
Publ. Math. Debrecen

76/1-2 (2010), 147–156

A new Hilbert-type operator and applications

By BICHENG YANG (Guangzhou)

Abstract. By using the way of weight coefficient and the theory of operators, we

define a new Hilbert-type operator with the non-decreasing homogeneous kernel and

obtain its norm. As applications, an extended theorem on Hilbert-type inequalities

with the homogeneous kernel of −λ−degree is established, and some particular cases

are considered.

1. Introduction

In 1908, H. Weyl published the well known Hilbert’s inequality as: If
{an}∞n=1, {bn}∞n=1 are real sequences, 0 <

∑∞
n=1 a2

n < ∞ and 0 <
∑∞

n=1 b2
n < ∞,

then (cf. [1])
∞∑

n=1

∞∑
m=1

ambn

m + n
< π

( ∞∑
n=1

a2
n

∞∑
n=1

b2
n

) 1
2

, (1)

where the constant factor π is the best possible.
In 1925, G. H. Hardy gave a best extension of (1) by introducing one pair

of conjugate exponents (p, q)
(

1
p + 1

q = 1
)

as (cf. [2]): If p > 1, an, bn ≥ 0,
0 <

∑∞
n=1 ap

n < ∞ and 0 <
∑∞

n=1 bq
n < ∞, then

∞∑
n=1

∞∑
m=1

ambn

m + n
<

π

sin
(

π
p

)
( ∞∑

n=1

ap
n

) 1
p
( ∞∑

n=1

bq
n

) 1
q

. (2)
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We named of (2) Hardy–Hilbert’s inequality. In 1934, Hardy et al. [3] gave a
basic theorem with the general kernel as follows (see [3], Theorem 318):

Theorem A. Suppose that p > 1, 1
p + 1

q = 1, k(x, y) is a homogeneous

function of −1−degree, and k =
∫∞
0

k(u, 1)u−1/pdu is a positive number. If

both k(u, 1)u−1/p and k(1, u)u−1/q are strictly decreasing functions for u > 0,

an, bn ≥ 0, 0 < ‖a‖p = (
∑∞

n=1 ap
n)

1
p < ∞, 0 < ‖b‖q = (

∑∞
n=1 bq

n)
1
q < ∞, then we

have the following equivalent inequalities:

∞∑
n=1

∞∑
m=1

k(m,n)ambn < k‖a‖p‖b‖q; (3)

∞∑
n=1

( ∞∑
m=1

k(m,n)am

)p

< kp‖a‖p
p, (4)

where the constant factors k and kp are the best possible.

Note. In particular, we find some classical Hilbert-type inequalities as:

(i) For k(x, y) = 1
x+y , since k = π/ sin(π

p ), (3) reduces (2);

(ii) for k(x, y) = 1
max{x,y} ,

ln(x/y)
x−y , (3) reduces to (see [3], Theorem 341, Theo-

rem 342)

∞∑
n=1

∞∑
m=1

ambn

max{m,n} < pq

( ∞∑
n=1

ap
n

) 1
p
( ∞∑

n=1

bq
n

) 1
q

; (5)

∞∑
n=1

∞∑
m=1

ln(m/n)ambn

m− n
<

[
π

sin
(

π
p

)
]2

( ∞∑
n=1

ap
n

) 1
p
( ∞∑

n=1

bq
n

) 1
q

. (6)

Hardy also gave a multiple extension of (3) (see [3], Theorem 322).

In 2001, Yang [4] gave an extension of (1) as: For 0 < λ ≤ 4,

∞∑
n=1

∞∑
m=1

ambn

(m + n)λ
< B

(
λ

2
,
λ

2

)( ∞∑
n=1

n1−λa2
n

∞∑
n=1

n1−λb2
n

) 1
2

, (7)

where the constant factor B
(

λ
2 , λ

2

)
is the best possible (B(u, v) is the Beta func-

tion). And Yang [5] also gave an extension of (2) as:

∞∑
n=1

∞∑
m=1

ambn

mλ + nλ
<

π

λ sin
(

π
p

)
{ ∞∑

n=1

n(p−1)(1−λ)ap
n

}1
p
{ ∞∑

n=1

n(q−1)(1−λ)bq
n

}1
q

, (8)
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where the constant factor π
λ sin( π

p ) (0 < λ ≤ 2) is the best possible.

In 2004, Yang [6] published the dual form of (2) as follows

∞∑
n=1

∞∑
m=1

ambn

m + n
<

π

sin
(

π
p

)
( ∞∑

n=1

np−2ap
n

) 1
p
( ∞∑

n=1

nq−2bq
n

) 1
q

, (9)

where the constant factor π/ sin
(

π
p

)
is the best possible. For p = q = 2, both

(9) and (2) reduce to (1). It means that there are more than two different best
extensions of (1). For united expressing (2) and (9), in 2005, Yang [7] gave an
extension of (7)–(9) with two pairs of conjugate exponents (p, q), (r, s) (p, r > 1)
and two parameters α, λ > 0 (αλ ≤ min{r, s}) as

∞∑
n=1

∞∑
m=1

ambn

(mα + nα)λ
< kαλ(r)

{ ∞∑
n=1

np(1−αλ
r )−1ap

n

}1
p
{ ∞∑

n=1

nq(1−αλ
s )−1bq

n

}1
q

, (10)

where the constant factor kαλ(r) = 1
αB

(
λ
r , λ

s

)
is the best possible. Setting some

particular parameters in (10), it reduces to (2) and (7)–(9). T. K. Pogany [8]
also considered a best extension of (2) with the general kernel as 1

(λm+ρn)µ (µ, λm,
ρn > 0).

In 2006–2008, some authors also considered the operator expressing of (3)–
(4). Suppose that k(x, y)(≥ 0) is a symmetric function with k(y, x) = k(x, y),

and k0(p) :=
∫∞
0

k(x, y)
(

x
y

) 1
r dy(r = p, q; x > 0) is a positive number independent

of x. Define an operator T : lr → lr (r = p, q) as: for am ≥ 0, a = {am}∞m=1 ∈ lp,
there exists only Ta = c = {cn}∞n=1 ∈ lp, satisfying

(Ta)(n) = cn :=
∞∑

m=1

k(m,n)am (n ∈ N). (11)

Then we may define the formal inner product of Ta and b as

(Ta, b) =
∞∑

n=1

∞∑
m=1

k(m,n)ambn. (12)

In 2007, Yang [9] proved that if for ε ≥ 0 small enough, k(x, y)
(

x
y

) 1+ε
r is strictly

decreasing for y > 0, the integral
∫∞
0

k(x, y)
(

x
y

) 1+ε
r dy = kε(p) is also a positive

number independent of x > 0, kε(p) = k0(p) + o(1)(ε → 0+), and

∞∑
m=1

1
m1+ε

∫ 1

0

k(m, t)
(m

t

) 1+ε
r

dt = O(1)(ε → 0+; r = p, q), (13)
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then ‖T‖p = k0(p); in this case, if am, bn ≥ 0, a = {am}∞m=1 ∈ lp, b = {bn}∞n=1 ∈ lq,
‖a‖p, ‖b‖q > 0, then we have two equivalent inequalities as:

(Ta, b) < ‖T‖p‖a‖p‖b‖q; ‖Ta‖p < ‖T‖p‖a‖p, (14)

where the constant ‖T‖p is the best possible. In particular, for k(x, y) being
−1 − degree homogeneous, inequalities (14) reduce to (3)–(4) (in the symmetric
kernel, cf. [10]). Yang et al. [11] also considered (14) in l2. On the integral
analogues of (14), Árpád Bényi et al. [12], [13], [14], [15] and [16] gave some
new results.

In this paper, by using the way of weight coefficient and the theory of op-
erators as [9], we define a new Hilbert-type operator with the non-decreasing
homogeneous kernel and obtain its norm. As applications, an extended theo-
rem on Hilbert-type inequality with the non-decreasing homogeneous kernel of
−λ−degree is established, and some particular cases are considered.

2. A new Hilbert-type operator and its norm

If kλ(x, y) is a measurable function, satisfying for λ, u, x, y > 0, kλ(ux, uy) =
u−λkλ(x, y), then we call kλ(x, y) the homogeneous function of -λ-degree.

Lemma 1. If r > 1, 1
r + 1

s = 1, λ > 0, kλ(x, y)(≥ 0) is a homogeneous

function of −λ-degree, and kλ(r) :=
∫∞
0

k(u, 1)u
λ
r−1du is a positive number,

then, (i)
∫∞
0

k(1, u)u
λ
s−1du = kλ(r); (ii) for x, y ∈ (0,∞), setting

ωλ(r, y) :=
∫ ∞

0

kλ(x, y)
y

λ
s

x1−λ
r

dx, $λ(s, x) :=
∫ ∞

0

kλ(x, y)
x

λ
r

y1−λ
s

dy, (15)

then we have ωλ(r, y) = $λ(s, x) = kλ(r) .

Proof. (i) Setting v = 1
u , by the assumption, we obtain

∫∞
0

kλ(1, u)u
λ
s−1du=∫∞

0
kλ(v, 1)v

λ
r−1dv = kλ(r).

(ii) Setting x = yu in the integrals ωλ(r, y) and $λ(s, x), in view of (i), we
still find that ωλ(r, y) = $λ(s, x) = kλ(r). The lemma is proved.

For p > 1, 1
p + 1

q = 1, we set φ(x) = xp(1−λ
r )−1, ψ(x) = xq(1−λ

s )−1 and

ψp−1(x) = x
pλ
s −1, x ∈ (0,∞). Define the space of real sequences as: lpφ := {a =

{an}∞n=1; ‖a‖p,φ := {∑∞
n=1 φ(n)|an|p}

1
p < ∞}. We may still define lqψ and lpψ1−p .

Define the weight coefficient Wλ(r, n) and W̃λ(s,m) (m, n ∈ N) as

Wλ(r, n) :=
∞∑

m=1

kλ(m,n)
n

λ
s

m1−λ
r

, W̃λ(s,m) :=
∞∑

n=1

kλ(m,n)
m

λ
r

n1−λ
s

. (16)

¤
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Lemma 2. As the assumption of Lemma 1, for am ≥ 0, a = {am}∞m=1 ∈ lpφ,

setting cn =
∑∞

m=1 kλ(m,n)am, if

Wλ(r, n) < kλ(r), W̃λ(s,m) < kλ(r) (m,n ∈ N), (17)

then c = {cn}∞n=1 ∈ lpψ1−p .

Proof. By Hölder’s inequality [17] and (16)–(17), we obtain

cp
n =

{ ∞∑
m=1

kλ(m,n)
[
m(1−λ

r )/q

n(1−λ
s )/p

am

][
n(1−λ

s )/p

m(1−λ
r )/q

]}p

≤
[ ∞∑

m=1

kλ(m,n)
m(1−λ

r )p/q

n1−λ
s

ap
m

][ ∞∑
m=1

kλ(m,n)
n(1−λ

s )q/p

m1−λ
r

]p−1

=

[ ∞∑
m=1

kλ(m,n)
m(1−λ

r )p/q

n1−λ
s

ap
m

]
[
nq(1−λ

s )−1Wλ(r, n)
]p−1

≤ kp−1
λ (r)n1− pλ

s

∞∑
m=1

kλ(m,n)
m(1−λ

r )p/q

n1−λ
s

ap
m;

‖c‖p,ψ1−p =

{ ∞∑
n=1

n1− pλ
s cp

n

} 1
p

=

{ ∞∑
n=1

n
pλ
s −1

[ ∞∑
m=1

kλ(m,n)am

]p} 1
p

≤ k
1
q

λ (r)

{ ∞∑
n=1

∞∑
m=1

kλ(m,n)
m(1−λ

r )p/q

n1−λ
s

ap
m

} 1
p

= k
1
q

λ (r)

{ ∞∑
m=1

[ ∞∑
n=1

kλ(m,n)
m

λ
r

n1−λ
s

]
mp(1−λ

r )−1ap
m

} 1
p

= k
1
q

λ (r)

{ ∞∑
m=1

W̃λ(s,m)mp(1−λ
r )−1ap

m

} 1
p

< kλ(r)‖a‖p,φ. (18)

Therefore c = {cn}∞n=1 ∈ lpψ1−p . The lemma is proved.

For am ≥ 0, a = {am}∞m=1 ∈ lpφ, define a Hilbert-type operator T : lpφ → lpψ1−p

as: Ta = c, satisfying c = {cn}∞n=1,

(Ta)(n) := cn =
∞∑

m=1

kλ(m, n)am (n ∈ N). (19)

In view of Lemma 2, c ∈ lpψ1−p and the operator T exists. If there exists M > 0,
such that for any a ∈ lpφ, ‖Ta‖p,ψ1−p ≤ M‖a‖p,φ, then
‖T‖ = sup‖a‖p,φ=1 ‖Ta‖p,ψ1−p ≤ M . Hence by (18), we find ‖T‖ ≤ kλ(r) and T

is bounded.
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Theorem 1. As the assumption of Lemma 2, if for any r > 1,

kλ(r)−O

(
1

mλ(r)

)
≤ W̃λ(s,m) (λ(r) > 0; m ∈ N), (20)

then we have ‖T‖ = kλ(r).

Proof. For am, bn ≥ 0, a = {am}∞m=1 ∈ lpφ, b = {bn}∞n=1 ∈ lqψ, ‖a‖p,φ > 0,
‖b‖q,ψ > 0, by Hölder’s inequality [?], we find

(Ta, b) =
∞∑

n=1

[
n

λ
s− 1

p

∞∑
m=1

kλ(m,n)am

]
[
n
−λ
s + 1

p bn

]

≤
{ ∞∑

n=1

n
pλ
s −1[

∞∑
m=1

kλ(m,n)am]p
} 1

p

‖b‖q,ψ. (21)

Then by (18), we have

(Ta, b) < kλ(r)‖a‖p,φ‖b‖q,ψ. (22)

For 0 < ε < min
{

pλ
r , qλ

s

}
, setting ã = {ãn}∞n=1, b̃ = {b̃n}∞n=1 as ãn =

n
λ
r− ε

p−1, b̃n = n
λ
s− ε

q−1, for n ∈ N, if there exists a constant 0 < k ≤ kλ(r), such
that (22) is still valid when we replace kλ(r) by k, then,

(T ã, b̃) =
∞∑

n=1

∞∑
m=1

k(m,n)ãmb̃n < k‖ã‖p,φ‖b̃‖q,ψ = k

∞∑
n=1

1
n1+ε

; (23)

(T ã, b̃) =
∞∑

m=1

1
m1+ε

∞∑
n=1

kλ(m,n)mλ( 1
r + ε

qλ )nλ( 1
s− ε

qλ )−1. (24)

Setting (r′, s′) as 1
r′ = 1

r + ε
qλ > 0, 1

s′ = 1
s − ε

qλ > 0, then 1
r′ + 1

s′ = 1 with r′ > 1.
Hence by (20),

∞∑
n=1

kλ(m,n)mλ( 1
r + ε

qλ )nλ( 1
s− ε

qλ )−1 = W̃λ(s′,m) ≥ kλ(r′)−O

(
1

mλ(r′)

)
,

and then by (23) and (24), it follows

k

∞∑
n=1

1
n1+ε

> (T ã, b̃) =
∞∑

m=1

1
m1+ε

W̃λ(s′, m) ≥
∞∑

m=1

1
m1+ε

[
kλ(r′)−O

(
1

mλ(r′)

) ]

=
∞∑

m=1

1
m1+ε

kλ(r′)−
∞∑

m=1

1
m1+ε

O

(
1

mλ(r′)

)
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=
∞∑

m=1

1
m1+ε

[
kλ(r′)−

( ∞∑
m=1

1
m1+ε

)−1 ∞∑
m=1

1
m1+ε

O

(
1

mλ(r′)

) ]
;

k > kλ(r′)−
( ∞∑

m=1

1
m1+ε

)−1 ∞∑
m=1

1
m1+ε

O

(
1

mλ(r′)

)
(λ(r′) > 0).

Since by Watou’s Lemma,

lim
ε→0+

kλ(r′) ≥
∫ ∞

0

lim
ε→0+

k(u, 1)u
λ
r′−1du = kλ(r),

then k ≥ kλ(r)(ε → 0+), and k = kλ(r) is the best value of (22). We conform that
kλ(r) is the best value of (18). Otherwise we can get a contradiction by (21) that
the constant factor in (22) is not the best possible. It follows that ‖T‖ = kλ(r).
The theorem is proved. ¤

3. Some applications

Lemma 3. As the assumption of Lemma 1, if kλ(u, 1)u
λ
r−1 and kλ(1, u)u

λ
s−1

are decreasing in (0,∞) and strictly decreasing in a subinterval of (0,∞), and

kλ(1, u) = o
(

1
uα

)(
u → 0+; 0 < α < λ

s

)
, then both (17) and (20) are valid.

Proof. By the assumption and Lemma 1, we find

kλ(r)−
∫ 1

m

0

kλ(1, u)u
λ
s−1du =

∫ ∞

1

kλ

(
1,

y

m

)( y

m

)λ
s−1

d
( y

m

)
≤ W̃λ(s,m)

=
1
m

∞∑
n=1

kλ

(
1,

n

m

)( n

m

)λ
s−1

<

∫ ∞

0

kλ

(
1,

y

m

)( y

m

)λ
s−1

d
( y

m

)

= $λ

(
s,

y

m

)
= kλ(r).

Since uαkλ(1, u) → 0 (u → 0+), there exists a constant δ ∈ (0, 1), such that for
u ∈ (0, δ), uαkλ(1, u) ≤ 1. Since in [δ, 1], kλ(1, u) ≤ kλ(1, δ) ≤ L

uα (L > 1), then
kλ(1, u) ≤ L

uα , u ∈ (0, 1]. Hence, setting λ(r) = λ
s − α > 0, it follows

0 ≤
∫ 1

m

0

kλ(1, u)u
λ
s−1du ≤ L

∫ 1
m

0

uλ(r)−1du =
L

λ(r)

(
1

mλ(r)

)
,

and (20) is valid. By the same way, it follows Wλ(r, n) < kλ(r), and then we have
(17). The lemma is proved. ¤
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Theorem 2. Suppose that p, r > 1, 1
p + 1

q = 1, 1
r + 1

s = 1, λ > 0, kλ(x, y)

(≥ 0) is a homogeneous function of −λ-degree, kλ(r) =
∫∞
0

kλ(u, 1)u
λ
r−1du is a

positive number, and the weight coefficients Wλ(r, n) and W̃λ(s,m) satisfy in-

equalities (17) and (20). If an, bn ≥ 0, a = {an}∞n=1 ∈ lpφ, b = {bn}∞n=1 ∈ lqψ,

‖a‖p,φ, ‖b‖q,ψ > 0, then we have the following equivalent inequalities:

(Ta, b) =
∞∑

n=1

∞∑
m=1

kλ(m,n)ambn < kλ(r)‖a‖p,φ‖b‖q,ψ; (25)

‖Ta‖p
p,ψ1−p =

∞∑
n=1

n
pλ
s −1

( ∞∑
m=1

kλ(m,n)am

)p

< kp
λ(r)‖a‖p

p,φ, (26)

where the constant factors kλ(r) and kp
λ(r) are the best possible.

Replacing the conditions (17) and (20) by (a) kλ(u, 1)u
λ
r−1 and kλ(1, u)u

λ
s−1

are decreasing in (0,∞) and strictly decreasing in a subinterval of (0,∞); (b)
kλ(1, u)u

λ
s−1 = o

(
1

uα

) (
u → 0+; 0 < α < λ

s

)
, we still have (25) and (26).

Proof. In view of (22) and (18), we have (25) and (26). Base on the proof
of Theorem 1, it follows that the both the constant factors in (25) and (26) are
the best possible.

If (26) is valid, then by (21), we have (25). Suppose that (25) is valid.
By (18), ‖Ta‖p

p,ψ1−p < ∞. If ‖Ta‖p
p,ψ1−p = 0, then (26) is naturally valid; if

‖Ta‖p
p,ψ1−p > 0, setting bn = n

pλ
s −1(

∑∞
m=1 kλ(m,n)am)p−1, then we find 0 <

‖b‖q
q,ψ = ‖Ta‖p

p,ψ1−p < ∞. By (25), we obtain

‖b‖q
q,ψ = ‖Ta‖p

p,ψ1−p = (Ta, b) < kλ(r)‖a‖p,φ‖b‖q,ψ;

‖b‖q−1
q,ψ = ‖Ta‖p,ψ1−p < kλ(r)‖a‖p,φ,

and we have (26). Hence (25) and (26) are equivalent.
By (a), (b) and Lemma 3, we still have (25)–(26). The theorem is proved. ¤

Remark. (i) For λ = 1, s = p, r = q, (25) and (26) reduce respectively to (6)
and (7). It is obvious that Theorem 2 is an extension of Theorem 1.

(ii) If we reserve (b) and replace the condition (a) by (a)’ for 0 < λ ≤
min{r, s}, kλ(u, 1) and kλ(1, u) are decreasing in (0,∞) and strictly decreasing
in a subinterval of (0,∞), then (25)–(26) are still valid. Hence in particular, for
kαλ(x, y) = 1

(xα+yα)λ (α, λ > 0, αλ ≤ min{r, s}) in (25), we find

kαλ(r) =
∫ ∞

0

u
αλ
r −1

(uα + 1)λ
du =

1
α

∫ ∞

0

v
λ
r−1

(v + 1)λ
dv =

1
α

B

(
λ

r
,
λ

s

)
,



A new Hilbert-type operator and applications 155

0 ≤ kαλ(1, u) ≤ 1, and then it deduces to (10); for kλ(x, y) = 1
(max{x,y})λ (0 <

λ ≤ min{r, s}) in (25), we find

kλ(r) =
∫ ∞

0

1
(max{u, 1})λ

u
λ
r−1du =

rs

λ
,

0 ≤ kλ(1, u) ≤ 1(u ∈ (0, 1]) and it deduces to the best extension of (5) as

∞∑
n=1

∞∑
m=1

ambn

(max{m,n})λ
<

rs

λ
‖a‖p,φ‖b‖q,ψ; (27)

for kλ(x, y) = ln(x/y)
xλ−yλ (0 < λ ≤ min{r, s}) in (25), we find (cf. [3])

kλ(r) =
∫ ∞

0

ln u

uλ − 1
u

λ
r−1du =

[
π

λ sin(π
r )

]2

,

kλ(1, u) = o
(

1
uα

) (
u → 0+; 0 < α < λ

s

)
and ( ln u

uλ−1
)′ < 0, then it deduces to the

best extension of (6) as

∞∑
n=1

∞∑
m=1

ln(m/n)ambn

mλ − nλ
<

[
π

λ sin(π
r )

]2

‖a‖p,φ‖b‖q,ψ. (28)
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