Polynomial bases of split simple Lie algebras

By ALESSANDRO OTTAZZI (Milano)

Abstract

We show that every simple Lie algebra \mathfrak{g} of real rank at least two is isomorphic to a space of polynomials defined on the group $N=\exp \mathfrak{n}$, where \mathfrak{n} is the nilpotent component of the Iwasawa decomposition of \mathfrak{g}. Using suitable coordinates on N, we then write a basis of this space of polynomials when \mathfrak{g} is split.

1. Introduction

When $n \geq 3$, the action of the conformal group $O(1,4)$ on $\mathbb{R}^{3} \cup\{\infty\}$ may be characterized in differential geometric terms: Liouville proved in 1850 that a C^{4} map between domains \mathcal{U} and \mathcal{V} in \mathbb{R}^{3} whose differential is a multiple of an isometry at each point of \mathcal{U} is the restriction to \mathcal{U} of the action of some $g \in O(1,4)$. This type of result has been extended to \mathbb{R}^{n} with weaker smoothness assumptions and to more general spaces, see for instance [3]-[5], [7]-[10].

In [4], the authors consider the problem of characterizing the action of a semisimple Lie group G on the homogeneous spaces G / P, where P is a minimal parabolic subgroup. More precisely, they prove a Liouville type theorem for every semisimple Lie group G with rank at least two. The proof of this theorem passes through a polynomial representation of simple real Lie algebras, that we intend to make explicit. In particular, it is possible to define an isomorphism I between the Lie algebra of G and a space of polynomials on N, the nilpotent component of the Iwasawa decomposition of G. The isomorphism induces a Lie algebra structure on this space of polynomials. We are interested in investigating the polynomial representation of the simple Lie algebras given by I.

Mathematics Subject Classification: 22E46, 58D05.
Key words and phrases: simple Lie algebras, contact structures.

The paper is organized as follows. In Section 2 we fix the notations and recall a result of [4] that we are going to need. In particular, we give the definition of multicontact map and vector field, and recall (Theorem 1) that the space of multicontact vector fields on N is isomorphic to the simple Lie algebra \mathfrak{g} whose nilradical is $\mathfrak{n}=\operatorname{Lie}(N)$. In Section 3 we discuss the isomorphism I in some details. First we introduce the notion of homogeneous function and vector field and observe that the space of multicontact vector fields is generated as a vector space by its homogeneous parts. In fact, there is a one to one correspondence between suitable bases of \mathfrak{g} and homogeneous generators of the multicontact vector fields. This correspondence allows us to define I. The idea is to fix a basis of each root space and therefore a basis of \mathfrak{g}. Hence I is the linear map that assigns to each such basis element a suitable vector of polynomials. In Section 4 we restrict to the case of split simple Lie algebras \mathfrak{g}. In this case the image $I(X)$ is exactly one polynomial. In Lemma 2 we give a formula for computing $I(X)$, whenever X lies in a root space or in the Cartan subspace. We then use this in Proposition 3 to find an explicit basis of the space of the polynomials in canonical coordinates. In the last section we consider the case where \mathfrak{g} is $\mathfrak{s l}(3, \mathbb{R})$ and therefore N is the Heisenberg group and apply Proposition 3 in order to write the polynomial basis of $\mathfrak{s l}(3, \mathbb{R})$.

2. Notations and preliminaries

We introduce some tools which come from the classical theory of semisimple Lie groups [1], [6], as well as some further properties proved in [4]. Let \mathfrak{g} be a simple Lie algebra with Killing form B and Cartan involution θ. Then $B_{\theta}(X, Y)=$ $-B(X, \theta Y)$ is an inner product on \mathfrak{g}. Let $\mathfrak{k} \oplus \mathfrak{p}$ be the Cartan decomposition of \mathfrak{g}, where $\mathfrak{k}=\{X \in \mathfrak{g}: \theta X=X\}$ and $\mathfrak{p}=\{X \in \mathfrak{g}: \theta X=-X\}$. Fix a maximal abelian subspace \mathfrak{a} of \mathfrak{p} and denote by Σ the set of restricted roots, Σ is a subset of the dual \mathfrak{a}^{\prime} of \mathfrak{a}, which is endowed with an inner product (\cdot, \cdot) induced by B_{θ}. Choose an ordering \succeq on \mathfrak{a}^{\prime}. Call Σ_{+}and $\Delta=\left\{\delta_{1}, \ldots, \delta_{r}\right\}$ the subsets for positive and simple positive restricted roots. We call rank of \mathfrak{g} the cardinality of Δ. Every positive root α can be written as $\alpha=\sum_{i=1}^{r} n_{i} \delta_{i}$ for uniquely defined non-negative integers n_{1}, \ldots, n_{r}. The positive integer $\operatorname{ht}(\alpha)=\sum_{i=1}^{r} n_{i}$ is called the height of α. It is well-known that there is exactly one root ω, called the highest root, that satisfies $\omega \succ \alpha$ (strictly) for every other root α. The root space decomposition of \mathfrak{g} is $\mathfrak{g}=\mathfrak{m} \oplus \mathfrak{a} \oplus \bigoplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}$, where $\mathfrak{m}=\{X \in \mathfrak{k}:[X, H]=0, H \in \mathfrak{a}\}$. The Inasawa decomposition is $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$, where $\mathfrak{n}=\oplus_{\gamma \in \Sigma_{+}} \mathfrak{g}_{\gamma}$. We write $\mathfrak{n}_{i}=\oplus_{\mathrm{ht}(\gamma)=i} \mathfrak{g}_{\gamma}$
for every $i=1, \ldots, h t(\omega)$. Then \mathfrak{n} is a stratified nilpotent Lie algebra, that is $\left[\mathfrak{n}_{i}, \mathfrak{n}_{1}\right]=\mathfrak{n}_{i+1}$. Finally, we denote by G a Lie group whose Lie algebra is \mathfrak{g}.

Consider a diffeomorphism f between open subsets \mathcal{U} and \mathcal{V} of N. For every positive root α, the space \mathfrak{g}_{α} defines a subspace of the tangent space of N at the identity and by left translation it defines a sub-bundle of the tangent bundle, for which we abuse the notation \mathfrak{g}_{α}. We say that f is a multicontact mapping if its differential f_{*} preserves \mathfrak{g}_{δ}, for every simple root δ. This is a generalized notion of contact mapping in the usual sense, because $\mathfrak{n}_{1}=\oplus_{\delta \in \Delta} \mathfrak{g}_{\delta}$ and a basis of left invariant vector fields of \mathfrak{n}_{1} generates via Lie bracket the whole algebra of left invariant vector fields. If $\mathcal{U}=\mathcal{V}$ we can compose two multicontact mappings, obtaining another multicontact map. We define a multicontact vector field as a vector field V on \mathcal{U} whose local flow $\left\{\phi_{t}^{V}\right\}$ consists of multicontact maps. Such a vector field satisfies

$$
\left[V, \mathfrak{g}_{\delta}\right] \subset \mathfrak{g}_{\delta}
$$

for every simple root δ. The group G acts on G / P. By means of the Bruhat decomposition, the action can be restricted to N. Let $\mathfrak{X}(N)$ denote the Lie algebra of vector fields on N. We define a representation of \mathfrak{g} as vector fields on N
as

$$
\begin{aligned}
\tau & : \mathfrak{g} \rightarrow \mathfrak{X}(N) \\
(\tau(X) f)(n) & =\left.\frac{d}{d t} f([\exp (t X) n])\right|_{t=0} .
\end{aligned}
$$

Hence $[\exp (t X) n]$ is the N-component of the product $\exp (t X) \cdot n$ in the Bruhat decomposition of G / P (see [4] for more details). The following theorem is proved in [4] and its proof contains the results we need.

Theorem 1 ([4]). Suppose that \mathfrak{g} has real rank at least two. Then every C^{1} multicontact vector field is in fact smooth, and the Lie algebra of multicontact vector fields on \mathcal{U} consists of the restrictions of $\tau(\mathfrak{g})$ to \mathcal{U}.

3. The polynomial algebra \mathcal{P}

From now on we assume that \mathfrak{g} has real rank at least two. For every $\alpha \in \Sigma_{+}$, denote by m_{α} the dimension of \mathfrak{g}_{α} and fix a basis $\left\{X_{\alpha, i}: \alpha \in \Sigma_{+}, i=1, \ldots, m_{\alpha}\right\}$ of \mathfrak{n} consisting of left-invariant vector fields on N. A smooth vector field V on \mathcal{U} is

$$
\begin{equation*}
V=\sum_{\alpha \in \Sigma_{+}} \sum_{i=1}^{m_{\alpha}} v_{\alpha, i} X_{\alpha, i}, \tag{1}
\end{equation*}
$$

with smooth functions $v_{\alpha, i}$. The proof of Theorem 1 points out that a multicontact vector field is determined by its component along the directions corresponding to the highest root, namely $\left\{v_{\omega, i}: i=1, \ldots, m_{\omega}\right\}$, the remaining components being obtained differentiating those. Further, the functions $v_{\omega, i}$ are in fact polynomials in canonical coordinates.

We select an element H_{0} in the Cartan subspace \mathfrak{a} such that $\delta\left(H_{0}\right)=-1$ for all simple roots δ. We say that a function v on N is homogeneous of degree r if it does not vanish identically and satisfies $\tau\left(H_{0}\right) v=r v$. A vector field V is said to be homogeneous of degree s if it does not vanish identically and satisfies $\left[\tau\left(H_{0}\right), V\right]=s V$. Hence

$$
\begin{aligned}
\operatorname{deg}(v V) & =\operatorname{deg}(V)+\operatorname{deg}(v) \\
\operatorname{deg}(V(v)) & =\operatorname{deg}(v)+\operatorname{deg}(V) \quad(\text { except when } V(v)=0) \\
\operatorname{deg}([V, W]) & =\operatorname{deg}(V)+\operatorname{deg}(V) \quad(\text { except when } V \text { and } W \text { commute). }
\end{aligned}
$$

The Lie algebra of multicontact vector fields is then generated by its homogeneous parts. More precisely, the set

$$
\left\{\tau\left(X_{\alpha, i}\right), \alpha \in \Sigma \cup\{0\}, i=1, \ldots, m_{\alpha}\right\}
$$

defines a basis. Since τ is a representation, we have

$$
\left[\tau\left(H_{0}\right), \tau\left(X_{\alpha, i}\right)\right]=\tau\left(\left[H_{0}, X_{\alpha, i}\right]\right)=\alpha\left(H_{0}\right) \tau\left(X_{\alpha, i}\right)=-\operatorname{ht}(\alpha) \tau\left(X_{\alpha, i}\right)
$$

Let p be a ω-component of $\tau\left(X_{\alpha, i}\right)$. Then the height of α and the degree of p are related:

$$
-\operatorname{ht}(\alpha)=\operatorname{deg}\left(\tau\left(X_{\alpha, i}\right)\right)=\operatorname{deg}\left(p X_{\omega, j}\right)=\operatorname{deg}(p)+\operatorname{deg}\left(X_{\omega, j}\right)=\operatorname{deg}(p)-\operatorname{ht}(\omega)
$$

whence

$$
\operatorname{deg}(p)=\operatorname{ht}(\omega)-\operatorname{ht}(\alpha)
$$

Define

$$
\begin{equation*}
I: \mathfrak{g} \longrightarrow \mathcal{P} \tag{2}
\end{equation*}
$$

by extending linearly the assignment $I\left(X_{\alpha, i}\right)=\left(v_{\omega, 1}, \ldots, v_{\omega, m_{\omega}}\right)$, the vector of polynomials that corresponds to the coefficients of $\tau\left(X_{\alpha, i}\right)$ along ω. Here \mathcal{P} is a vector space of polynomial vectors, namely the image of the above mapping inside the m_{ω}-fold cartesian product of the algebra of polynomials in $\operatorname{dim}(\mathfrak{n})$ indeterminates over the reals. The map I is an isomorphism, that induces a Lie algebra structure on \mathcal{P}.

Since the homogeneity degree of the polynomials $I\left(X_{\alpha, i}\right)$ depends only on the root space \mathfrak{g}_{α}, all the components of a single basis vector have the same degree. Let α be a positive root, $X \in \mathfrak{g}_{ \pm \alpha}$ or $X \in \mathfrak{m} \oplus \mathfrak{a}$, and let p be a ω-component of $\tau(X)$. The following diagram clarifies the various notions of degree:

root space	$\operatorname{deg}(\tau(X))$	$\operatorname{deg} p$
\mathfrak{g}_{α}	$-\operatorname{ht}(\alpha)$	$\operatorname{ht}(\omega)-\operatorname{ht}(\alpha)$
$\mathfrak{m} \oplus \mathfrak{a}$	0	$\operatorname{ht}(\omega)$
$\mathfrak{g}_{-\alpha}$	$\operatorname{ht}(\alpha)$	$\operatorname{ht}(\omega)+\operatorname{ht}(\alpha)$.

In particular each polynomial has degree between 0 and $2 h$, where $h=\operatorname{ht}(\omega)$.

4. The split case

We compute explicit formulas for a basis of \mathcal{P}. We restrict our discussion to the case of the split real form \mathfrak{g} of a simple complex Lie algebra. The most relevant consequences of this assumption for our considerations are that $\mathfrak{m}=\{0\}$ and that each restricted root space has real dimension one. In particular, this implies that $I\left(\mathfrak{g}_{\alpha}\right)$ consists for all α of the real multiples of a single polynomial.

Our decomposition formulas are relative to a suitable decomposition of the restricted root system (see e.g. [2]), namely $\Sigma_{+}=\Sigma_{0} \oplus \Sigma_{1 / 2} \oplus \Sigma_{1}$, where

$$
\begin{aligned}
\Sigma_{0} & =\left\{\beta \in \Sigma_{+}:(\omega, \beta)=0\right\} \\
\Sigma_{1 / 2} & =\left\{\beta \in \Sigma_{+}:(\omega, \beta)=\frac{1}{2}(\omega, \omega)\right\}, \\
\Sigma_{1} & =\left\{\beta \in \Sigma_{+}:(\omega, \beta)=(\omega, \omega)\right\}=\{\omega\} .
\end{aligned}
$$

We shall write $\Delta_{1 / 2}=\Sigma_{1 / 2} \cap \Delta$ and $\Delta_{0}=\Sigma_{0} \cap \Delta$. According to the decomposition of Σ_{+}, we put

$$
\mathfrak{n}=\mathfrak{n}_{0} \oplus \mathfrak{n}_{1 / 2} \oplus \mathfrak{n}_{1}
$$

with obvious notations. Since $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right]=\mathfrak{g}_{\alpha+\beta}$, and $(\alpha+\beta, \omega)=(\alpha, \omega)+(\beta, \omega)$, it follows that \mathfrak{n}_{0} is a subalgebra and $\mathfrak{n}_{1 / 2} \oplus \mathfrak{n}_{1}$ is an ideal in \mathfrak{n}. The Cartan involution θ maps each root space \mathfrak{g}_{α} to $\mathfrak{g}_{-\alpha}$, so that $\overline{\mathfrak{n}}=\theta \mathfrak{n}=\oplus_{\gamma \in \Sigma_{-}} \mathfrak{g}_{\gamma}$, where $\Sigma_{-}=-\Sigma_{+}$. We write

$$
\overline{\mathfrak{n}}=\overline{\mathfrak{n}}_{0} \oplus \overline{\mathfrak{n}}_{1 / 2} \oplus \overline{\mathfrak{n}}_{1},
$$

so that

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{n}_{1} \oplus \mathfrak{n}_{1 / 2} \oplus \mathfrak{n}_{0} \oplus \mathfrak{a} \oplus \overline{\mathfrak{n}}_{0} \oplus \overline{\mathfrak{n}}_{1 / 2} \oplus \overline{\mathfrak{n}}_{1} \tag{3}
\end{equation*}
$$

By linearity of the scalar product, the following commutation rules hold

$$
\begin{array}{lll}
{\left[\mathfrak{a}, \mathfrak{n}_{0}\right] \subset \mathfrak{n}_{0}} & {\left[\mathfrak{a}, \mathfrak{n}_{1 / 2}\right] \subset \mathfrak{n}_{1 / 2}} & {\left[\mathfrak{a}, \mathfrak{n}_{1}\right] \subset \mathfrak{n}_{1}} \\
{\left[\mathfrak{n}_{0}, \overline{\mathfrak{n}}_{0}\right] \subset \mathfrak{n}_{0} \oplus \mathfrak{a} \oplus \overline{\mathfrak{n}}_{0}} & {\left[\mathfrak{n}_{0}, \overline{\mathfrak{n}}_{1 / 2}\right] \subset \overline{\mathfrak{n}}_{1 / 2}} & {\left[\mathfrak{n}_{0}, \overline{\mathfrak{n}}_{1}\right]=\{0\}} \\
{\left[\mathfrak{n}_{1 / 2}, \overline{\mathfrak{n}}_{0}\right] \subset \mathfrak{n}_{1 / 2}} & {\left[\mathfrak{n}_{1 / 2}, \overline{\mathfrak{n}}_{1 / 2}\right] \subset \mathfrak{n}_{0} \oplus \mathfrak{a} \oplus \overline{\mathfrak{n}}_{0}} & {\left[\mathfrak{n}_{1 / 2}, \overline{\mathfrak{n}}_{1}\right] \subset \overline{\mathfrak{n}}_{1 / 2}} \tag{4}\\
{\left[\mathfrak{n}_{1}, \overline{\mathfrak{n}}_{0}\right]=\{0\}} & {\left[\mathfrak{n}_{1}, \overline{\mathfrak{n}}_{1 / 2}\right] \subset \mathfrak{n}_{1 / 2}} & {\left[\mathfrak{n}_{1}, \overline{\mathfrak{n}}_{1}\right] \subset \mathfrak{a}}
\end{array}
$$

We fix the following canonical coordinates on N :

$$
\begin{equation*}
n=n_{1} n_{\frac{1}{2}} n_{0}=\exp (z Z) \exp \left(\sum_{\alpha \in \Sigma_{1 / 2}} y_{\alpha} Y_{\alpha}\right) \exp \left(\sum_{\beta \in \Sigma_{0}} x_{\beta} X_{\beta}\right) \tag{5}
\end{equation*}
$$

where $\left\{X_{\beta}, \beta \in \Sigma_{0}\right\},\left\{Y_{\alpha}, \alpha \in \Sigma_{1 / 2}\right\}$ and Z are a basis of $\mathfrak{n}_{0}, \mathfrak{n}_{1 / 2}$ and \mathfrak{n}_{1} respectively.

Set $X \in \mathfrak{g}_{\alpha}, \alpha \in \Sigma \cup\{0\}$ and n in N. By the Bruhat decomposition, for t small enough there exists $b(t) \in P$ such that $\exp (t X) n b(t) \in N$. Then consider the decomposition of $n^{-1} \exp (t X) n b(t)$ with respect to the chosen coordinates, namely

$$
n^{-1} \exp (t X) n b(t)=n_{1}^{X}(t) n_{1 / 2}^{X}(t) n_{0}^{X}(t)
$$

Lemma 2. With the notations as above, writing $n=n_{1} n_{1 / 2} n_{0}$, we have
(i) there exists $A \in \mathfrak{n}_{1}$ and $B \in \mathfrak{n}_{1 / 2} \oplus \mathfrak{n}_{0} \oplus \mathfrak{a} \oplus \overline{\mathfrak{n}}$ such that

$$
n_{1 / 2}^{-1} n_{1}^{-1} \exp (t X) n_{1} n_{1 / 2}=\exp (t A) \exp (t B) \exp (o(t))
$$

$$
\begin{equation*}
\left.\frac{d}{d t}\left(n_{1}^{X}(t)\right)\right|_{t=0}=A \tag{ii}
\end{equation*}
$$

(iii) If I is the isomorphism defined in (2), then $I(X)=A$.

Proof. Write

$$
n^{-1} \exp (t X) n=n_{0}^{-1} n_{1 / 2}^{-1} n_{1}^{-1} \exp (t X) n_{1} n_{1 / 2} n_{0}
$$

Observe first that since $n_{1}=\exp (z Z)$,

$$
n_{1}^{-1} \exp (t X) n_{1}=\exp \left(e^{-\operatorname{ad}(z Z)} t X\right)
$$

Now, by (4)

$$
[Z, X] \in \begin{cases}\mathfrak{n}_{1} & \text { if } X \in \mathfrak{a} \\ \mathfrak{n}_{1 / 2} & \text { if } X \in \overline{\mathfrak{n}}_{1 / 2} \\ \mathfrak{a} & \text { if } X \in \overline{\mathfrak{n}}_{1}\end{cases}
$$

and if X belongs to some other summand in the decomposition (3), then $[Z, X]=0$. Therefore by the Baker-Campbell-Hausdorff formula

$$
\begin{align*}
n_{1}^{-1} \exp (t X) n_{1} & =\exp \left(t X+t\left(H_{1}+A_{1 / 2}+A_{1}\right)+o(t)\right) \\
& =\exp \left(t A_{1}+o(t)\right) \exp \left(t X+t\left(H_{1}+A_{1 / 2}\right)+o(t)\right) \tag{6}
\end{align*}
$$

where $H_{1} \in \mathfrak{a}, A_{1 / 2} \in \mathfrak{n}_{1 / 2}$ and $A_{1} \in \mathfrak{n}_{1}$.
Secondly, since \mathfrak{n}_{1} commutes with \mathfrak{n}, we consider

$$
n_{1 / 2}^{-1} \exp \left(t X+t\left(H_{1}+A_{1 / 2}\right)\right) n_{1 / 2}=\exp \left(e^{-\sum_{\alpha} y_{\alpha} \operatorname{ad} Y_{\alpha}}\left(t X+t H_{1}+t A_{1 / 2}\right)\right)
$$

Since $n_{1 / 2}$ is the exponential of some element in $\mathfrak{n}_{1 / 2}$, in the above formula $\alpha \in$ $\Sigma_{1 / 2}$. Therefore, if the commutator $\left[Y_{\alpha}, X\right] \neq 0$, then by (4)

$$
\left[Y_{\alpha}, X\right] \in \begin{cases}\overline{\mathfrak{n}}_{1 / 2} & \text { if } X \in \overline{\mathfrak{n}}_{1} \\ \mathfrak{a} & \text { if } X \in \overline{\mathfrak{n}}_{1 / 2} \\ \mathfrak{n}_{1 / 2} & \text { if } X \in \overline{\mathfrak{n}}_{0} \oplus \mathfrak{n}_{0} \oplus \mathfrak{a} \\ \mathfrak{n}_{1} & \text { if } X \in \mathfrak{n}_{1 / 2}\end{cases}
$$

Moreover,

$$
\left[Y_{\alpha}, H_{1}\right] \in \mathfrak{a}, \quad\left[Y_{\alpha}, A_{1 / 2}\right] \in \mathfrak{n}_{1}
$$

Hence

$$
\begin{align*}
n_{1 / 2}^{-1} \exp (t X & \left.+t\left(H_{1}+A_{1 / 2}\right)\right) n_{1 / 2}=\exp \left(t X+t\left(B_{1 / 2}^{-}+H_{2}+B_{1 / 2}+B_{1}\right)+o(t)\right) \\
& =\exp \left(t B_{1}+o(t)\right) \exp \left(t X+t\left(B_{1 / 2}^{-}+H_{2}+B_{1 / 2}\right)+o(t)\right) \tag{7}
\end{align*}
$$

for some $B_{1 / 2}^{-} \in \overline{\mathfrak{n}}_{1 / 2}, H_{2} \in \mathfrak{a}, B_{1 / 2} \in \mathfrak{n}_{1 / 2}$ and $B_{1} \in \mathfrak{n}_{1}$. Also, observe that by the Baker-Campbell-Hausdorff formula

$$
\begin{equation*}
\exp (t L+o(t))=\exp (t L) \exp (o(t)) \tag{8}
\end{equation*}
$$

for any $L \in \mathfrak{g}$. Thus, by (6) and (4) we obtain that

$$
n_{1 / 2}^{-1} n_{1}^{-1} \exp (t X) n_{1} n_{1 / 2}=\exp (t A) \exp (t B) \exp (o(t))
$$

with

$$
A= \begin{cases}A_{1}+B_{1} & \text { if } X \notin \mathfrak{n}_{1} \\ A_{1}+B_{1}+X & \text { if } X \in \mathfrak{n}_{1}\end{cases}
$$

and

$$
B= \begin{cases}B_{1 / 2}^{-}+H_{2}+B_{1 / 2} & \text { if } X \in \mathfrak{n}_{1} \\ B_{1 / 2}^{-}+H_{2}+B_{1 / 2}+X & \text { if } X \notin \mathfrak{n}_{1}\end{cases}
$$

This proves (i).
Next, consider

$$
\begin{aligned}
n_{0}^{-1} \exp \left(t X+t\left(B_{1 / 2}^{-}+H_{2}\right.\right. & \left.\left.+B_{1 / 2}\right)\right) n_{0} \\
& =\exp \left(e^{-\operatorname{ad}\left(\sum_{\beta} x_{\beta} X_{\beta}\right)}\left(t X+t B_{1 / 2}^{-}+t H_{2}+t B_{1 / 2}\right)\right)
\end{aligned}
$$

If $\left[X_{\beta}, X\right] \neq 0$, then by (4)

$$
\left[X_{\beta}, X\right] \in \begin{cases}\overline{\mathfrak{n}}_{1 / 2} & \text { if } X \in \overline{\mathfrak{n}}_{1 / 2} \\ \mathfrak{n}_{0} \oplus \overline{\mathfrak{n}}_{0} \oplus \mathfrak{a} & \text { if } X \in \mathfrak{n}_{0} \oplus \overline{\mathfrak{n}}_{0} \oplus \mathfrak{a} \\ \mathfrak{n}_{1 / 2} & \text { if } X \in \mathfrak{n}_{1 / 2}\end{cases}
$$

Furthermore,

$$
\left[X_{\beta}, B_{1 / 2}^{-}\right] \in \overline{\mathfrak{n}}_{1 / 2}, \quad\left[X_{\beta}, H_{2}\right] \in \mathfrak{n}_{0}, \quad\left[X_{\beta}, B_{1 / 2}\right] \in \mathfrak{n}_{1 / 2}
$$

Hence

$$
\begin{align*}
n_{0}^{-1} \exp \left(t X+t\left(B_{1 / 2}^{-}\right.\right. & \left.\left.+H_{2}+B_{1 / 2}\right)\right) n_{0} \\
& =\exp \left(t X+t\left(C_{1 / 2}^{-}+C_{0}^{-}+H_{3}+C_{0}^{+}+C_{1 / 2}\right)+o(t)\right) \tag{9}
\end{align*}
$$

for some $C_{1 / 2}^{-} \in \overline{\mathfrak{n}}_{1 / 2}, C_{0}^{-} \in \overline{\mathfrak{n}}_{0}, H_{3} \in \mathfrak{a}, C_{0}^{+} \in \mathfrak{n}_{0}$ and $C_{1 / 2} \in \mathfrak{n}_{1 / 2}$.
Since \mathfrak{n}_{1} commutes with \mathfrak{n}, using (6), (4), (8) and (9) we obtain

$$
\begin{align*}
n^{-1} \exp (t X) n= & \exp \left(t A_{1}+t B_{1}+o(t)\right) \\
& \times \exp \left(t X+t\left(C_{1 / 2}^{-}+C_{0}^{-}+H_{3}+C_{0}^{+}+C_{1 / 2}\right)+o(t)\right) \\
= & \exp \left(t A_{1}+t B_{1}+o(t)\right) \exp \left(t X+t C_{0}^{+} t C_{1 / 2}+o(t)\right) \\
& \times \exp \left(t\left(C_{1 / 2}^{-}+C_{0}^{-}+H_{3}\right)+o(t)\right) \\
= & \exp \left(t A_{1}+t B_{1}+t k_{1}(X)\right) \exp \left(t C_{1 / 2}+t k_{1 / 2}(X)\right) \\
& \times \exp \left(t C_{0}+t k_{0}(X)\right) \exp \left(t C_{1 / 2}^{-}+t C_{0}^{-}+t H_{3}+t k(X)\right) \exp (o(t)) \\
= & \exp (t A) \exp (t C) \exp (t D) \exp (t E) \exp (o(t)) \tag{10}
\end{align*}
$$

where

$$
\begin{aligned}
k(X) & = \begin{cases}X & \text { if } X \in \mathfrak{a} \oplus \overline{\mathfrak{n}} \\
0 & \text { otherwise }\end{cases} \\
k_{i}(X) & = \begin{cases}X & \text { if } X \in \mathfrak{n}_{(i)}, i=0,1 / 2,1 \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

and

$$
C=C_{1 / 2}+k_{1 / 2}(X), \quad D=C_{0}+k_{0}(X), \quad E=C_{1 / 2}^{-}+C_{0}^{-}+H_{3}+k(X)
$$

On the other hand, by hypothesis

$$
\begin{equation*}
n^{-1} \exp (t X) n=n_{1}^{X}(t) n_{1 / 2}^{X}(t) n_{0}^{X}(t) b(t)^{-1} \tag{11}
\end{equation*}
$$

Observe that since $n^{-1} \exp (t X) n$ is the identity for $t=0$, then necessarily $n_{r}^{X}(0)=e$ for every $r=1,1 / 2,0$, and $b(0)=e$. Therefore, comparing (10) and (11),

$$
\begin{aligned}
\frac{d}{d t}(\exp (t A) \exp (t C) \exp (t D) \exp (t E) & \exp (o(t)))\left.\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(n_{1}^{X}(t) n_{1 / 2}^{X}(t) n_{0}^{X}(t) b(t)^{-1}\right)\right|_{t=0}
\end{aligned}
$$

whence

$$
\begin{aligned}
A+C+D+E= & \left.\frac{d}{d t}\left(n_{1}^{X}(t)\right)\right|_{t=0} n_{1 / 2}^{X}(0) n_{0}^{X}(0) b(0)^{-1} \\
& +\left.n_{1}^{X}(0) \frac{d}{d t}\left(n_{1 / 2}^{X}(t)\right)\right|_{t=0} n_{0}^{X}(0) b(0)^{-1} \\
& +\left.n_{1}^{X}(0) n_{1 / 2}^{X}(0) \frac{d}{d t}\left(n_{0}^{X}(t)\right)\right|_{t=0} b(0)^{-1} \\
& +\left.n_{1}^{X}(0) n_{1 / 2}^{X}(0) n_{0}^{X}(0) \frac{d}{d t}\left(b(t)^{-1}\right)\right|_{t=0}
\end{aligned}
$$

This implies

$$
A=\left.\frac{d}{d t}\left(n_{1}^{X}(t)\right)\right|_{t=0}
$$

because A and $\left.\frac{d}{d t}\left(n_{1}^{X}(t)\right)\right|_{t=0}$ are the only two terms in the above sum that lie along Z. Thus also (ii) is proved.

In order to prove (iii), consider the multicontact vector field associated to X :

$$
\tau(X) f(n)=\left.\frac{d}{d t} f([\exp (t X) n])\right|_{t=0}
$$

where $[\exp (t X) n]$ is the N - component of $\exp (t X) n$ in the Bruhat decomposition.

This is equivalent to saying that for t small enough there exists $b(t) \in P$ such that $[\exp (t X) n]=\exp (t X) n b(t) \in N$. Hence

$$
\begin{aligned}
\tau(X) f(n) & =\left.\frac{d}{d t} f(\exp (t X) n b(t))\right|_{t=0} \\
& =\left.\frac{d}{d t} f\left(n n^{-1} \exp (t X) n b(t)\right)\right|_{t=0} \\
& =\left.\frac{d}{d t} f\left(n_{1} n_{1 / 2} n_{0} n_{1}^{X}(t) n_{1 / 2}^{X}(t) n_{0}^{X}(t)\right)\right|_{t=0}
\end{aligned}
$$

Consider the left-invariant vector fields corresponding to the basis of \mathfrak{n} chosen in (5) and write $\tau(X)$ accordingly. Then the image of X via the isomorphism I defined in (2) is p, the coefficient along Z of $\tau(X)$. We observed that $n_{r}^{X}(0)=e$, for every $r=0,1 / 2,1$. Therefore,

$$
\begin{equation*}
p=\left.\frac{d}{d t}\left(n_{1}^{X}(t)\right)\right|_{t=0} \tag{12}
\end{equation*}
$$

and so $p=A$.
We showed above that $p(n)$ is obtained in two steps: first we compute the conjugation $n_{1 / 2}^{-1} n_{1}^{-1} \exp (t X) n_{1} n_{1 / 2}$ and then write it in the form $\exp (t A) \exp (t B+$ $o(t))$, where $A \in \mathfrak{n}_{1}$ and B has no components along \mathfrak{n}_{1}, according to the decomposition (3).

We shall obtain explicit formulas for the homogeneous polynomials corresponding to \mathfrak{g} using (12). We consider separately the cases with α in $\Sigma_{0}, \Sigma_{1 / 2}$, $\Sigma_{1},\{0\},-\Sigma_{1},-\Sigma_{1 / 2},-\Sigma_{0}$. The resulting polynomials are a basis of the space \mathcal{P} and we collect them in the next proposition. We define on $\Sigma_{1 / 2}$ the equivalence relation \sim given by

$$
\alpha \sim \beta \Leftrightarrow \alpha+\beta=\omega,
$$

and we choose one representative for each element of the quotient $\left(\Sigma_{1 / 2} / \sim\right)$. Denote the set of such representatives by $\tilde{\Sigma}_{1 / 2}$.

Proposition 3. Denote $p^{\alpha}=I\left(X_{\alpha}\right)$ for every $X_{\alpha} \in \mathfrak{g}_{\alpha}$ and every non zero root α and $p^{H}=I(H)$ for every $H \in \mathfrak{a}$. We write $c_{\alpha, \beta}$ for the structure constants of $\left[X_{\alpha}, X_{\beta}\right]$ and H_{γ} for the unique element in \mathfrak{a} for which $\gamma\left(H_{\gamma}\right)=1$. Then the following formulas hold.
(i) If $\gamma \in \Sigma_{1 / 2}$, then $p^{\gamma}(n)=c_{\gamma, \omega-\gamma} y_{\omega-\gamma}$.
(ii) If $H \in \mathfrak{a}$, then

$$
p^{H}(n)=\omega(H) z-\frac{1}{2} \sum_{\alpha \in \tilde{\Sigma}_{1 / 2}} y_{\alpha} y_{\omega-\alpha}((\omega-\alpha)(H)-\alpha(H)) c_{\alpha, \omega-\alpha}
$$

(iii) $p^{\omega}(n)=1$.
(iv) If $\nu \in \Sigma_{0} \cup-\Sigma_{0}$, then

$$
p^{\nu}(n)=\frac{1}{2} \sum_{\nu+\alpha_{1}+\alpha_{2}=\omega} c_{\alpha_{1}, \nu} c_{\alpha_{2}, \nu+\alpha_{1}} y_{\alpha_{1}} y_{\alpha_{2}}
$$

where α_{1} and α_{2} vary in $\Sigma_{1 / 2}$.
(v) If $\gamma \in \Sigma_{1 / 2}$, then

$$
\begin{aligned}
p^{-\gamma}(n)= & -\omega\left(H_{\gamma}\right) y_{\gamma} z \frac{1}{6} \sum_{\alpha \in \Sigma_{1 / 2}} \alpha\left(H_{\gamma}\right) c_{\omega-\alpha, \alpha} y_{\gamma} y_{\alpha} y_{\omega-\alpha} \\
& -\frac{1}{6} \sum_{-\gamma+\alpha_{1}+\alpha_{2}+\alpha_{3}=\omega} c_{\alpha_{1},-\gamma} c_{\alpha_{2},-\gamma+\alpha_{1}} c_{\alpha_{3},-\gamma+\alpha_{1}+\alpha_{2}} y_{\alpha_{1}} y_{\alpha_{2}} y_{\alpha_{3}}
\end{aligned}
$$

with $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \Sigma_{1 / 2}$.
(vi) Finally,

$$
\begin{gathered}
p^{-\omega}(n)=-\frac{1}{2} z^{2} \omega\left(H_{\omega}\right)+\frac{1}{2} z \sum_{\alpha \in \Sigma_{1 / 2}} c_{\omega-\alpha, \alpha} \alpha\left(H_{\omega}\right) y_{\alpha} y_{\omega-\alpha} \\
+\frac{t}{24} \sum_{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \Sigma_{1 / 2}} c_{\alpha_{1},-\omega} c_{\alpha_{2},-\omega+\alpha_{1}} c_{\alpha_{3},-\omega+\alpha_{1}+\alpha_{2}} c_{\alpha_{4},-\omega+\alpha_{1}+\alpha_{2}+\alpha_{3}} y_{\alpha_{1}} y_{\alpha_{2}} y_{\alpha_{3}} y_{\alpha_{4}}
\end{gathered}
$$

Proof. (i) We will repeatedly use the following simple observation: if $\alpha, \gamma \in$ $\Sigma_{1 / 2}$ and $\alpha+\gamma \in \Sigma$, then $\gamma=\omega-\alpha$. Indeed $(\alpha+\gamma, \omega)=(\alpha, \omega)+(\gamma, \omega)=(\omega, \omega)$. This implies that $\alpha=\omega-\gamma$. Since $[Z, \mathfrak{n}]=0$,

$$
\begin{aligned}
n_{1 / 2}^{-1} n_{1}^{-1} \exp \left(t Y_{\gamma}\right) n_{1} n_{1 / 2} & =n_{1 / 2}^{-1} \exp \left(\sum_{n=0}^{+\infty}(-1)^{n} \frac{(\operatorname{ad} z Z)^{n}}{n!} t Y_{\gamma}\right) n_{1 / 2} \\
& =n_{1 / 2}^{-1} \exp \left(t Y_{\gamma}\right) n_{1 / 2} \\
& =\exp \left(\sum_{n=0}^{+\infty}(-1)^{n} \frac{\left(\operatorname{ad}\left(\sum_{\alpha \in \Sigma_{1 / 2}} y_{\alpha} Y_{\alpha}\right)\right)^{n}}{n!} t Y_{\gamma}\right) \\
& =\exp \left(t Y_{\gamma}-t y_{\omega-\gamma}\left[Y_{\omega-\gamma}, Y_{\gamma}\right]\right) \\
& =\exp \left(t c_{\gamma, \omega-\gamma} y_{\omega-\gamma} Z\right) \exp \left(t Y_{\gamma}\right)
\end{aligned}
$$

By (12) and the remark thereafter, we have $p^{\gamma}(n)=c_{\gamma, \omega-\gamma} y_{\omega-\gamma}$.
(ii) Since $\left[\mathfrak{n}_{1 / 2}, \mathfrak{n}_{1 / 2}\right] \subseteq \mathfrak{n}_{1}$, every bracket involving three or more vectors in $\mathfrak{n}_{1 / 2}$ is zero. If $H \in \mathfrak{a}$, then

$$
\begin{aligned}
& n_{1 / 2}^{-1} n_{1}^{-1} \exp (t H) n_{1} n_{1 / 2}=n_{1 / 2}^{-1} \exp (t H-t z[Z, H]) n_{1 / 2} \\
& \quad=\exp (t \omega(H) z Z) \exp \left(t H-t \sum_{\alpha \in \Sigma_{1 / 2}} y_{\alpha}\left[Y_{\alpha}, H\right]+t / 2 \sum_{\alpha+\beta=\omega} y_{\alpha} y_{\beta}\left[Y_{\beta},\left[Y_{\alpha}, H\right]\right]\right) \\
& \quad=\exp \left(\omega(H) z+\frac{1}{2} \sum_{\alpha+\beta=\omega} \alpha(H) c_{\alpha, \beta} y_{\alpha} y_{\beta}\right) t Z \ldots
\end{aligned}
$$

where the only relevant component is the linear term in t along Z. Therefore

$$
p^{H}(n)=\omega(H) z-\frac{1}{2} \sum_{\alpha \in \tilde{\Sigma}_{1 / 2}} y_{\alpha} y_{\omega-\alpha}((\omega-\alpha)(H)-\alpha(H)) c_{\alpha, \omega-\alpha}
$$

as required.
(iii) Since $[Z, \mathfrak{n}]=0$, the conclusion is obvious.
(iv) If $\alpha \in \Sigma_{1 / 2}$, then $(\nu+\alpha, \omega)=(\nu, \omega)+(\alpha, \omega)=\frac{1}{2}(\omega, \omega)$, whence $\nu+\alpha \in$ $\Sigma_{1 / 2}$, provided it is a root. Moreover by definition $\omega+\nu$ is not a root. Therefore

$$
\begin{aligned}
& n_{1 / 2}^{-1} n_{1}^{-1} \exp \left(t X_{\nu}\right) n_{1} n_{1 / 2}=n_{1 / 2}^{-1} \exp \left(t X_{\nu}\right) n_{1 / 2} \\
& \quad=\exp \left(t X_{\nu}-t \sum_{\alpha \in \Sigma_{1 / 2}} y_{\alpha}\left[Y_{\alpha}, X_{\nu}\right]+\frac{t}{2} \sum_{\alpha_{1}, \alpha_{2} \in \Sigma_{1 / 2}} y_{\alpha_{1}} y_{\alpha_{2}}\left[Y_{\alpha_{2}},\left[Y_{\alpha_{1}}, X_{\nu}\right]\right]\right) \\
& \quad=\exp \left(\frac{t}{2} \sum_{\nu+\alpha_{1}+\alpha_{2}=\omega} c_{\alpha_{1}, \nu} c_{\alpha_{2}, \nu+\alpha_{1}} y_{\alpha_{1}} y_{\alpha_{2}} Z\right) \exp \left(t X_{\nu}-t \sum_{\alpha \in A} c_{\alpha, \nu} y_{\alpha} Y_{\alpha+\nu}\right)
\end{aligned}
$$

So (12) gives $p^{\nu}(n)=\frac{1}{2} \sum_{\nu+\alpha_{1}+\alpha_{2}=\omega} c_{\alpha_{1}, \nu} c_{\alpha_{2}, \nu+\alpha_{1}} y_{\alpha_{1}} y_{\alpha_{2}}$, where α_{1} and α_{2} are in $\Sigma_{1 / 2}$.
(v) Take $\gamma \in \Sigma_{1 / 2}$. Then

$$
\begin{aligned}
& n_{1 / 2}^{-1} n_{1}^{-1} \exp \left(t Y_{-\gamma}\right) n_{1} n_{1 / 2}=n_{1 / 2}^{-1} \exp \left(t Y_{-\gamma}-t c_{\omega,-\gamma} z Y_{\omega-\gamma}\right) n_{1 / 2} \\
& = \\
& \quad \exp \left(t Y_{-\gamma}-t c_{\omega,-\gamma} z Y_{\omega-\gamma}-t \sum_{\alpha \in \Sigma_{1 / 2}} y_{\alpha}\left[Y_{\alpha}, Y_{-\gamma}\right]\right. \\
& \quad+t z \sum_{\alpha \in \Sigma_{1 / 2}} c_{\omega,-\gamma} y_{\alpha}\left[Y_{\alpha}, Y_{\omega-\gamma}\right]+\frac{t}{2} \sum_{\alpha_{1}, \alpha_{2} \in \Sigma_{1 / 2}} y_{\alpha_{1}} y_{\alpha_{2}}\left[Y_{\alpha_{2}},\left[Y_{\alpha_{1}}, Y_{-\gamma}\right]\right. \\
& \quad-\frac{t}{6} \sum_{\alpha_{1}, \alpha_{2}, \alpha_{3} \in \Sigma_{1 / 2}} y_{\alpha_{1}} y_{\alpha_{2}} y_{\alpha_{3}}\left[Y_{\alpha_{3}},\left[Y_{\alpha_{2}},\left[Y_{\alpha_{1}}, Y_{-\gamma]}\right]\right]\right) .
\end{aligned}
$$

Since $(-\gamma+\alpha, \omega)=-(\gamma, \omega)+(\alpha, \omega)=-\frac{1}{2}(\omega, \omega)+\frac{1}{2}(\omega, \omega)=0$ for every $\alpha \in$ $\Sigma_{1 / 2}$, it follows that $-\gamma+\alpha$ is either in $\pm \Sigma_{0}$ or 0 , or not a root. This implies that the bracket $\left[Y_{\alpha_{1}}, Y_{-\gamma}\right]$ is respectively in $\mathfrak{n}_{0}, \mathfrak{a}$ or zero. Then (12) yields the desired expression for $p^{-\gamma}(n)$, since the Jacobi identity implies that $c_{\omega,-\gamma} c_{\gamma, \omega-\gamma}=$ $-\omega\left(H_{\gamma}\right)$.
(vi) Notice that in order to obtain ω we must add to $-\omega$ exactly four roots in $\Sigma_{1 / 2}$. We have

$$
\begin{aligned}
& n_{1 / 2}^{-1} n_{1}^{-1} \exp t X_{-\omega} n_{1} n_{1 / 2}=n_{1 / 2}^{-1} \exp \left(t X_{-\omega}-t z H_{\omega}-\frac{t}{2} z^{2} \omega\left(H_{\omega}\right) Z\right) n_{1 / 2} \\
& = \\
& \quad-\exp \left(-\frac{t}{2} z^{2} \omega\left(H_{\omega}\right) Z\right) \exp \left(t X_{-\omega}-t z H_{\omega}-t \sum_{\alpha \in \Sigma_{1 / 2}} c_{\alpha,-\omega} y_{\alpha} Y_{-\omega+\alpha}\right. \\
& \quad+\frac{t}{2} z \sum_{\alpha \in \Sigma_{1 / 2}} c_{\omega-\alpha, \alpha} \alpha\left(H_{\omega}\right) y_{\alpha} Y_{\alpha}+\frac{t}{2} \sum_{\alpha_{1}, \alpha_{2} \in \Sigma_{1 / 2}} y_{\alpha_{1}} y_{\alpha_{2}}\left[Y_{\alpha_{2}},\left[Y_{\alpha_{1}}, X_{-\omega}\right]\right] \\
& \quad+\frac{t}{2} \sum_{\alpha_{1}, \alpha_{2}, \alpha_{3} \in \Sigma_{1 / 2}} y_{\alpha_{1}} y_{\alpha_{2}} y_{\alpha_{3}}\left[Y_{\alpha_{3},},\left[Y_{\alpha_{2}},\left[Y_{\alpha_{1}}, X_{-\omega}\right]\right]\right] \\
& = \\
& \quad \exp \left(\left(-\frac{t}{2} z^{2} \omega\left(H_{\omega}\right)+\frac{t}{2} z \sum_{\alpha \in \Sigma_{1 / 2}} c_{\omega-\alpha, \alpha} \alpha\left(H_{\omega}\right) y_{\alpha} y_{\omega-\alpha}\right.\right. \\
& \quad+\frac{t}{24} y_{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \Sigma_{1 / 2}} c_{\left.\alpha_{1}, y_{\alpha_{1}},-\omega c_{\alpha_{2},-\omega+\alpha_{1}}\left[Y_{\alpha_{4}},\left[Y_{\alpha_{3}},\left[Y_{\alpha_{2}},\left[Y_{\alpha_{1}}, X_{-\omega}\right]\right]\right]\right]\right)}^{\left.\left.\quad \times c_{\alpha_{3},-\omega+\alpha_{1}+\alpha_{2}} c_{\alpha_{4},-\omega+\alpha_{1}+\alpha_{2}+\alpha_{3}} y_{\alpha_{1}} y_{\alpha_{2}} y_{\alpha_{3}} y_{\alpha_{4}}\right) Z\right) \ldots} .
\end{aligned}
$$

Therefore (vi) follows.

5. Example

We consider $\mathfrak{g}=\mathfrak{s l}(3, \mathbb{R})$, the simple Lie algebra of real 3×3 matrices with zero trace. Its Iwasawa nilpotent Lie algebra \mathfrak{n} is given by the matrices

$$
\nu(x, y, z)=\left[\begin{array}{lll}
0 & x & z \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right]
$$

for x, y and z in \mathbb{R}. Notice that this is the Lie algebra of the three dimensional Heisenberg group. Take α and β to be the simple roots relative to the standard Cartan subspace \mathfrak{a} of $\mathfrak{s l}(3, \mathbb{R})$ of diagonal matrices: $\alpha(\operatorname{diag}(a, b, c))=(a-b)$ and $\beta((\operatorname{diag}(a, b, c))=(b-c)$. Then

$$
\begin{aligned}
\mathfrak{g}_{\alpha} & =\{\nu(x, 0,0): x \in \mathbb{R}\}, \\
\mathfrak{g}_{\beta} & =\{\nu(0, y, 0): y \in \mathbb{R}\}, \\
\mathfrak{g}_{\alpha+\beta} & =\{\nu(0,0, z): z \in \mathbb{R}\},
\end{aligned}
$$

where $\alpha+\beta$ is the highest root also denoted ω. The Lie algebra \mathfrak{g} decomposes as

$$
\mathfrak{g}=\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{\beta} \oplus \mathfrak{g}_{\alpha+\beta} \oplus \mathfrak{a} \oplus \theta\left(\mathfrak{g}_{\alpha}\right) \oplus \theta\left(\mathfrak{g}_{\beta}\right) \oplus \theta\left(\mathfrak{g}_{\alpha+\beta}\right)
$$

where θ is the Cartan involution. We choose the basis of \mathfrak{n} given by $X=\nu(1,0,0)$, $Y=\nu(0,1,0)$ and $Z=\nu(0,0,1)$ and the basis of \mathfrak{a}

$$
\begin{aligned}
& H_{\alpha}=\operatorname{diag}\left(\frac{1}{2},-\frac{1}{2}, 0\right) \\
& H_{\beta}=\operatorname{diag}\left(0, \frac{1}{2},-\frac{1}{2}\right) .
\end{aligned}
$$

We can complete $\left\{X, Y, Z, H_{\alpha}, H_{\beta}\right\}$ to a basis of $\mathfrak{s l}(3, \mathbb{R})$ adding $\theta(X)=-X^{t r}$, $\theta(Y)=-Y^{t r}$ and $\theta(Z)=-Z^{t r}$, which are a basis of $\mathfrak{g}_{-\alpha}, \mathfrak{g}_{-\beta}$ and $\mathfrak{g}_{-\alpha-\beta}$ respectively. In order to apply the formulas of Proposition 3 to the chosen basis of \mathfrak{g} we need the structure constants, that can be easily computed, and the vector $H_{\omega}=H_{\alpha}+H_{\beta}=\operatorname{diag}(1 / 2,0,-1 / 2)$. The indeterminates of the polynomials are the canonical coordinates $n=(x, y, z)=\exp (z Z) \exp (x X+y Y)$. Hence, a straightforward calculation yields the following polynomials.

$$
\begin{array}{lll}
p^{\alpha}(n)=y, & p^{H_{\alpha}}(n)=\frac{1}{2} z+\frac{3}{4} x y, & p^{-\alpha}(n)=-\frac{1}{2} x z+\frac{1}{12} x^{2} y \\
p^{\beta}(n)=-x, & p^{H_{\beta}}(n)=\frac{1}{2} z-\frac{1}{4} x y, & p^{-\beta}(n)=-\frac{1}{2} y z+\frac{5}{4} x y^{2} \\
p^{\alpha+\beta}(n)=1, & p^{-\alpha-\beta}(n)=-\frac{1}{2} z^{2}-\frac{1}{6} x^{2} y^{2} .
\end{array}
$$

References

[1] N. Bourbaki, Group et Algèbre de Lie. Éléments de Mathématique, Fascicule XXXIV, Hermann, Paris, 1968.
[2] P. Ciatti, A Clifford algebra approach to real simple Lie algebras with reduced root system, Math. Z. 242, no. 4 (2002), 781-797.
[3] M. Cowling, F. De Mari, A. Korányi and H. M. Reimann, Contact and conformal maps on Iwasawa N groups, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13, no. 3-4 (2002), 219-232.
[4] M. Cowling, F. De Mari, A. Korányi and H. M. Reimann, Contact and conformal mappings in parabolic geometry. I, Geom. Dedicata 111 (2005), 65-86..
[5] F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353-393..
[6] A. Knapp, Lie Groups Beyond an Introduction, Vol. 140, second edition. Progress in Math., Birkhäuser, Boston - Basel - Berlin, 2002.
[7] A. Korányi and H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80, no. 2 (1985), 309-338.
[8] R. Nevanlinna, On differentiable mappings, Analytic Functions, Vol. 24, Princeton Math. Series, (R. Nevanlinna et al., eds.), Princeton Univ. Press, Princeton N.J., 1960, 3-9.
[9] A. Ottazzi, Multicontact vector fields on Hessenberg manifolds, J. Lie Theory 15, no. 2 (2005), 357-377.
[10] P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129(2), no. 1 (1989), 1-60.

```
ALESSANDRO OTTAZZI
DIPARTIMENTO DI MATEMATICA E APPLICAZIONI
UNIVERSITA' DI MILANO "BICOCCA"
VIA COZZI, 53
20125 MILANO
ITALY
E-mail: alessandro.ottazzi@unimib.it
```

