and discussed eigenvalues of the

difference equation satisfied by the sequences of coefficients in the combination

so as to formulate all continuous solutions. Later, less results were given until

Matkowski [7] indicated in 1989 that when λ0 6= 0 the problem of determining

all the continuous solutions f : R → R of (2) is still open, even for n = 3.

Since 90’s the iterative equation (2) with c = 0, i.e.,

fn(x) + λn−1f
n−1(x) + · · · + λ1f(x) + λ0x = 0, (3)

again attracts interests of research [4], [8], [9], [12], [16]. In 1997, considering

those solutions f(x) = rx of linear form as characteristic solution, Matkowski

and Zhang ([8]) discussed all cases of the characteristic root r and gave all

continuous solutions of (3) for n = 2. As in [9], [16], substituting the linear

function f(x) = rx in equation (3) we see that the characteristic root r are

determined by the polynomial equation

P (r) := rn + λn−1r
n−1 + · · · + λ1r + λ0 = 0. (4)

In order to discuss equation (3) with the general order n, Yang and Zhang

applied the tool of linear difference form (or simply called L∆ form), introduced

first in [9], to simplify the problem, finding all continuous solutions in the four

hyperbolic cases: (IHe) 1<r1< . . . < rn (expensive subcase), (IHc) 0 < r1 <

· · · < rn< 1 (contractive subcase), (DHe) r1< · · · < rn <−1 (expansive subcase),

and (DHc) −1 < r1 < · · · < rn < 0 (contractive subcase), proving non-existence

of continuous solutions in the case of no real characteristic roots, and giving the

method of lowering order in the case of n-multiple characteristic roots.

So far, as remarked in the last section of [16], no results on the problem of

all continuous solutions of (2) are given even for n = 3 in the case of n distinct

characteristic roots with one of the following conditions:
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(ID) P has both positive characteristic roots and negative ones, i.e., increasing

factor and decreasing one are both included;

(EC) P has both roots greater than 1 in absolute value and roots less than 1 in

absolute value, i.e., expansive factor and contractive one are both included;

(K) P has a root of absolute value being 1, refereed to “critical case” in [8];

(Rp) P has exactly p real roots but 2 ≤ p < n.

For n ≥ 3 we also do not have a complete result when P has multiple roots.

In this paper we employ some properties of linear difference form, shown in

Section 2, to discuss equation (2) for general n in the cases (Rp) and (K). In

Section 3 we prove in the case (Rp) that all continuous solutions are decided

totally by those real characteristic roots, which not only gives a method to lower

the order but also partly answers the question raised in Remark 8 in [16]. In

Section 4 we give all continuous solutions of equation (2) with c = 0 when all

characteristic roots are simple and the smallest one is 1. Section 5 is devoted to

the case that all characteristic roots are equal to 1, in which equation (2) with

even n and c 6= 0 is proved to have no continuous solutions.

2. Preliminaries

Suppose that all λ’s and c are reals. We discuss equation (2) with λ0 6= 0.

Similar to the case of c = 0 shown in [9], [16], its solutions have the following

basic property.

Lemma 1. Suppose that f : R → R is a continuous solution of equation (2).

If λ0 6= 0, then f is a homeomorphism.

Proof. It is easy to see that f is one-to-one. Next we prove that the limits

limx→∞ f(x) and limx→−∞ f(x) are infinite. Suppose that limx→∞ f(x) = y0,

where y0 ∈ R. Rewrite (2) as

fn(x) + · · · + λ1f(x) = −λ0x+ c. (5)

By the continuity of fk on the whole R, k = 1, . . . , n, the left-hand side of (5) is

convergent as x → ∞ to a finite limit but the right-hand side of (5) is not. The

contradiction shows that f(R) = R. �

Let r1, r2, . . . , rn be n complex roots of equation (4). Then equation (2) is

equivalent to
n∑

j=0

(−1)j
∑

1≤s1<···<sj≤n

rs1
rs2

. . . rsj
fn−j(x) = c, (6)
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where we make a convention for the term of j = 0 that
∑

1≤s1<···<sj≤n

rs1
rs2

. . . rsj
= 1,

and the inverse g = f−1 satisfies the dual equation

n∑

j=0

(−1)j
∑

1≤s1<···<sj≤n

r−1
s1
r−1
s2
. . . r−1

sj
gn−j(x) = (−1)nr−1

1 , . . . , r−1
n c. (7)

As mentioned in our Introduction, the linear difference form, defined in [9],

[16], is a useful tool in computation for polynomial-like iterative equations. Sup-

pose that X is a vector space over C and let S(X) denote the set of all bilateral

sequences (xℓ)ℓ∈Z := (. . . , x−1, x0, x1, . . . ) in X . Given a positive integer n, com-

plex numbers γ1, . . . , γn and an integer k the n-th order linear difference form

Fk[γ1, . . . , γn] : S(X) → X is defined by

Fk[γ1, . . . , γn](xℓ)ℓ∈Z :=

n∑

j=0

(−1)j
∑

1≤s1<···<sj≤n

γs1
. . . γsj

xk+n−j .

We complementarily define Fk[∅](xℓ)ℓ∈Z := xk, where ∅ is the empty set. Some-

times we call this form an n-th order L∆ form or an n-form shortly.

We can apply the concept of L∆ form to the sequences of both (f ℓ)ℓ∈Z and

(f ℓ(x))ℓ∈Z with an arbitrary given x∈R. It is clear that Fk[γ1, . . . , γn](f ℓ)ℓ∈Z(x)=

Fk[γ1, . . . , γn](f ℓ(x))ℓ∈Z. Then equation (6) can be simplified as

F0[r1, . . . , rn](f ℓ(x))ℓ∈Z = c, ∀x ∈ R, (8)

and we can also simplify the dual equation (7) as

F0[r
−1
1 , . . . , r−1

n ](f−ℓ(x))ℓ∈Z = (−1)nr−1
1 , . . . , r−1

n c, ∀x ∈ R. (9)

The following properties of L∆ form are useful in computation and can be found

in [16, Lemmas 1, 2 and 3].

Lemma 2. Assume n ≥ 1 and k are integers, and γ1, . . . , γn are complex

numbers. If (γ̃1, . . . , γ̃n) is a permutation of (γ1, . . . , γn), then Fk[γ̃1, . . . , γ̃n] =

Fk[γ1, . . . , γn]. Moreover,

(i) (Lower Order) for integer 1 ≤ q ≤ n,

Fk[γ1, . . . , γn] =

q∑

j=0

(−1)j
∑

n−q+1≤s1<···<sj≤n

γs1
. . . γsj

Fk+q−j [γ1, . . . , γn−q];
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(ii) (Reduce to Dual) if γj 6= 0 (j = 1, . . . , n) then

Fk[γ1, . . . , γn](f ℓ)ℓ∈Z = (−1)nγ1 . . . γn F−(k+n)[γ
−1
1 , . . . , γ−1

n ](f−ℓ)ℓ∈Z;

(iii) (Shift on Iteration) if the continuous function f : R → R satisfies that

F0[r1, . . . , rn](f ℓ)ℓ∈Z = 0, then

Fk+p[r1, . . . , rt−1, rt+1, . . . , rn](f ℓ)ℓ∈Z = rp
t Fk[r1, . . . , rt−1, rt+1, . . . , rn](f ℓ)ℓ∈Z

for arbitrary positive integers p, t with 1 ≤ t ≤ n.

Another important thing is the expression of the general iterate of solutions

with its first n-th iterates, which is useful to reducing order of equation (8). As

in [16], let

A :=




1 −
n∑

j=2

rj
∑

2≤j<k≤n

rjrk . . . (−1)n−1r2 . . . rn

...
...

...
...

...

1 −
n−1∑
j=1

rj
∑

1≤j<k≤n−1

rjrk . . . (−1)n−1r1 . . . rn−1




and let ∆(r1, . . . , rn) and Aj1 (j = 1, . . . , n) denote respectively the determinant

and the algebraic complement minors of the matrix A. If the polynomial P ,

defined in (4), has n distinct roots r1, . . . , rn in C and f : R → R is a solution of

equation (8), by (3.15) in [16, p. 88], we have

fn+m =

n∑

j=1

Aj1

∆(r1, . . . , rn)
rm+1
j F0[r1, . . . , rj−1, rj+1, . . . , rn](f ℓ)ℓ∈Z (10)

for any integer m ≥ 0.

The following lemma gives the relation between the equation (8) with c 6= 0

and the equation (8) with c = 0. For −∞ ≤ α < β ≤ +∞, let |α, β| denote

generally one of the intervals: [α, β], (−∞, β], [α,+∞) and (−∞,+∞).

Lemma 3. Suppose that all numbers γj 6= 0 (j = 1, . . . , n) are real and

none of them is equal to 1. Then the equation F0[γ1, . . . , γn](f ℓ(x))ℓ∈Z = c for

all x ∈ |α, β| can be reduced to the equation F0[γ1, . . . , γn](f̃ ℓ(x))ℓ∈Z = 0 for all

x ∈ |α−ξ, β−ξ| by the substitution f̃(x) = f(x+ξ)−ξ, where ξ := c/
∏n

ς=1(1−γς),

and vice versa.
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Proof. Obviously, f̃ k(x) = fk(x + ξ) − ξ for all k = 0, 1, . . . . For x ∈

|α− ξ, β − ξ|,

F0[γ1, . . . , γn](f̃ ℓ(x))ℓ∈Z =

n∑

j=0

(−1)j
∑

1≤s1<···<sj≤n

γs1
γs2

. . . γsj
(fn−j(x + ξ) − ξ)

=

n∑

j=0

(−1)j
∑

1≤s1<···<sj≤n

γs1
γs2

. . . γsj
(fn−j(x+ ξ)) − ξ

n∏

ς=1

(1 − γς)

= F0[γ1, . . . , γn](f ℓ(x+ ξ))ℓ∈Z − c = 0.

Noting that the substitution is invertible, we can similarly prove the opposite

direction. This completes the proof. �

3. Case of complex roots

In Remark 8 of [16] there is raised a question: If equation (2) with c = 0 has

exactly k real characteristic roots and k < n, can we obtain all of its continuous

real solutions from the equation F0[r1, . . . , rk](f ℓ)ℓ∈Z = 0, i.e., the same type of

iterative equation of lower order determined exactly by those k real characteristic

roots? The following theorem gives an answer to this question. As usual, for

z ∈ C by z and |z| we denote the conjugate and module of z respectively..

Theorem 1. Suppose that the characteristic equation (4) has roots r1, . . . ,

rp ∈R and rp+1, . . . , rs, rp+1, . . . , rs ∈ C\R of multiplicities k1, . . . , kp and kp+1,

. . . , ks, kp+1, . . . , ks respectively, where p < s ∈ N and
∑p

j=1 kj+2
∑s

j=p+1 kj = n,

and that |r1| ≤ · · · ≤ |rp| < |rp+1| < · · · < |rs|. Then equation (2) with c = 0 has

the same continuous solutions f : R → R as the lower order equation

k1+···+kp∑

j=0

(−1)j
∑

1≤s1<···<sj≤k1+···+kp

γs1
. . . γsj

fk1+···+kp−j(x) = 0, (11)

where (γ1, . . . , γk1+···+kp
) := (

k1︷ ︸︸ ︷
r1, . . . , r1, . . . ,

kp︷ ︸︸ ︷
rp, . . . , rp).

This theorem gives a method to lower the order when complex characteristic

roots are involved. It shows that an equation having complex characteristic roots

can be reduced to an equation of the same type having those real characteristic

roots only.
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Proof of Theorem 1. Suppose that f is a continuous solution of equation

(8) (equivalent to (2)) with c = 0. For arbitrarily fixed x0 ∈ R, let xℓ := f ℓ(x0)

for all ℓ ∈ Z. Then the sequence (xm)m∈N0
, where N0 := N ∪ {0}, is a solution of

the linear difference equation

Fm[

k1︷ ︸︸ ︷
r1, . . . , r1, . . . ,

ks︷ ︸︸ ︷
rs, . . . , rs, . . . ,

ks︷ ︸︸ ︷
rs, . . . , rs ](xℓ)ℓ∈Z = 0, ∀m ∈ N0, (12)

associated with initial data x0, . . . , xn−1. Using the formula of general solution of

linear difference equations, seen for example in [3, Corollary 2.24, p. 77], we see

that all solutions of equation (12) can be presented in the form

xm =

p∑

j=1

(µj,0 + · · · + µj,kj−1m
kj−1)rm

j +

s∑

j=p+1

{
(µj,0 + · · · + µj,kj−1m

kj−1)rm
j

+ (νj,0 + · · · + νj,kj−1m
kj−1)rm

j

}
, (13)

where all µj,k’s and νj,k’s are complex depending on x0, . . . , xn−1. Comparing

the expressions of xm and xm and noting that xm = xm ∈ R, we easily see

that µj,0, . . . , µj,kj−1 ∈ R, j = 1, . . . , p and µj,0 = νj,0, . . . , µj,kj−1 = νj,kj−1,

j = p+ 1, . . . , s.

To simplify the formula (13), we suppose that θ, ω ∈ [0, 2π) satisfy

rs = |rs|(cos θ + i sin θ), µs,ks−1 = |µs,ks−1|(cosω + i sinω).

It follows from (13) that

xm = A(m) + µs,ks−1m
ks−1rm

s + νs,ks−1m
ks−1rm

s

= A(m) + |µs,ks−1|m
ks−1|rs|

m{(cosω + i sinω)(cosmθ + i sinmθ)

+ (cosω − i sinω)(cosmθ − i sinmθ)}

= A(m) + 2|µs,ks−1|m
ks−1|rs|

m cos(mθ + ω), (14)

where

A(m) :=

p∑

j=1

(µj,0 + · · · + µj,kj−1m
kj−1)rm

j +
s−1∑

j=p+1

{
(µj,0 + · · · + µj,kj−1m

kj−1)rm
j

+ (νj,0 + · · · + νj,kj−1m
kj−1)rm

j

}
+ (µs,0 + · · · + µs,ks−2m

ks−2)rm
s

+ (νs,0 + · · · + νs,ks−2m
ks−2)rm

s . (15)
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Next we claim that

2|µs,ks−1|m
ks−1|rs|

m cos(mθ + ω) = 0, ∀m ∈ N0. (16)

Noticing (14), where the terms of rs and rs of the highest degree are separated from

other terms, which are all included in A(m), we obtain that

x2(m+1) − x2m

(2m)ks−1|rs|2m
=

A(2(m + 1)) − A(2m)

(2m)ks−1|rs|2m
+ 2|µs,ks−1|

×

�
(m + 1)ks−1

mks−1
|rs|

2 cos(2(m + 1)θ + ω) − cos(2mθ + ω)

�
=

A(2(m + 1)) − A(2m)

(2m)ks−1|rs|2m

+ 2|µs,ks−1|

��
(m+1)ks−1−mks−1

mks−1
+1

�
|rs|

2 cos(2(m+1)θ+ω) − cos(2mθ + ω)

�
= B(m) + 2|µs,ks−1|{|rs|

2 cos(2(m + 1)θ + ω) − cos(2mθ + ω)}

= B(m) + 2|µs,ks−1|{|rs|
2(cos 2θ cos(2mθ + ω)− sin 2θ sin(2mθ +ω))− cos(2mθ + ω)}

= B(m) + 2|µs,ks−1|{(|rs|
2 cos 2θ − 1) cos(2mθ + ω) − rs|

2 sin 2θ sin(2mθ + ω)}

= B(m) + 2|µs,ks−1|{(|rs|
2 cos 2θ − 1)2 + (|rs|

2 sin 2θ)2}1/2 cos(2mθ + ω +ϕ), (17)

where

B(m) :=
A(2(m+ 1)) −A(2m)

(2m)ks−1|rs|2m

+ 2|µs,ks−1|

(
(m+ 1)ks−1 −mks−1

mks−1

)
|rs|

2 cos(2(m+ 1)θ + ω),

ϕ :=





tan−1{|rs|2 sin 2θ/(|rs|2 cos 2θ − 1)}, if |rs|2 cos 2θ − 1 6= 0,

π/2 or − π/2, if |rs|2 cos 2θ − 1 = 0.

It is worth mentioning that the term (|rs|2 cos 2θ − 1)2 + (|rs|2 sin 2θ)2 in (17)

cannot be 0. In fact, if |rs|
2 cos 2θ − 1 = sin 2θ = 0 then cos 2θ = 1. It implies

that θ = 0 or π, which contradicts with the fact that rs ∈ C\R. Observing (15),

we conclude that limm→∞B(m) = 0. Furthermore, put

ym := 2|µs,ks−1|{(|rs|
2 cos 2θ − 1)2 + (|rs|

2 sin 2θ)2}1/2 cos(2mθ + ω + ϕ)

for all m ∈ N0, which appears in the last row of (17). Case (i): θ 6= π/2, 3π/2.

Suppose |µs,ks−1| 6= 0. Then the sequence (ym : m ≥ 0) does not have a uniform

sign and neither the subsequence of its all positive terms nor the subsequence of

its all negative terms tends to 0 since θ 6= 0, π. On the other hand, for arbitrary

x0 ∈ R, if f2(x0) = x0 then f2(m+1)(x0) − f2m(x0) = 0 for all m ∈ Z; if
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f2(x0) 6= x0 then f2(m+1)(x0) − f2m(x0) > 0 (or < 0) for all m ∈ Z by the

monotonicity of f , given in Lemma 1. It implies that the left hand side of (17)

is equal to 0 or has a definite sign for all m, which contradicts the fact that the

right hand side of (17) switches its sign for large m. Hence |µs,ks−1| = 0. Case

(ii): θ = π/2 or 3π/2. In this case we have sin 2θ = 0 and |rs|2 cos 2θ − 1 6= 0,

implying that

ϕ = tan−1{|rs|
2 sin 2θ/(|rs|

2 cos 2θ − 1)} = 0.

Thus cos(2mθ+ω+ϕ) = cos(mπ+ω) for all m ∈ N0. Here, if ω 6= π/2 and 3π/2

then, by the discussion in the above case (i), we get |µs,ks−1| = 0; if ω = π/2 or

3π/2 then

cos(mπ + ω) = 0, ∀m ∈ N0.

Thus the claimed result (16) is proved, i.e., xm = A(m) for m ∈ N0.

Note that A(m), defined in (15), is of the same form as the formula in (13) but

contains neither the term of µs,ks−1m
ks−1rm

s nor the term of νs,ks−1m
ks−1rm

s .

We can similarly prove that µs,ks−2 = 0 (or µs−1,ks−1−1 = 0 when ks = 1).

Thus, repeating the same procedure as before, we can prove that µij = 0 for all

i = s, s− 1, . . . , p+ 1 and all j = ki−1, . . . , k0 and finally obtain from (13) that

xm =

p∑

j=1

(µj,0 + · · · + µj,kj−1m
kj−1)rm

j ,

which by the theory of linear difference equations [3, Corollary 2.24, p. 77] is

actually a solution of the difference equation

Fm[

k1︷ ︸︸ ︷
r1, . . . , r1, . . . ,

kp︷ ︸︸ ︷
rp, . . . , rp ](xℓ)ℓ∈Z = 0, ∀m ∈ N0.

Since xm = fm(x0) for m ∈ N0, it implies that

F0[

k1︷ ︸︸ ︷
r1, . . . , r1, . . . ,

kp︷ ︸︸ ︷
rp, . . . , rp ](f ℓ(x0))ℓ∈Z = 0. (18)

This proves (11).

Conversely, if f satisfies (11) then f is a solution of equation (8) with c = 0.

In fact, by Lemma 2 (i), F0[

k1︷ ︸︸ ︷
r1, . . . , r1, . . . ,

ks︷ ︸︸ ︷
rs, . . . , rs, . . . ,

ks︷ ︸︸ ︷
rs, . . . , rs ](f ℓ)ℓ∈Z can be

presented as a linear combination of terms Fη[

k1︷ ︸︸ ︷
r1, . . . , r1, . . . ,

kp︷ ︸︸ ︷
rp, . . . , rp ](f ℓ)ℓ∈Z,

η = 0, . . . , n−
∑p

j=1 kj . This completes the proof. �
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Combining Theorem 1 with Lemma 3 given in Section 2, we can easily give

a similar result for equation (2) generally without the assumption that c = 0.

Corollary 1. Suppose that the characteristic equation (4) has roots r1, . . . ,

rp∈R and rp+1, . . . , rs, rp+1, . . . , rs∈C\R of multiplicities k1, . . . , kp and kp+1, . . . ,

ks, kp+1, . . . , ks respectively, where p < s ∈ N and
∑p

j=1 kj + 2
∑s

j=p+1 kj = n,

and that r1, . . . , rp 6= 1 and |r1| ≤ · · · ≤ |rp| < |rp+1| < · · · < |rs|. Then equation

(2) has the same continuous solutions f : R → R as the lower order equation

k1+···+kp∑

j=0

(−1)j
∑

1≤qs1<···<sj≤k1+···+kp

γs1
. . . γsj

fk1+···+kp−j(x) = c/
s∏

ς=p+1

|1−rς |
2kς ,

where (γ1, . . . , γk1+···+kp
) := (

k1︷ ︸︸ ︷
r1, . . . , r1, . . . ,

kp︷ ︸︸ ︷
rp, . . . , rp ).

4. Case 1 = r1 < · · · < rn

This is a case in (K). In this case Lemma 3 does not work because r1 = 1.

For n = 2 both Nabeya [10] and Matkowski and Zhang [8] considered this

case and proved that all solutions of equation (8) with c = 0 are of the piecewise

linear form

f(x) =





r2(x − a) + a, x ∈ (−∞, a],

x, x ∈ (a, b),

r2(x − b) + b, x ∈ [b,+∞),

(19)

where a, b are constants such that −∞ ≤ a ≤ b ≤ +∞. In this section we consider

equation (8) of general n with c = 0, a case not discussed in [16]. In comparison

with the discussion for n = 2 in [8], [10], in our case it is difficult to obtain the

inequality r1 ≤ (f(y) − f(x))/(y − x) ≤ rn for all x 6= y, which is very useful in

the proof of (19) in [8], [10] for n = 2.

Theorem 2. Suppose that equation (4) has n distinct roots 1 = r1 < r2 <

· · · < rn. Then every continuous solution f : R → R of equation (2) with c = 0 is

of the form

f(x) =





φ(x), x ∈ (−∞, a],

x, x ∈ (a, b),

ψ(x), x ∈ [b,+∞),

(20)
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where −∞ ≤ a ≤ b ≤ +∞ and the functions φ, ψ are solutions of equations

n−1∑

j=0

(−1)j
∑

2≤s1<···<sj≤n

rs1
rs2

. . . rsj
φn−1−j(x) = a

n∏

ς=2

(1−rς), ∀x ∈ (−∞, a], (21)

n−1∑

j=0

(−1)j
∑

2≤s1<···<sj≤n

rs1
rs2

. . . rsj
ψn−1−j(x) = b

n∏

ς=2

(1−rς), ∀x ∈![b,+∞), (22)

respectively.

Observe that if a = −∞ (resp. b = +∞) then we have f(x) = x on (−∞, b)

(resp. on (a,+∞)); if a = b then (20) presents solutions of equation

n−1∑

j=0

(−1)j
∑

2≤s1<···<sj≤n

rs1
rs2

. . . rsj
φn−1−j(x) = a

n∏

ς=2

(1 − rς), ∀x ∈ R.

Actually, (20) is consistent with (19) when n = 2. For general n ∈ N, by Lemma 3,

if both a and b are finite then equations (21) and (22) can be reduced to the

equations

n−1∑

j=0

(−1)j
∑

2≤s1<···<sj≤n

rs1
rs2

. . . rsj
φ̃n−1−j(x) = 0, ∀x ∈ (−∞, 0],

n−1∑

j=0

(−1)j
∑

2≤s1<···<sj≤n

rs1
rs2

. . . rsj
ψ̃n−1−j(x) = 0, ∀x ∈ [0,+∞),

respectively, where φ̃(x) := φ(x+ a)− a and ψ̃(x) := ψ(x+ b)− b. All continuous

solutions φ̃ : (−∞, 0] → (−∞, 0] and ψ̃ : [0,+∞) → [0,+∞) of the reduced

equations with the restrictions φ̃(0) = 0 and ψ̃(0) = 0 can be constructed as in

Theorem 2 in [16]. Therefore, all continuous solutions f of equation (2) with

c = 0 can be given by (20), where φ and ψ are defined by φ̃ and ψ̃ respectively

and satisfy φ(a) = a and ψ(b) = b.

Proof of Theorem 2. Suppose that f is a continuous solution of equation

(8) with c = 0. By (10) and the fact rn > rj (j = 1, . . . , n− 1), we get

lim
m→+∞

fn+m(x)

rm+1
n

=
An1

∆(r1, . . . , rn)
F0[r1, . . . , rn−1](f

ℓ(x))ℓ∈Z, (23)
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where we can calculate that An1 = rn−1
n ∆(r1, . . . , rn−1) 6= 0. Applying (10)

again to the dual equation (9) with c = 0 and noting that 0 < r−1
j < 1 for all

j = 2, . . . , n, we obtain

lim
m→+∞

f−(n+m)(x) = C1 F0[r
−1
2 , . . . , r−1

n ](f−ℓ(x))ℓ∈Z,

where C1 is a constant. Thus, by Lemma 2 (ii) and (iii),

lim
m→+∞

f−(n+m)(x) =
(−1)n−1C1

r2 . . . rn
F−(n−1)[r2, . . . , rn](f ℓ(x))ℓ∈Z

= C2 F0[r2, . . . , rn](f ℓ(x))ℓ∈Z, (24)

where C2 = (−1)n−1C1/(r2 . . . rn).

Now we claim that f is strictly increasing on R. Since f is strictly monotone

as mentioned in Lemma 1, for a reduction to absurdity we assume that f is strictly

decreasing. It implies that the pointwise limit limm→+∞ fn+m/rm+1
n is both

nondecreasing (if n+m is even, then fn+m increases) and nonincreasing (if n+m

is odd, then fn+m decreases). So by (23) the function F0[r1, . . . , rn−1](f
ℓ)ℓ∈Z is

a constant c1, i.e.,

F0[r1, . . . , rn−1](f
ℓ(x))ℓ∈Z = c1, ∀x ∈ R.

Clearly, c1 = rm
n c1 for allm∈Z by Lemma 2 (iii), implying that c1 = 0 since rn 6= 1.

Repeating the same procedure we can lower the order by 1 while eliminating an

rj (j = n − 1, . . . , 2) each time. Finally we obtain that F0[r1](f
ℓ(x))ℓ∈Z = 0,

i.e., f(x) = x, for all x ∈ R, which makes a contradiction. Hence, f is strictly

increasing on R. Moreover, the function F0[r2, . . . , rn](f ℓ)ℓ∈Z is monotone by (24).

Furthermore, f has at least one fixed point. In fact, let

ỹ := C2 F0[r2, . . . , rn](f ℓ(x̃))ℓ∈Z ∈ R

for arbitrary given x̃ ∈ R. By (24) and the continuity of f we have

ỹ = lim
m→+∞

f−(n+m)(x̃) = f( lim
m→+∞

f−(n+m)−1(x̃)) = f(ỹ). (25)

Therefore, it is reasonable to let a and b, where −∞ ≤ a ≤ b ≤ +∞, denote

the infimum and supremum of the set of fixed points of f respectively. First of

all, suppose that −∞ < a < b < +∞. It is obvious that both a and b are also

fixed points of the continuous function f . Then f is a self-mapping on each of the

intervals (−∞, a), (a, b) and (b,+∞) since f is proved to be strictly increasing.
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In what follows we discuss equation (8) with c = 0 on the interval (−∞, a]

and prove (21) with φ := f |(−∞, a]. For arbitrary fixed x0 ∈ (−∞, a), by Lemma 2

(iii) we see that

Fm[r2, . . . , rn](φℓ(x0))ℓ∈Z = F0[r2, . . . , rn](φℓ(x0))ℓ∈Z := c2, ∀m ∈ Z, (26)

where c2 is dependent on x0 but independent ofm. On the other hand, since there

are no fixed points of f in (−∞, a), the monotonicity of φ implies that either

lim
m→∞

φm(x0) = −∞, and lim
m→∞

φ−m(x0) = a,

or lim
m→∞

φm(x0) = a, and lim
m→∞

φ−m(x0) = −∞.

Otherwise, the limit of either φm(x0) or φ−m(x0) in (−∞, a) is a fixed point by

(25). It follows that for arbitrary x ∈ (−∞, a) there exists k ∈ Z such that

φk−1(x0) ≤ x ≤ φk(x0) (or φk(x0) ≤ x ≤ φk−1(x0)). So, we can see that

F0[r2, . . . , rn](φℓ(x))ℓ∈Z lies between two points of Fk−1[r2, . . . , rn](φℓ(x0))ℓ∈Z

and Fk[r2, . . . , rn](φℓ(x0))ℓ∈Z since F0[r2, . . . , rn](φℓ)ℓ∈Z is monotone by the last

sentence of the second paragraph in this proof. Thus, from (26) we get

F0[r2, . . . , rn](φℓ(x))ℓ∈Z = c2, ∀x ∈ (−∞, a).

Furthermore, by the continuity of the function F0[r2, . . . , rn](φℓ)ℓ∈Z,

c2 = F0[r2, . . . , rn](φℓ(a))ℓ∈Z = F0[r2, . . . , rn](a)ℓ∈Z = a

n∏

ς=2

(1 − rς).

This proves (21). Similarly, we can prove (22).

Finally, on the interval (a, b) the limit in (23) is equal to 0 because fn+m(x)

is bounded and rn > 1. Hence

F0[r1, . . . , rn−1](f
ℓ(x))ℓ∈Z = 0, ∀x ∈ (a, b). (27)

Repeating the same procedure of order reduction to the lower order equation (27),

we can reduce the order again and finally obtain that F0[r1](f
ℓ(x))ℓ∈Z = 0, i.e.,

f(x) = x for all x ∈ (a, b). This proves (20).

Similar discussions can be applied to the cases of either a or b is infinite,

both a and b are infinite and a = b. Conversely, if φ is a continuous solution

of equation (21) then φ((−∞, a]) ⊂ (−∞, a]. Thus, by Lemma 2, the beginning

and (i), setting k = 0 and q = 1, we have

F0[r1, . . . , rn](φℓ(x))ℓ∈Z = F0[r2, . . . , rn, r1](φ
ℓ(x))ℓ∈Z

= F1[r2, . . . , rn](φℓ(x))ℓ∈Z −F0[r2, . . . , rn](φℓ(x))ℓ∈Z
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= F0[r2, . . . , rn](φℓ(φ(x)))ℓ∈Z −F0[r2, . . . , rn](φℓ(x))ℓ∈Z

= a

n∏

ς=2

(1 − rς) − a

n∏

ς=2

(1 − rς) = 0, (28)

i.e., φ satisfies equation (8) with c = 0 on (−∞, a]. Similarly, the solution ψ of

equation (22) also satisfies equation (8) with c = 0 on [b,+∞). This completes

the proof. �

Remark 1. The case that 0 < rn < · · · < r1 = 1 can be reduced to the case

of Theorem 2 by considering the dual equation.

5. Case of all roots being 1

Theorem 3. Suppose that all characteristic roots rj are equal to 1. Then

equation (2) with c 6= 0 and even n has no continuous solutions.

Proof. Consider equation (8) with c 6= 0 and even n and let f be its a

continuous solution. We first present the general iterate fm of f in terms of

m, which cannot be given by Theorem 1 in [16] because c 6= 0 in our case. By

Lemma 2 (i), setting k = m− 1 and q = 1, we have

c=Fm−1[

n︷ ︸︸ ︷
1, . . . , 1 ](f ℓ)ℓ∈Z =Fm[

n−1︷ ︸︸ ︷
1, . . . , 1 ](f ℓ)ℓ∈Z −Fm−1[

n−1︷ ︸︸ ︷
1, . . . , 1 ](f ℓ)ℓ∈Z, ∀m∈N,

which enables us to prove by induction on m easily that

Fm[

n−1︷ ︸︸ ︷
1, . . . , 1 ](f ℓ)ℓ∈Z = F0[

n−1︷ ︸︸ ︷
1, . . . , 1 ](f ℓ)ℓ∈Z +mc, ∀m ∈ N. (29)

We further claim that

Fm[

n−j︷ ︸︸ ︷
1, . . . , 1 ](f ℓ)ℓ∈Z = µj,0 + · · · + µj,j−1m

j−1 +
c

j!
mj (30)

for all j = 1, . . . , n and all m=j, j + 1, . . . , where all µj,i’s are functions of x but

independent of m. This assertion is true for j = 1 by (29). Assume that (30) is

true for an integer j ∈ {1, . . . , n − 1} and m ≥ j. Then, for an arbitrarily fixed

integer m ≥ j + 1 and s = m− 1,m− 2, . . . , j, we have

Fs+1[

n−j−1︷ ︸︸ ︷
1, . . . , 1 ](f ℓ)ℓ∈Z −Fs[

n−j−1︷ ︸︸ ︷
1, . . . , 1 ](f ℓ)ℓ∈Z

= Fs[

n−j︷ ︸︸ ︷
1, . . . , 1 ](f ℓ)ℓ∈Z = µj,0 + · · · + µj,j−1s

j−1 +
c

j!
sj .
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It follows that for m ≥ j + 1

Fm[

n−j−1︷ ︸︸ ︷
1, . . . , 1 ](f ℓ)ℓ∈Z = Fj [

n−j−1︷ ︸︸ ︷
1, . . . , 1 ](f ℓ)ℓ∈Z +

m−1∑

s=j

Fs[

n−j︷ ︸︸ ︷
1, . . . , 1 ](f ℓ)ℓ∈Z

= Fj [

n−j−1︷ ︸︸ ︷
1, . . . , 1 ](f ℓ)ℓ∈Z + µj,0(m− j) + . . .

+ µj,j−1{(m− 1)j−1 + (m− 2)j−1 + · · · + jj−1}

+
c

j!
{(m− 1)j + (m− 2)j + · · · + jj}

= µj+1,0 + · · · + µj+1,jm
j +

c

(j + 1)!
mj+1,

where the known formula of sum of powers ([11])

(m− 1)k + (m− 2)k + · · · + jk =
1

k + 1
mk+1 + ak,km

k + · · · + ak,0, ∀k ∈ N,

for some constants ak,i ∈ R independent of m is applied and therefore all µj+1,i’s

(i = 0, . . . , j), determined by those µj,i’s (i = 0, . . . , j−1) and constant coefficients

aj,i’s, are also functions of x but independent of m. Thus the claim (30) is proved

by induction. Putting j = n in (30) and considering the dual equation (7), we

finally obtain




fm = µn,0 + · · · + µn,n−1m

n−1 +
c

n!
mn,

f−m = µ∗
n,0 + · · · + µ∗

n,n−1m
n−1 + (−1)n c

n!
mn,

(31)

where all µ∗
n,i’s are functions of x but independent of m.

Since n is even, the right-hand sides of the formulae in (31) both tend to +∞

(resp. −∞) as m→ +∞ for each fixed x ∈ R when c > 0 (resp. c < 0). It follows

that

lim
m→+∞

fm(x) = lim
m→+∞

f−m(x) = +∞ (resp. −∞) (32)

for x ∈ R when c > 0 (resp. c < 0). The monotonicity of f implies that f2 is

increasing and either

· · · < f−2m(x0) < · · · < f−2(x0) < x0 < f2(x0) < · · · < f2m(x0) < . . . (33)

or

· · · > f−2m(x0) > · · · > f−2(x0) > x0 > f2(x0) > · · · > f2m(x0) > . . . (34)
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for a fixed x0 ∈ R and m ∈ N. If f2m(x0) → +∞ as m → +∞, then (32)

contradicts to (33), implying that f−2m(x0) does not tend to +∞ as m→ +∞; if

f2m(x0) → −∞ as m → +∞, then (32) contradicts to (34) for the same reason.

Hence, equation (8) with c 6= 0 has no continuous solutions. �

The case that all characteristic roots are the same was considered early by

Nabeya [10] for n = 2. Our Theorem 3 obviously generalizes his result to general

even n. In contrast to the case of c = 0, which was discussed in [8] for n = 2 and

in [16] for general n, the proof under the case of c 6= 0 is quite different because

the term (c/n!)mn in (31), from which we get the contradiction, does not appear

in the formula of the general iterate of f when c = 0. Suppose that f : R → R

is a continuous solution of equation (2) with c = 0 and all characteristic roots

being 1. Then, from [16] we can see that f(x) = x if f has fixed points; otherwise,

F0[1, . . . , 1](f ℓ(x))ℓ∈Z = τ , where τ is a real constant which is equal to 0 for odd n.

Thus, when all characteristic roots are equal to 1, only the case that n is odd and

c 6= 0 is unsolved.

6. Further discussion

In addition to the general form of (2), which includes the form (3) as con-

sidered in [16], this paper is also motivated by the fact that some cases of (3)

unsolved in [16] can be reduced to solving a lower order iterative equation of the

form (2). For example, as shown in Theorem 2, equation (3) can be reduced to

the equation

F0[r2, . . . , rn](φℓ(x))ℓ∈Z = a

n∏

ς=2

(1 − rς)

on the interval (−∞, a] for a constant a ∈ R.

As shown in previous sections, both the case (ID) and the case (EC) are

still difficult for n ≥ 3. Ignoring the difficult cases, we still have some unsolved

problems in those discussed cases:

In the case (Rp) the order of equation (2) can be lowered as in Section 3

when those characteristic roots r1, . . . , rp ∈ R and rp+1, . . . , rs ∈ C\R satisfy that

|r1| ≤ · · · ≤ |rp| < |rp+1| < · · · < |rs|.

The discussion is still difficult when there are two non-conjugate complex roots

with the same norm or when a complex root lies between two real ones in norm.

In this sense the question raised in Remark 8 in [16] is only answered partly in
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Section 3. Additionally, except for Corollary 1, we have no results for equation

(8) with c 6= 0 when a real characteristic root is equal to 1.

In the case (K), when the smallest characteristic root is equal to 1, although

equation (2) with c = 0 can be simplified by lowering its order in Section 4, can

we do the same for (2) with c 6= 0? We also want to know if we can lower the order

in the opposite case, i.e., when the largest root is equal to −1. As mentioned in

Section 5, when all characteristic roots are equal to the same 1, equation (2) with

c 6= 0 is unsolved yet for odd n and we want to know if we can lower the order

when the n-multiple root is not equal to 1 and n is odd, which was also indicated

in Remark 9 of [16].
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