Publ. Math. Debrecen
76/1-2 (2010), 157-171

Polynomial bases of split simple Lie algebras

By ALESSANDRO OTTAZZI (Milano)

Abstract. We show that every simple Lie algebra g of real rank at least two is
isomorphic to a space of polynomials defined on the group N = expn, where n is the
nilpotent component of the Iwasawa decomposition of g. Using suitable coordinates
on N, we then write a basis of this space of polynomials when g is split.

1. Introduction

When n > 3, the action of the conformal group O(1,4) on R3 U {oo} may
be characterized in differential geometric terms: Liouville proved in 1850 that a
C* map between domains I/ and V in R? whose differential is a multiple of an
isometry at each point of I is the restriction to U of the action of some g € O(1,4).
This type of result has been extended to R™ with weaker smoothness assumptions
and to more general spaces, see for instance [3]-[5], [7]-[10].

In [4], the authors consider the problem of characterizing the action of a
semisimple Lie group G on the homogeneous spaces G/P, where P is a minimal
parabolic subgroup. More precisely, they prove a Liouville type theorem for every
semisimple Lie group G with rank at least two. The proof of this theorem passes
through a polynomial representation of simple real Lie algebras, that we intend to
make explicit. In particular, it is possible to define an isomorphism I between the
Lie algebra of G and a space of polynomials on N, the nilpotent component of the
Iwasawa decomposition of G. The isomorphism induces a Lie algebra structure
on this space of polynomials. We are interested in investigating the polynomial
representation of the simple Lie algebras given by I.

Mathematics Subject Classification: 22E46, 58D05.
Key words and phrases: simple Lie algebras, contact structures.



158 Alessandro Ottazzi

The paper is organized as follows. In Section 2 we fix the notations and re-
call a result of [4] that we are going to need. In particular, we give the definition
of multicontact map and vector field, and recall (Theorem 1) that the space of
multicontact vector fields on N is isomorphic to the simple Lie algebra g whose
nilradical is n = Lie(N). In Section 3 we discuss the isomorphism [ in some de-
tails. First we introduce the notion of homogeneous function and vector field and
observe that the space of multicontact vector fields is generated as a vector space
by its homogeneous parts. In fact, there is a one to one correspondence between
suitable bases of g and homogeneous generators of the multicontact vector fields.
This correspondence allows us to define I. The idea is to fix a basis of each root
space and therefore a basis of g. Hence I is the linear map that assigns to each
such basis element a suitable vector of polynomials. In Section 4 we restrict to
the case of split simple Lie algebras g. In this case the image I(X) is exactly one
polynomial. In Lemma 2 we give a formula for computing I(X), whenever X lies
in a root space or in the Cartan subspace. We then use this in Proposition 3 to
find an explicit basis of the space of the polynomials in canonical coordinates. In
the last section we consider the case where g is s((3,R) and therefore N is the
Heisenberg group and apply Proposition 3 in order to write the polynomial basis
of s((3,R).

2. Notations and preliminaries

We introduce some tools which come from the classical theory of semisimple
Lie groups [1], [6], as well as some further properties proved in [4]. Let g be a
simple Lie algebra with Killing form B and Cartan involution . Then By(X,Y) =
—B(X,0Y) is an inner product on g. Let €@ p be the Cartan decomposition of g,
where ¢ = {X € g:0X = X} and p = {X € g: 0X = —X}. Fix a maximal
abelian subspace a of p and denote by ¥ the set of restricted roots, ¥ is a subset
of the dual a’ of a, which is endowed with an inner product (-, -) induced by By.
Choose an ordering = on a’. Call ¥4 and A = {41, ...,d,} the subsets for positive
and simple positive restricted roots. We call rank of g the cardinality of A. Every
positive root o can be written as « = >\_, n;d; for uniquely defined non-negative
integers n1, ...,n,. The positive integer ht(a) = >_._; n; is called the height of a.
It is well-known that there is exactly one root w, called the highest root, that
satisfies w > « (strictly) for every other root a.. The root space decomposition of
gisg=m@aDP, cx 0o, Wherem = {X € t: [X,H]| =0, H € a}. The Iwasawa
decomposition is g = £ @ a & n, where n = G,ex, g,. We write n; = Spg(y)=i8y
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for every ¢ = 1,...,ht(w). Then n is a stratified nilpotent Lie algebra, that is
[n;,n1] = n;41. Finally, we denote by G a Lie group whose Lie algebra is g.

Consider a diffeomorphism f between open subsets ¢ and V of N. For every
positive root «, the space g, defines a subspace of the tangent space of N at
the identity and by left translation it defines a sub-bundle of the tangent bundle,
for which we abuse the notation g,. We say that f is a multicontact mapping
if its differential f, preserves gs, for every simple root . This is a generalized
notion of contact mapping in the usual sense, because n; = Gscags and a basis
of left invariant vector fields of n; generates via Lie bracket the whole algebra of
left invariant vector fields. If i = V we can compose two multicontact mappings,
obtaining another multicontact map. We define a multicontact vector field as a
vector field V on U whose local flow {¢; } consists of multicontact maps. Such a
vector field satisfies

[V, 85] C gs,

for every simple root §. The group G acts on G/P. By means of the Bruhat
decomposition, the action can be restricted to N. Let X(V) denote the Lie algebra
of vector fields on N. We define a representation of g as vector fields on N

T:9— X(N)
as

(r(X))n) = & Flexp(tXm])|

Hence [exp(tX)n] is the N-component of the product exp(tX) - n in the Bruhat
decomposition of G/ P (see [4] for more details). The following theorem is proved
in [4] and its proof contains the results we need.

Theorem 1 ([4]). Suppose that g has real rank at least two. Then every C*
multicontact vector field is in fact smooth, and the Lie algebra of multicontact
vector fields on U consists of the restrictions of T(g) to U.

3. The polynomial algebra P

From now on we assume that g has real rank at least two. For every a € ¥,
denote by m,, the dimension of g, and fix abasis { X, : € Xy, i=1,...,mq}
of n consisting of left-invariant vector fields on N. A smooth vector field V on

Uis -
V: Z Zva,iXa,i; (1)

ac¥y i=1
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with smooth functions v, ;. The proof of Theorem 1 points out that a multicontact
vector field is determined by its component along the directions corresponding to
the highest root, namely {v,; : i =1,...,my}, the remaining components being
obtained differentiating those. Further, the functions v, ; are in fact polynomials
in canonical coordinates.

We select an element Hy in the Cartan subspace a such that 6(Hp) = —1
for all simple roots §. We say that a function v on N is homogeneous of degree
r if it does not vanish identically and satisfies 7(Hp)v = rv. A vector field V is
said to be homogeneous of degree s if it does not vanish identically and satisfies
[T(Hp),V] = sV. Hence

deg(vV) = deg(V) + deg(v),
deg(V(v)) = deg(v) + deg(V) (except when V(v) = 0),
deg([V,W]) = deg(V) + deg(V) (except when V and W commute).

The Lie algebra of multicontact vector fields is then generated by its homogeneous
parts. More precisely, the set

{71(Xa:i), 0 € ZU{0}, i=1,...,mua}
defines a basis. Since 7 is a representation, we have
[7(Ho), 7(Xa,i)] = 7([Ho, Xa]) = a(Ho)7(Xa,i) = —ht(a)7(Xa,).-

Let p be a w-component of 7(X,, ;). Then the height of o and the degree of p are
related:

—ht(a) = deg(7(Xq,i)) = deg(pX., ;) = deg(p) + deg(X. ;) = deg(p) — ht(w),

whence
deg(p) = ht(w) — ht(w).
Define
I:9g— P, (2)
by extending linearly the assignment I(X,;) = (Vw15 -,V m,), the vector of

polynomials that corresponds to the coefficients of 7(X,,;) along w. Here P is
a vector space of polynomial vectors, namely the image of the above mapping
inside the my,-fold cartesian product of the algebra of polynomials in dim(n)
indeterminates over the reals. The map I is an isomorphism, that induces a Lie
algebra structure on P.
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Since the homogeneity degree of the polynomials I(X,, ;) depends only on the
root space gq, all the components of a single basis vector have the same degree.
Let a be a positive root, X € g1, or X € m @ a, and let p be a w-component of
7(X). The following diagram clarifies the various notions of degree:

root space | deg(r(X)) deg p
o —ht(e) ht(w) — ht(c)
m@a 0 ht(w)
[ I ht(a) ht(w) + ht(a).

In particular each polynomial has degree between 0 and 2k, where h = ht(w).

4. The split case

We compute explicit formulas for a basis of P. We restrict our discussion
to the case of the split real form g of a simple complex Lie algebra. The most
relevant consequences of this assumption for our considerations are that m = {0}
and that each restricted root space has real dimension one. In particular, this
implies that I(g,) consists for all « of the real multiples of a single polynomial.

Our decomposition formulas are relative to a suitable decomposition of the
restricted root system (see e.g. [2]), namely ¥, = ¥y © X/, © ¥, where

Yo = {66 EJr : (wvﬁ) :O}a
21/2 = {BE EJ’_ . (w,ﬁ) = %(W,W)},
O ={fel;:(wf)=(ww)}={w}.

We shall write A/, = ¥ /5NA and Ag = XpNA. According to the decomposition
of ¥, we put
n:ﬂo@ﬂl/g@ﬂl,

with obvious notations. Since [ga, 93] = ga+s, and (o + f,w) = (a,w) + (B,w),
it follows that ng is a subalgebra and ny,5 © ny is an ideal in n. The Cartan
involution # maps each root space g to g—n, so that 1 = On = ®,¢cx_gy, where
Y_ = —-X4. We write

ﬁ:ﬁ()@ﬁl/g@ﬁl;
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so that
g:'ﬂl@ﬂl/g@ﬂo@a@ﬁo@ﬁl/Q@ﬁl. (3)

By linearity of the scalar product, the following commutation rules hold

a, Tlo] Cng a, Tll] cng
no, 1] = {0}

n1/27“1] C n1/2

a,nyyo] Cnyyp
No nl/g] - 'ﬂl/g

ny/2,T/2] C o & a® T

ng, o] Cnp @ admng
ny/2, o] C nyjo

[
[
[
[m1, 7o) = {0}

[ [
[ [
[ [
[n1, 7y 9] Cnyyo [

We fix the following canonical coordinates on N:

n =nining = exp (2Z) exp ( > yaYa> exp ( > xﬁxﬁ), (5)

OLGEl/Q BEXy

where { X3, 8 € Xo}, {Ya, @ € 812} and Z are a basis of ng, ny/, and n; respec-
tively.

Set X € go, @ € XU {0} and n in N. By the Bruhat decomposition, for ¢
small enough there exists b(t) € P such that exp(tX)nb(t) € N. Then consider
the decomposition of n~'exp(tX)nb(t) with respect to the chosen coordinates,
namely

n~texp(tX)nb(t) = ni (t)nf(/Q (t)ng (t).
Lemma 2. With the notations as above, writing n = niny ,ng, we have
(i) there exists A € ny and B € ny;3 ® ng ® a0 such that

nl_/12n1_1 exp(tX)ning o = exp(tA) exp(tB) exp(o(t));

(ii) d
pn (nf ()

(iii) If I is the isomorphism defined in (2), then I(X) = A.

t=0

PRrROOF. Write

n-! exp(tX)n = no 1/2711 exp (tX)nlnl/gno.

Observe first that since ny = exp(22),

nytexp (tX)ng = exp(e” 4G X).
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Now, by (4)

ny ifXea
[Z,X]E ny/2 ifXEﬁl/g
a if X eny,
and if X belongs to some other summand in the decomposition (3), then [Z,X]=0.
Therefore by the Baker—Campbell-Hausdorff formula

ny'exp (EX)n1 = exp(tX + t(Hy + Ay o + A1) +o(t))

= exp(tA; + o(t)) exp(tX +t(Hy + Ay/2) + o(t)), (6)

where Hy € a, Ayj2 € nyjp and A € ny.

Secondly, since n; commutes with n, we consider
n;/12 exp(tX +t(Hy + Ayj2))ni/2 = exp(e” LavaadYap x4t 4 tAy)2)).

Since ny/; is the exponential of some element in ny /9, in the above formula o €
¥1/2. Therefore, if the commutator [Y,, X] # 0, then by (4)

ﬁl/g if X eny
a if Xen
[Ya, X] € Lo
N/ fXendnda
n if X €nyo.
Moreover,

[Yaqu] ca, [YOMAI/Q] eny.
Hence

n;/lz exp(tX +t(Hy + Aqj2))n1j2 = exp(tX + t(B;/2 + Hy + By /2 + B1) 4 o(t)),
= exp(tB1 + o(t)) exp(tX + t(B;/2 + Hay + By 2) + o(t)),

(7)

for some Bl_/2 € Myg, Ha € a, Byjs € ny/3 and By € n1. Also, observe that by
the Baker—-Campbell-Hausdorff formula

exp(tL + oft)) = exp(tL) exp(o(t)) (®)

for any L € g. Thus, by (6) and (4) we obtain that

n;/znfl exp(tX)n1n1/2 = exp(tA) exp(tB) exp(o(t)),
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with
A A1—|—B1 1fX¢Tl1
A+ B +X ifXen

and
B B1_/Q+H2+Bl/2 iernl
B;/2+H2+Bl/2+X le¢Tl1

This proves (i).
Next, consider

ng ' exp(tX + t(B;/2 + Ha + By/2))no
=exp(e” ad(Xs IBXB)(tX + th/Q +tHy +tBy3)).

If [Xg, X] # 0, then by (4)

/2 it X eny)o
(X, X]€{ngdnp@a ifXeEndnyda
ny/o if X €ny)o.
Furthermore,
(X3, By /o) € M1y, [Xp, Ha] € o, (X3, B12] € ny)o.
Hence

ng texp(tX + t(By )y + Ha + Bij2))no
= exp(tX +4(Cyjy + Cy + Hz + Cf +Cija) +o(t), (9)
for some Cl_/2 €My, Cp €0, H3 € a, Cg' €ng and Cy /2 € ny o.
Since n; commutes with n, using (6), (4), (8) and (9) we obtain
n~ ' exp(tX)n = exp(tA; + tBy + o(t))
x exp(tX +t(Cyjy + Cy + Hs + Cf + Cij2) +o(t))
= exp(tA; + tBy + o(t)) exp(tX + tC tCy /2 + o(t))
x exp(t(Cy ), + Cy + Hs) + o(t))
= exp(tA; + tBy + tky (X)) exp(tCy o + thy/2(X))
x exp(tCo + tho(X)) exp(tCy ), + tCy + tHs + th(X)) exp(o(t))
= exp(tA) exp(tC) exp(tD) exp(tE) exp(o(t)), (10)
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where
X ifXe n
k(X) = 1 adn
0 otherwise,
X ifXeny, i=0,1/2,1
ki(X) = 1 ot /
0 otherwise,
and

C=0Ciy+kip(X), D=Co+k(X), E= C’;/Q +Cy + Hs + k(X).
On the other hand, by hypothesis
n~lexp(tX)n = n{((t)nf(/Q (t)ngk (1)b(t) L. (11)

Observe that since n~!exp(tX)n is the identity for + = 0, then necessarily
nX(0) = e for every r = 1,1/2,0, and b(0) = e. Therefore, comparing (10)

T

and (11),

% (exp(tA) exp(tC) exp(tD) exp(tE) exp(o(t)))

t=0

= & (¥ s (1))

3

t=0

whence
d -
A+C+D+B=— (n¥(0) | _ niy(On (0)p(0)

ai
£ ()5 (m50) | e 0)p(0)

FrX On,00 % (0 1) | b(0)

¥ OO (0) 5 (6(6) )

=0
This implies

d
A= P (ni (1)) ‘

are the only two terms in the above sum that lie

=0’
because A and 4 (nf¥(t)) ‘t:O
along Z. Thus also (ii) is proved.

In order to prove (iii), consider the multicontact vector field associated to X:

7(X)f(n) = % F(lexp(tX)n])

where [exp(tX)n] is the N- component of exp(tX)n in the Bruhat decomposition.

)
t=0
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This is equivalent to saying that for ¢ small enough there exists b(¢t) € P such
that [exp(tX)n] = exp(tX)nb(t) € N. Hence

7(X)f(n) = & Flexp(tX b))

t=0

= %f(nn—l exp(tX)nb(t))

t=0

d
= 2 non? (O, (O ()] .
Consider the left-invariant vector fields corresponding to the basis of n chosen
in (5) and write 7(X) accordingly. Then the image of X via the isomorphism I
defined in (2) is p, the coefficient along Z of 7(X). We observed that nX (0) = e,
for every r = 0,1/2,1. Therefore,

p= ¥ o) (12)
and so p = A. O

We showed above that p(n) is obtained in two steps: first we compute the con-
jugation nl_/12n1_1 exp(tX)nin o and then write it in the form exp(tA) exp(tB +
o(t)), where A € n; and B has no components along n;, according to the decom-
position (3).

We shall obtain explicit formulas for the homogeneous polynomials corre-
sponding to g using (12). We consider separately the cases with o in Xg, Xy /5,
¥, {0}, =%, —%1/2, —20. The resulting polynomials are a basis of the space P
and we collect them in the next proposition. We define on X, /5 the equivalence
relation ~ given by

a~fEsa+f=w,

and we choose one representative for each element of the quotient (X;/,5/ ~).
Denote the set of such representatives by ¥ /5.

Proposition 3. Denote p* = I(X,,) for every X, € g, and every non zero
root a and p! = I(H) for every H € a. We write cq g for the structure constants
of [X,,Xs| and H, for the unique element in a for which y(H,) = 1. Then the
following formulas hold.

(i) If v € Xy /2, then p7(n) = ¢y uyYu—v-
(ii) If H € a, then

P () =w(H)z = 5 3 aaa (w0~ )(H) =~ a(H)) oo
Qeil/g
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(iii) p¥(n) =1.
(iv) If v € g U =Xy, then

p'(n) =3 Z Can,vCaz,vtarYorYas;
v+agtas=w
where oy and oz vary in ¥ /5.
(v) If v € 312, then

_ 1
p V(n) = _W(H’y)yvzg Z O‘(Hv)cw—a,ay'yyayw—a

0(621/2

E Cay,—vCas,—y+a1Caz,—y+ar1+asYar Yas Yas,
—vtoaitaztaz=w

=

with aq,a9,03 € 1.

n w w—o,a ¥ liw aJw—
O(EE]/Q

t
+ﬂ E Cay,—wCas,—w+a; Caz,—wtai+asCay,—wtai+as+az Yo YasYasYay -
a1,02,03,04 €87 /2

PROOF. (i) We will repeatedly use the following simple observation: if a,y €

Y12 and a+y € ¥, then v = w — a. Indeed (a+7,w) = (a,w) + (7, w) = (W, w).
This implies that & = w — . Since [Z,n] = 0,

+oo
-1 - _ nladzZ)"
n1/12n1 Lexp (tYy)ning o = n1/12 exp < Z(—l) (7)15}/7) n1/2

o n!
= nl_/12 exp(tYy)ny o
=3 (ad(za YaYa))"
= exp <Z(—1)" 627;/2 LY,
n=0 ’

= eXP(tYV - tyw—v[yw—'ya Yv])
= exp(tey,w—Yuw—nZ)exp (tY5).

By (12) and the remark thereafter, we have p”(n) = ¢y w—Yw—r-
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(ii) Since [ny/2,n1/9] € ny, every bracket involving three or more vectors in
ny/ is zero. If H € a, then

”1_/12”1_1 exp (tH)nin» = ”1_/12 exp (tH — tz[Z, H])ny /2

= exp(tw(H)zZ) exp <tH —t Z Yol|Ya, H| + /2 Z Yays | Ys, [YQ,HH)
€y /o a+pf=w

1
exp (w(H)z + 3 Z a(H)ca,gyayg) tZ ...

a+p=w

where the only relevant component is the linear term in ¢ along Z. Therefore
1
" (n) = w(H)z - 5 Y YaYoa (@ —a)(H) = a(H)) caw-a,
aeilp

as required.

(iil) Since [Z,n] = 0, the conclusion is obvious.

(iv) If @ € 319, then (v + a,w) = (v,w) + (o, w) = 3(w,w), whence v+ a €
%1 /2, provided it is a root. Moreover by definition w + v is not a root. Therefore

”f/lznfl exp (tXy)ning o = n;/lz exp (tX,)nq /2

t
= eXp (tXIJ - t Z ya[Ya7XV] + 5 Z yalyaz I:Yozzu [Ya17XU]]>

a€By 2 a1,02€%] /2
t
= eXp 5 § COq,I/COLQ,I/+O¢1yO¢1yO¢2Z) eXP (tXu -1 § Ca,vyaYaJru
v+oqtas=w acA

. 1
So (12) gives p”(n) = 32,1, +as—w Co1.vCaz,v+ar Yai Yas, Where ap and ag are
in 21/2.

v) Take v € ¥ /5. Then
(v) v 1/2
n;/gnfl exp (tY_y)ning o = n;/12 exp (tY_ —tcy,—2Yo )N 2

= exp (tY_nY —tey,—y2Yy —t Z YalYa, Y_r]
04621/2

t
+ 1z Z Cw,—yYa [You Yw—'y] + 5 Z YarYas [Ya27 [Ya1 y Y—v]

a€Xy 2 a1,02€%] /2

Z Yar1YasYas [Yasv [Yaza [Yoq ) Y—Vm >

a1,a2,a3€8] )/

S|+
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Since (—y + a,w) = —(y,w) + (,w) = —2(w,w) + 2(w,w) = 0 for every a €
%12, it follows that —y + « is either in &% or 0, or not a root. This implies
that the bracket [Yy,,Y_,] is respectively in ng, a or zero. Then (12) yields the
desired expression for p~7(n), since the Jacobi identity implies that ¢, —Cyw—vy =
—w(H,).

(vi) Notice that in order to obtain w we must add to —w exactly four roots
in ¥ /5. We have

t
n;/znfl exptX_,nini s, = n;/12 exp <tXw —tzH, — §z2w(Hw)Z) n1/2

t
= exp (—§z2w(Hw)Z) exp (tX_w —tzH, —t Z Ca,—wYaY—w+a

0(621/2
t
—tz Z a(Hy)yaYa + 3 Z Yar Yo Yoo Yai, X—u]
€y /o a1,02€3] /2
t t
+ 52 Z waa,aa(Hw)yawaaZ - 6 Z Yar1YarYas [Yag,[Ya2, [YQI,X,W]”
a€Xy /2 a1,02,a3€8] /2
t
+ ﬂ Z yal yagyagya4 [Ya47 [Ya?ﬂ [Y(127 [Yal ’ X—w] ] H)

o1,02,03,004€87 /3

t t
= exp (( - 5Fw(Hy) + 52 Y oan®(Ho)YaYo o
0(621/2

t
+ 2 Z Cay,—wCasz,—wtai

a1,a2,03,04€87 /3

X Caz,—w+artas Cay,—wtar+aztasYai yazyasya4> Z) ceee

Therefore (vi) follows. O

5. Example

We consider g = sl(3,R), the simple Lie algebra of real 3 x 3 matrices with
zero trace. Its Iwasawa nilpotent Lie algebra n is given by the matrices

v(z,y,z) =

o o O
o O R
o W



170 Alessandro Ottazzi

for z, y and z in R. Notice that this is the Lie algebra of the three dimensional
Heisenberg group. Take v and 3 to be the simple roots relative to the standard
Cartan subspace a of s[(3,R) of diagonal matrices: «(diag(a,b,c)) = (a —b) and
B((diag(a,b,c)) = (b — ¢). Then

9o = {v(2,0,0) : z € R},
g5 = {v(0,9,0) : y € R},
ga+p = {r(0,0,2) : z € R},
where o+ 3 is the highest root also denoted w. The Lie algebra g decomposes as

I=00 D05 D Gars D ad®0(ga) ®0(as) ®0(gars),

where 6 is the Cartan involution. We choose the basis of n given by X = v(1,0,0),
Y =v(0,1,0) and Z = v(0,0,1) and the basis of a

1 1
H, = diag (5, —5,0)

11
Hs = diag (0,=,—= |
B la’g<a27 2>

We can complete {X,Y,Z, Hy, Hz} to a basis of sl(3,R) adding 6(X) = —X'",
(Y) = =YY" and 0(Z) = —Z', which are a basis of g_,, g-5 and g_o_p
respectively. In order to apply the formulas of Proposition 3 to the chosen basis
of g we need the structure constants, that can be easily computed, and the vector
H, = H, + Hg = diag(1/2,0,—1/2). The indeterminates of the polynomials
are the canonical coordinates n = (x,y,2) = exp(2Z) exp(zX + yY). Hence, a
straightforward calculation yields the following polynomials.

1 3 1 1
[e% _ H, — _ < —Q — T2
p*(n) =y, pe(n) 57+ 7%, p () 5%+ 5T°Y;
11 1 5
pP(n) = -z, p™(n)=gz=qay, pP(n)=—gyz+ Juy’,
a+0 —a— 1 2 1 2 2
P (n) =1, P (n) =—52"— —ay".
2 6
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