Publ. Math. Debrecen 76/1-2 (2010), 157–171

Polynomial bases of split simple Lie algebras

By ALESSANDRO OTTAZZI (Milano)

Abstract. We show that every simple Lie algebra \mathfrak{g} of real rank at least two is isomorphic to a space of polynomials defined on the group $N = \exp \mathfrak{n}$, where \mathfrak{n} is the nilpotent component of the Iwasawa decomposition of \mathfrak{g} . Using suitable coordinates on N, we then write a basis of this space of polynomials when \mathfrak{g} is split.

1. Introduction

When $n \geq 3$, the action of the conformal group O(1,4) on $\mathbb{R}^3 \cup \{\infty\}$ may be characterized in differential geometric terms: Liouville proved in 1850 that a C^4 map between domains \mathcal{U} and \mathcal{V} in \mathbb{R}^3 whose differential is a multiple of an isometry at each point of \mathcal{U} is the restriction to \mathcal{U} of the action of some $g \in O(1,4)$. This type of result has been extended to \mathbb{R}^n with weaker smoothness assumptions and to more general spaces, see for instance [3]-[5], [7]-[10].

In [4], the authors consider the problem of characterizing the action of a semisimple Lie group G on the homogeneous spaces G/P, where P is a minimal parabolic subgroup. More precisely, they prove a Liouville type theorem for every semisimple Lie group G with rank at least two. The proof of this theorem passes through a polynomial representation of simple real Lie algebras, that we intend to make explicit. In particular, it is possible to define an isomorphism I between the Lie algebra of G and a space of polynomials on N, the nilpotent component of the Iwasawa decomposition of G. The isomorphism induces a Lie algebra structure on this space of polynomials. We are interested in investigating the polynomial representation of the simple Lie algebra given by I.

Mathematics Subject Classification: 22E46, 58D05.

Key words and phrases: simple Lie algebras, contact structures.

The paper is organized as follows. In Section 2 we fix the notations and recall a result of [4] that we are going to need. In particular, we give the definition of multicontact map and vector field, and recall (Theorem 1) that the space of multicontact vector fields on N is isomorphic to the simple Lie algebra \mathfrak{g} whose nilradical is $\mathfrak{n} = \text{Lie}(N)$. In Section 3 we discuss the isomorphism I in some details. First we introduce the notion of homogeneous function and vector field and observe that the space of multicontact vector fields is generated as a vector space by its homogeneous parts. In fact, there is a one to one correspondence between suitable bases of \mathfrak{g} and homogeneous generators of the multicontact vector fields. This correspondence allows us to define I. The idea is to fix a basis of each root space and therefore a basis of \mathfrak{g} . Hence I is the linear map that assigns to each such basis element a suitable vector of polynomials. In Section 4 we restrict to the case of split simple Lie algebras g. In this case the image I(X) is exactly one polynomial. In Lemma 2 we give a formula for computing I(X), whenever X lies in a root space or in the Cartan subspace. We then use this in Proposition 3 to find an explicit basis of the space of the polynomials in canonical coordinates. In the last section we consider the case where \mathfrak{g} is $\mathfrak{sl}(\mathfrak{Z},\mathbb{R})$ and therefore N is the Heisenberg group and apply Proposition 3 in order to write the polynomial basis of $\mathfrak{sl}(3,\mathbb{R})$.

2. Notations and preliminaries

We introduce some tools which come from the classical theory of semisimple Lie groups [1], [6], as well as some further properties proved in [4]. Let \mathfrak{g} be a simple Lie algebra with Killing form B and Cartan involution θ . Then $B_{\theta}(X, Y) = -B(X, \theta Y)$ is an inner product on \mathfrak{g} . Let $\mathfrak{k} \oplus \mathfrak{p}$ be the Cartan decomposition of \mathfrak{g} , where $\mathfrak{k} = \{X \in \mathfrak{g} : \theta X = X\}$ and $\mathfrak{p} = \{X \in \mathfrak{g} : \theta X = -X\}$. Fix a maximal abelian subspace \mathfrak{a} of \mathfrak{p} and denote by Σ the set of restricted roots, Σ is a subset of the dual \mathfrak{a}' of \mathfrak{a} , which is endowed with an inner product (\cdot, \cdot) induced by B_{θ} . Choose an ordering \succeq on \mathfrak{a}' . Call Σ_+ and $\Delta = \{\delta_1, \ldots, \delta_r\}$ the subsets for positive and simple positive restricted roots. We call rank of \mathfrak{g} the cardinality of Δ . Every positive root α can be written as $\alpha = \sum_{i=1}^r n_i \delta_i$ for uniquely defined non-negative integers n_1, \ldots, n_r . The positive integer $\operatorname{ht}(\alpha) = \sum_{i=1}^r n_i$ is called the height of α . It is well-known that there is exactly one root ω , called the highest root, that satisfies $\omega \succ \alpha$ (strictly) for every other root α . The root space decomposition of \mathfrak{g} is $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{a} \oplus \bigoplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}$, where $\mathfrak{m} = \{X \in \mathfrak{k} : [X, H] = 0, H \in \mathfrak{a}\}$. The Iwasawa decomposition is $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{m}$, where $\mathfrak{n} = \oplus_{\gamma \in \Sigma +} \mathfrak{g}_{\gamma}$. We write $\mathfrak{n}_i = \oplus_{\operatorname{ht}(\gamma) = i} \mathfrak{g}_{\gamma}$

for every $i = 1, ..., ht(\omega)$. Then \mathfrak{n} is a stratified nilpotent Lie algebra, that is $[\mathfrak{n}_i, \mathfrak{n}_1] = \mathfrak{n}_{i+1}$. Finally, we denote by G a Lie group whose Lie algebra is \mathfrak{g} .

Consider a diffeomorphism f between open subsets \mathcal{U} and \mathcal{V} of N. For every positive root α , the space \mathfrak{g}_{α} defines a subspace of the tangent space of N at the identity and by left translation it defines a sub-bundle of the tangent bundle, for which we abuse the notation \mathfrak{g}_{α} . We say that f is a multicontact mapping if its differential f_* preserves \mathfrak{g}_{δ} , for every simple root δ . This is a generalized notion of contact mapping in the usual sense, because $\mathfrak{n}_1 = \bigoplus_{\delta \in \Delta} \mathfrak{g}_{\delta}$ and a basis of left invariant vector fields of \mathfrak{n}_1 generates via Lie bracket the whole algebra of left invariant vector fields. If $\mathcal{U} = \mathcal{V}$ we can compose two multicontact mappings, obtaining another multicontact map. We define a multicontact vector field as a vector field V on \mathcal{U} whose local flow $\{\phi_t^V\}$ consists of multicontact maps. Such a vector field satisfies

$$[V,\mathfrak{g}_{\delta}]\subset\mathfrak{g}_{\delta},$$

for every simple root δ . The group G acts on G/P. By means of the Bruhat decomposition, the action can be restricted to N. Let $\mathfrak{X}(N)$ denote the Lie algebra of vector fields on N. We define a representation of \mathfrak{g} as vector fields on N

as

$$(\tau(X)f)(n) = \frac{d}{dt}f([\exp(tX)n])\Big|_{t=0}.$$

 $\tau:\mathfrak{g}\to\mathfrak{X}(N)$

Hence $[\exp(tX)n]$ is the N-component of the product $\exp(tX) \cdot n$ in the Bruhat decomposition of G/P (see [4] for more details). The following theorem is proved in [4] and its proof contains the results we need.

Theorem 1 ([4]). Suppose that \mathfrak{g} has real rank at least two. Then every C^1 multicontact vector field is in fact smooth, and the Lie algebra of multicontact vector fields on \mathcal{U} consists of the restrictions of $\tau(\mathfrak{g})$ to \mathcal{U} .

3. The polynomial algebra \mathcal{P}

From now on we assume that \mathfrak{g} has real rank at least two. For every $\alpha \in \Sigma_+$, denote by m_α the dimension of \mathfrak{g}_α and fix a basis $\{X_{\alpha,i} : \alpha \in \Sigma_+, i = 1, \ldots, m_\alpha\}$ of \mathfrak{n} consisting of left-invariant vector fields on N. A smooth vector field V on \mathcal{U} is

$$V = \sum_{\alpha \in \Sigma_+} \sum_{i=1}^{m_{\alpha}} v_{\alpha,i} X_{\alpha,i}, \qquad (1)$$

with smooth functions $v_{\alpha,i}$. The proof of Theorem 1 points out that a multicontact vector field is determined by its component along the directions corresponding to the highest root, namely $\{v_{\omega,i} : i = 1, \ldots, m_{\omega}\}$, the remaining components being obtained differentiating those. Further, the functions $v_{\omega,i}$ are in fact polynomials in canonical coordinates.

We select an element H_0 in the Cartan subspace \mathfrak{a} such that $\delta(H_0) = -1$ for all simple roots δ . We say that a function v on N is homogeneous of degree r if it does not vanish identically and satisfies $\tau(H_0)v = rv$. A vector field V is said to be homogeneous of degree s if it does not vanish identically and satisfies $[\tau(H_0), V] = sV$. Hence

$$\begin{split} & \deg(vV) = \deg(V) + \deg(v), \\ & \deg(V(v)) = \deg(v) + \deg(V) \quad (\text{except when } V(v) = 0), \\ & \deg([V,W]) = \deg(V) + \deg(V) \quad (\text{except when } V \text{ and } W \text{ commute}). \end{split}$$

The Lie algebra of multicontact vector fields is then generated by its homogeneous parts. More precisely, the set

$$\{\tau(X_{\alpha,i}), \alpha \in \Sigma \cup \{0\}, i = 1, \ldots, m_{\alpha}\}$$

defines a basis. Since τ is a representation, we have

$$[\tau(H_0), \tau(X_{\alpha,i})] = \tau([H_0, X_{\alpha,i}]) = \alpha(H_0)\tau(X_{\alpha,i}) = -\operatorname{ht}(\alpha)\tau(X_{\alpha,i}).$$

Let p be a ω -component of $\tau(X_{\alpha,i})$. Then the height of α and the degree of p are related:

$$-\operatorname{ht}(\alpha) = \operatorname{deg}(\tau(X_{\alpha,i})) = \operatorname{deg}(pX_{\omega,j}) = \operatorname{deg}(p) + \operatorname{deg}(X_{\omega,j}) = \operatorname{deg}(p) - \operatorname{ht}(\omega),$$

whence

Define

$$\deg(p) = \operatorname{ht}(\omega) - \operatorname{ht}(\alpha).$$

$$I : \mathfrak{g} \longrightarrow \mathcal{P}, \qquad (2)$$

by extending linearly the assignment $I(X_{\alpha,i}) = (v_{\omega,1}, \ldots, v_{\omega,m_{\omega}})$, the vector of polynomials that corresponds to the coefficients of $\tau(X_{\alpha,i})$ along ω . Here \mathcal{P} is a vector space of polynomial vectors, namely the image of the above mapping inside the m_{ω} -fold cartesian product of the algebra of polynomials in dim(\mathfrak{n}) indeterminates over the reals. The map I is an isomorphism, that induces a Lie algebra structure on \mathcal{P} .

Since the homogeneity degree of the polynomials $I(X_{\alpha,i})$ depends only on the root space \mathfrak{g}_{α} , all the components of a single basis vector have the same degree. Let α be a positive root, $X \in \mathfrak{g}_{\pm \alpha}$ or $X \in \mathfrak{m} \oplus \mathfrak{a}$, and let p be a ω -component of $\tau(X)$. The following diagram clarifies the various notions of degree:

root space	$\deg(\tau(X))$	$\deg p$
\mathfrak{g}_{lpha}	$-\mathrm{ht}(lpha)$	$\operatorname{ht}(\omega) - \operatorname{ht}(\alpha)$
$\mathfrak{m}\oplus\mathfrak{a}$	0	$\operatorname{ht}(\omega)$
\mathfrak{g}_{-lpha}	$ht(\alpha)$	$\operatorname{ht}(\omega) + \operatorname{ht}(\alpha).$

In particular each polynomial has degree between 0 and 2h, where $h = ht(\omega)$.

4. The split case

We compute explicit formulas for a basis of \mathcal{P} . We restrict our discussion to the case of the split real form \mathfrak{g} of a simple complex Lie algebra. The most relevant consequences of this assumption for our considerations are that $\mathfrak{m} = \{0\}$ and that each restricted root space has real dimension one. In particular, this implies that $I(\mathfrak{g}_{\alpha})$ consists for all α of the real multiples of a single polynomial.

Our decomposition formulas are relative to a suitable decomposition of the restricted root system (see e.g. [2]), namely $\Sigma_{+} = \Sigma_0 \oplus \Sigma_{1/2} \oplus \Sigma_1$, where

$$\Sigma_0 = \{\beta \in \Sigma_+ : (\omega, \beta) = 0\},\$$
$$\Sigma_{1/2} = \left\{\beta \in \Sigma_+ : (\omega, \beta) = \frac{1}{2}(\omega, \omega)\right\},\$$
$$\Sigma_1 = \{\beta \in \Sigma_+ : (\omega, \beta) = (\omega, \omega)\} = \{\omega\}$$

We shall write $\Delta_{1/2} = \Sigma_{1/2} \cap \Delta$ and $\Delta_0 = \Sigma_0 \cap \Delta$. According to the decomposition of Σ_+ , we put

$$\mathfrak{n} = \mathfrak{n}_0 \oplus \mathfrak{n}_{1/2} \oplus \mathfrak{n}_1,$$

with obvious notations. Since $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$, and $(\alpha+\beta,\omega) = (\alpha,\omega) + (\beta,\omega)$, it follows that \mathfrak{n}_0 is a subalgebra and $\mathfrak{n}_{1/2} \oplus \mathfrak{n}_1$ is an ideal in \mathfrak{n} . The Cartan involution θ maps each root space \mathfrak{g}_{α} to $\mathfrak{g}_{-\alpha}$, so that $\overline{\mathfrak{n}} = \theta \mathfrak{n} = \bigoplus_{\gamma \in \Sigma_{-}} \mathfrak{g}_{\gamma}$, where $\Sigma_{-} = -\Sigma_{+}$. We write

$$\overline{\mathfrak{n}} = \overline{\mathfrak{n}}_0 \oplus \overline{\mathfrak{n}}_{1/2} \oplus \overline{\mathfrak{n}}_1,$$

so that

$$\mathfrak{g} = \mathfrak{n}_1 \oplus \mathfrak{n}_{1/2} \oplus \mathfrak{n}_0 \oplus \mathfrak{a} \oplus \overline{\mathfrak{n}}_0 \oplus \overline{\mathfrak{n}}_{1/2} \oplus \overline{\mathfrak{n}}_1.$$
(3)

By linearity of the scalar product, the following commutation rules hold

$$\begin{split} & [\mathfrak{a},\mathfrak{n}_{0}] \subset \mathfrak{n}_{0} & [\mathfrak{a},\mathfrak{n}_{1/2}] \subset \mathfrak{n}_{1/2} & [\mathfrak{a},\mathfrak{n}_{1}] \subset \mathfrak{n}_{1} \\ & [\mathfrak{n}_{0},\overline{\mathfrak{n}}_{0}] \subset \mathfrak{n}_{0} \oplus \mathfrak{a} \oplus \overline{\mathfrak{n}}_{0} & [\mathfrak{n}_{0},\overline{\mathfrak{n}}_{1/2}] \subset \overline{\mathfrak{n}}_{1/2} & [\mathfrak{n}_{0},\overline{\mathfrak{n}}_{1}] = \{0\} \\ & [\mathfrak{n}_{1/2},\overline{\mathfrak{n}}_{0}] \subset \mathfrak{n}_{1/2} & [\mathfrak{n}_{1/2},\overline{\mathfrak{n}}_{1/2}] \subset \mathfrak{n}_{0} \oplus \mathfrak{a} \oplus \overline{\mathfrak{n}}_{0} & [\mathfrak{n}_{1/2},\overline{\mathfrak{n}}_{1}] \subset \overline{\mathfrak{n}}_{1/2} \\ & [\mathfrak{n}_{1},\overline{\mathfrak{n}}_{0}] = \{0\} & [\mathfrak{n}_{1},\overline{\mathfrak{n}}_{1/2}] \subset \mathfrak{n}_{1/2} & [\mathfrak{n}_{1},\overline{\mathfrak{n}}_{1}] \subset \mathfrak{a} \end{split}$$

We fix the following canonical coordinates on N:

$$n = n_1 n_{\frac{1}{2}} n_0 = \exp\left(zZ\right) \exp\left(\sum_{\alpha \in \Sigma_{1/2}} y_\alpha Y_\alpha\right) \exp\left(\sum_{\beta \in \Sigma_0} x_\beta X_\beta\right),\tag{5}$$

where $\{X_{\beta}, \beta \in \Sigma_0\}$, $\{Y_{\alpha}, \alpha \in \Sigma_{1/2}\}$ and Z are a basis of \mathfrak{n}_0 , $\mathfrak{n}_{1/2}$ and \mathfrak{n}_1 respectively.

Set $X \in \mathfrak{g}_{\alpha}$, $\alpha \in \Sigma \cup \{0\}$ and n in N. By the Bruhat decomposition, for t small enough there exists $b(t) \in P$ such that $\exp(tX)nb(t) \in N$. Then consider the decomposition of $n^{-1}\exp(tX)nb(t)$ with respect to the chosen coordinates, namely

$$n^{-1}\exp(tX)nb(t) = n_1^X(t)n_{1/2}^X(t)n_0^X(t).$$

Lemma 2. With the notations as above, writing $n = n_1 n_{1/2} n_0$, we have

(i) there exists $A \in \mathfrak{n}_1$ and $B \in \mathfrak{n}_{1/2} \oplus \mathfrak{n}_0 \oplus \mathfrak{a} \oplus \overline{\mathfrak{n}}$ such that

(ii)
$$n_{1/2}^{-1}n_1^{-1}\exp(tX)n_1n_{1/2} = \exp(tA)\exp(tB)\exp(o(t));$$
$$\frac{d}{dt}\left(n_1^X(t)\right)\Big|_{t=0} = A;$$

(iii) If I is the isomorphism defined in (2), then I(X) = A.

PROOF. Write

$$n^{-1}\exp(tX)n = n_0^{-1}n_{1/2}^{-1}n_1^{-1}\exp{(tX)n_1n_{1/2}n_0}.$$

Observe first that since $n_1 = \exp(zZ)$,

$$n_1^{-1} \exp{(tX)} n_1 = \exp(e^{-\operatorname{ad}(zZ)} tX).$$

Now, by (4)

$$[Z, X] \in \begin{cases} \mathfrak{n}_1 & \text{if } X \in \mathfrak{a} \\ \mathfrak{n}_{1/2} & \text{if } X \in \overline{\mathfrak{n}}_{1/2} \\ \mathfrak{a} & \text{if } X \in \overline{\mathfrak{n}}_1, \end{cases}$$

and if X belongs to some other summand in the decomposition (3), then [Z,X]=0. Therefore by the Baker–Campbell–Hausdorff formula

$$n_1^{-1} \exp(tX) n_1 = \exp(tX + t(H_1 + A_{1/2} + A_1) + o(t))$$

= $\exp(tA_1 + o(t)) \exp(tX + t(H_1 + A_{1/2}) + o(t)),$ (6)

where $H_1 \in \mathfrak{a}$, $A_{1/2} \in \mathfrak{n}_{1/2}$ and $A_1 \in \mathfrak{n}_1$.

Secondly, since \mathfrak{n}_1 commutes with \mathfrak{n} , we consider

$$n_{1/2}^{-1} \exp(tX + t(H_1 + A_{1/2}))n_{1/2} = \exp(e^{-\sum_{\alpha} y_{\alpha} \operatorname{ad} Y_{\alpha}}(tX + tH_1 + tA_{1/2})).$$

Since $n_{1/2}$ is the exponential of some element in $\mathfrak{n}_{1/2}$, in the above formula $\alpha \in \Sigma_{1/2}$. Therefore, if the commutator $[Y_{\alpha}, X] \neq 0$, then by (4)

$$[Y_{\alpha}, X] \in \begin{cases} \overline{\mathfrak{n}}_{1/2} & \text{if } X \in \overline{\mathfrak{n}}_1 \\ \mathfrak{a} & \text{if } X \in \overline{\mathfrak{n}}_{1/2} \\ \mathfrak{n}_{1/2} & \text{if } X \in \overline{\mathfrak{n}}_0 \oplus \mathfrak{n}_0 \oplus \mathfrak{a} \\ \mathfrak{n}_1 & \text{if } X \in \mathfrak{n}_{1/2}. \end{cases}$$

Moreover,

$$[Y_{\alpha}, H_1] \in \mathfrak{a}, \quad [Y_{\alpha}, A_{1/2}] \in \mathfrak{n}_1.$$

Hence

$$n_{1/2}^{-1} \exp(tX + t(H_1 + A_{1/2}))n_{1/2} = \exp(tX + t(B_{1/2}^- + H_2 + B_{1/2} + B_1) + o(t)),$$

= $\exp(tB_1 + o(t)) \exp(tX + t(B_{1/2}^- + H_2 + B_{1/2}) + o(t)),$ (7)

for some $B_{1/2}^- \in \overline{\mathfrak{n}}_{1/2}$, $H_2 \in \mathfrak{a}$, $B_{1/2} \in \mathfrak{n}_{1/2}$ and $B_1 \in \mathfrak{n}_1$. Also, observe that by the Baker–Campbell–Hausdorff formula

$$\exp(tL + o(t)) = \exp(tL)\exp(o(t)) \tag{8}$$

for any $L \in \mathfrak{g}$. Thus, by (6) and (4) we obtain that

$$n_{1/2}^{-1}n_1^{-1}\exp(tX)n_1n_{1/2} = \exp(tA)\exp(tB)\exp(o(t)),$$

with

$$A = \begin{cases} A_1 + B_1 & \text{if } X \notin \mathfrak{n}_1 \\ A_1 + B_1 + X & \text{if } X \in \mathfrak{n}_1 \end{cases}$$

and

$$B = \begin{cases} B_{1/2}^- + H_2 + B_{1/2} & \text{if } X \in \mathfrak{n}_1 \\ B_{1/2}^- + H_2 + B_{1/2} + X & \text{if } X \notin \mathfrak{n}_1. \end{cases}$$

This proves (i).

Next, consider

$$n_0^{-1} \exp(tX + t(B_{1/2}^- + H_2 + B_{1/2}))n_0$$

= $\exp(e^{-\operatorname{ad}(\sum_\beta x_\beta X_\beta)}(tX + tB_{1/2}^- + tH_2 + tB_{1/2})).$

If $[X_{\beta}, X] \neq 0$, then by (4)

$$[X_{\beta}, X] \in \begin{cases} \overline{\mathfrak{n}}_{1/2} & \text{if } X \in \overline{\mathfrak{n}}_{1/2} \\ \mathfrak{n}_0 \oplus \overline{\mathfrak{n}}_0 \oplus \mathfrak{a} & \text{if } X \in \mathfrak{n}_0 \oplus \overline{\mathfrak{n}}_0 \oplus \mathfrak{a} \\ \mathfrak{n}_{1/2} & \text{if } X \in \mathfrak{n}_{1/2}. \end{cases}$$

Furthermore,

$$[X_{\beta}, B_{1/2}^{-}] \in \overline{\mathfrak{n}}_{1/2}, \quad [X_{\beta}, H_2] \in \mathfrak{n}_0, \qquad [X_{\beta}, B_{1/2}] \in \mathfrak{n}_{1/2}.$$

Hence

$$n_0^{-1} \exp(tX + t(B_{1/2}^- + H_2 + B_{1/2}))n_0$$

= $\exp(tX + t(C_{1/2}^- + C_0^- + H_3 + C_0^+ + C_{1/2}) + o(t)), \quad (9)$

for some $C_{1/2}^- \in \overline{\mathfrak{n}}_{1/2}, C_0^- \in \overline{\mathfrak{n}}_0, H_3 \in \mathfrak{a}, C_0^+ \in \mathfrak{n}_0 \text{ and } C_{1/2} \in \mathfrak{n}_{1/2}.$ Since \mathfrak{n}_1 commutes with \mathfrak{n} , using (6), (4), (8) and (9) we obtain

$$n^{-1} \exp(tX)n = \exp(tA_{1} + tB_{1} + o(t))$$

$$\times \exp(tX + t(C_{1/2}^{-} + C_{0}^{-} + H_{3} + C_{0}^{+} + C_{1/2}) + o(t))$$

$$= \exp(tA_{1} + tB_{1} + o(t)) \exp(tX + tC_{0}^{+}tC_{1/2} + o(t))$$

$$\times \exp(t(C_{1/2}^{-} + C_{0}^{-} + H_{3}) + o(t))$$

$$= \exp(tA_{1} + tB_{1} + tk_{1}(X)) \exp(tC_{1/2} + tk_{1/2}(X))$$

$$\times \exp(tC_{0} + tk_{0}(X)) \exp(tC_{1/2}^{-} + tC_{0}^{-} + tH_{3} + tk(X)) \exp(o(t))$$

$$= \exp(tA) \exp(tC) \exp(tD) \exp(tE) \exp(o(t)), \qquad (10)$$

where

$$k(X) = \begin{cases} X & \text{if } X \in \mathfrak{a} \oplus \overline{\mathfrak{n}} \\ 0 & \text{otherwise,} \end{cases}$$
$$k_i(X) = \begin{cases} X & \text{if } X \in \mathfrak{n}_{(i)}, \ i = 0, 1/2, 1 \\ 0 & \text{otherwise,} \end{cases}$$

and

$$C = C_{1/2} + k_{1/2}(X), \quad D = C_0 + k_0(X), \quad E = C_{1/2}^- + C_0^- + H_3 + k(X).$$

On the other hand, by hypothesis

$$n^{-1}\exp(tX)n = n_1^X(t)n_{1/2}^X(t)n_0^X(t)b(t)^{-1}.$$
(11)

Observe that since $n^{-1} \exp(tX)n$ is the identity for t = 0, then necessarily $n_r^X(0) = e$ for every r = 1, 1/2, 0, and b(0) = e. Therefore, comparing (10) and (11),

$$\begin{split} \frac{d}{dt} \left(\exp(tA) \exp(tC) \exp(tD) \exp(tE) \exp(o(t)) \right) \Big|_{t=0} \\ &= \frac{d}{dt} \left(n_1^X(t) n_{1/2}^X(t) n_0^X(t) b(t)^{-1} \right) \Big|_{t=0}, \end{split}$$

whence

$$\begin{aligned} A+C+D+E &= \frac{d}{dt} \left(n_1^X(t) \right) \Big|_{t=0} n_{1/2}^X(0) n_0^X(0) b(0)^{-1} \\ &+ n_1^X(0) \frac{d}{dt} \left(n_{1/2}^X(t) \right) \Big|_{t=0} n_0^X(0) b(0)^{-1} \\ &+ n_1^X(0) n_{1/2}^X(0) \frac{d}{dt} \left(n_0^X(t) \right) \Big|_{t=0} b(0)^{-1} \\ &+ n_1^X(0) n_{1/2}^X(0) n_0^X(0) \frac{d}{dt} \left(b(t)^{-1} \right) \Big|_{t=0}. \end{aligned}$$

This implies

$$A = \frac{d}{dt} \left(n_1^X(t) \right) \Big|_{t=0},$$

because A and $\frac{d}{dt}(n_1^X(t))|_{t=0}$ are the only two terms in the above sum that lie along Z. Thus also (ii) is proved.

In order to prove (iii), consider the multicontact vector field associated to X:

$$\tau(X)f(n) = \frac{d}{dt}f([\exp(tX)n])\Big|_{t=0},$$

where $[\exp(tX)n]$ is the N- component of $\exp(tX)n$ in the Bruhat decomposition.

This is equivalent to saying that for t small enough there exists $b(t) \in P$ such that $[\exp(tX)n] = \exp(tX)nb(t) \in N$. Hence

$$\begin{aligned} \tau(X)f(n) &= \frac{d}{dt} f(\exp(tX)nb(t))\Big|_{t=0} \\ &= \frac{d}{dt} f(nn^{-1}\exp(tX)nb(t))\Big|_{t=0} \\ &= \frac{d}{dt} f(n_1n_{1/2}n_0n_1^X(t)n_{1/2}^X(t)n_0^X(t))\Big|_{t=0} \end{aligned}$$

Consider the left-invariant vector fields corresponding to the basis of \mathfrak{n} chosen in (5) and write $\tau(X)$ accordingly. Then the image of X via the isomorphism I defined in (2) is p, the coefficient along Z of $\tau(X)$. We observed that $n_r^X(0) = e$, for every r = 0, 1/2, 1. Therefore,

$$p = \frac{d}{dt} (n_1^X(t)) \Big|_{t=0},$$
(12)

and so p = A.

We showed above that p(n) is obtained in two steps: first we compute the conjugation $n_{1/2}^{-1}n_1^{-1}\exp(tX)n_1n_{1/2}$ and then write it in the form $\exp(tA)\exp(tB + o(t))$, where $A \in \mathfrak{n}_1$ and B has no components along \mathfrak{n}_1 , according to the decomposition (3).

We shall obtain explicit formulas for the homogeneous polynomials corresponding to \mathfrak{g} using (12). We consider separately the cases with α in Σ_0 , $\Sigma_{1/2}$, Σ_1 , $\{0\}$, $-\Sigma_1$, $-\Sigma_{1/2}$, $-\Sigma_0$. The resulting polynomials are a basis of the space \mathcal{P} and we collect them in the next proposition. We define on $\Sigma_{1/2}$ the equivalence relation \sim given by

$$\alpha \sim \beta \Leftrightarrow \alpha + \beta = \omega$$

and we choose one representative for each element of the quotient $(\Sigma_{1/2}/\sim)$. Denote the set of such representatives by $\tilde{\Sigma}_{1/2}$.

Proposition 3. Denote $p^{\alpha} = I(X_{\alpha})$ for every $X_{\alpha} \in \mathfrak{g}_{\alpha}$ and every non zero root α and $p^{H} = I(H)$ for every $H \in \mathfrak{a}$. We write $c_{\alpha,\beta}$ for the structure constants of $[X_{\alpha}, X_{\beta}]$ and H_{γ} for the unique element in \mathfrak{a} for which $\gamma(H_{\gamma}) = 1$. Then the following formulas hold.

(i) If
$$\gamma \in \Sigma_{1/2}$$
, then $p^{\gamma}(n) = c_{\gamma,\omega-\gamma}y_{\omega-\gamma}$.
(ii) If $H \in \mathfrak{a}$, then

$$p^{H}(n) = \omega(H)z - \frac{1}{2}\sum_{\alpha \in \tilde{\Sigma}_{1/2}} y_{\alpha}y_{\omega-\alpha} \left((\omega-\alpha)(H) - \alpha(H)\right)c_{\alpha,\omega-\alpha}$$

(iii) $p^{\omega}(n) = 1.$ (iv) If $\nu \in \Sigma_0 \cup -\Sigma_0$, then

$$p^{\nu}(n) = \frac{1}{2} \sum_{\nu + \alpha_1 + \alpha_2 = \omega} c_{\alpha_1,\nu} c_{\alpha_2,\nu + \alpha_1} y_{\alpha_1} y_{\alpha_2},$$

where α_1 and α_2 vary in $\Sigma_{1/2}$.

(v) If $\gamma \in \Sigma_{1/2}$, then

$$p^{-\gamma}(n) = -\omega(H_{\gamma})y_{\gamma}z_{\overline{6}}^{1}\sum_{\alpha\in\Sigma_{1/2}}\alpha(H_{\gamma})c_{\omega-\alpha,\alpha}y_{\gamma}y_{\alpha}y_{\omega-\alpha}$$
$$-\frac{1}{6}\sum_{-\gamma+\alpha_{1}+\alpha_{2}+\alpha_{3}=\omega}c_{\alpha_{1},-\gamma}c_{\alpha_{2},-\gamma+\alpha_{1}}c_{\alpha_{3},-\gamma+\alpha_{1}+\alpha_{2}}y_{\alpha_{1}}y_{\alpha_{2}}y_{\alpha_{3}},$$

with $\alpha_1, \alpha_2, \alpha_3 \in \Sigma_{1/2}$.

(vi) Finally,

$$p^{-\omega}(n) = -\frac{1}{2}z^2\omega(H_{\omega}) + \frac{1}{2}z\sum_{\alpha\in\Sigma_{1/2}}c_{\omega-\alpha,\alpha}\alpha(H_{\omega})y_{\alpha}y_{\omega-\alpha}$$
$$+\frac{t}{24}\sum_{\alpha_1,\alpha_2,\alpha_3,\alpha_4\in\Sigma_{1/2}}c_{\alpha_1,-\omega}c_{\alpha_2,-\omega+\alpha_1}c_{\alpha_3,-\omega+\alpha_1+\alpha_2}c_{\alpha_4,-\omega+\alpha_1+\alpha_2+\alpha_3}y_{\alpha_1}y_{\alpha_2}y_{\alpha_3}y_{\alpha_4}.$$

PROOF. (i) We will repeatedly use the following simple observation: if $\alpha, \gamma \in \Sigma_{1/2}$ and $\alpha + \gamma \in \Sigma$, then $\gamma = \omega - \alpha$. Indeed $(\alpha + \gamma, \omega) = (\alpha, \omega) + (\gamma, \omega) = (\omega, \omega)$. This implies that $\alpha = \omega - \gamma$. Since $[Z, \mathfrak{n}] = 0$,

$$\begin{split} n_{1/2}^{-1} n_1^{-1} \exp{(tY_{\gamma})} n_1 n_{1/2} &= n_{1/2}^{-1} \exp{\left(\sum_{n=0}^{+\infty} (-1)^n \frac{(\operatorname{ad} zZ)^n}{n!} tY_{\gamma}\right)} n_{1/2} \\ &= n_{1/2}^{-1} \exp(tY_{\gamma}) n_{1/2} \\ &= \exp{\left(\sum_{n=0}^{+\infty} (-1)^n \frac{(\operatorname{ad}(\sum_{\alpha \in \Sigma_{1/2}} y_{\alpha}Y_{\alpha}))^n}{n!} tY_{\gamma}\right)} \\ &= \exp(tY_{\gamma} - ty_{\omega - \gamma}[Y_{\omega - \gamma}, Y_{\gamma}]) \\ &= \exp(tc_{\gamma, \omega - \gamma}y_{\omega - \gamma}Z) \exp{(tY_{\gamma})}. \end{split}$$

By (12) and the remark thereafter, we have $p^{\gamma}(n) = c_{\gamma,\omega-\gamma}y_{\omega-\gamma}$.

(ii) Since $[n_{1/2}, n_{1/2}] \subseteq n_1$, every bracket involving three or more vectors in $n_{1/2}$ is zero. If $H \in \mathfrak{a}$, then

$$n_{1/2}^{-1}n_1^{-1}\exp{(tH)n_1n_{1/2}} = n_{1/2}^{-1}\exp{(tH - tz[Z,H])n_{1/2}}$$

= $\exp(t\omega(H)zZ)\exp\left(tH - t\sum_{\alpha\in\Sigma_{1/2}}y_\alpha[Y_\alpha,H] + t/2\sum_{\alpha+\beta=\omega}y_\alpha y_\beta[Y_\beta,[Y_\alpha,H]]\right)$
= $\exp\left(\omega(H)z + \frac{1}{2}\sum_{\alpha+\beta=\omega}\alpha(H)c_{\alpha,\beta}y_\alpha y_\beta\right)tZ\dots$

where the only relevant component is the linear term in t along Z. Therefore

$$p^{H}(n) = \omega(H)z - \frac{1}{2} \sum_{\alpha \in \tilde{\Sigma}_{1/2}} y_{\alpha} y_{\omega-\alpha} \left((\omega - \alpha)(H) - \alpha(H) \right) c_{\alpha,\omega-\alpha},$$

as required.

(iii) Since $[Z, \mathfrak{n}] = 0$, the conclusion is obvious.

(iv) If $\alpha \in \Sigma_{1/2}$, then $(\nu + \alpha, \omega) = (\nu, \omega) + (\alpha, \omega) = \frac{1}{2}(\omega, \omega)$, whence $\nu + \alpha \in \Sigma_{1/2}$, provided it is a root. Moreover by definition $\omega + \nu$ is not a root. Therefore

$$n_{1/2}^{-1} n_1^{-1} \exp(tX_{\nu}) n_1 n_{1/2} = n_{1/2}^{-1} \exp(tX_{\nu}) n_{1/2}$$

= $\exp\left(tX_{\nu} - t\sum_{\alpha \in \Sigma_{1/2}} y_{\alpha}[Y_{\alpha}, X_{\nu}] + \frac{t}{2} \sum_{\alpha_1, \alpha_2 \in \Sigma_{1/2}} y_{\alpha_1} y_{\alpha_2} [Y_{\alpha_2}, [Y_{\alpha_1}, X_{\nu}]]\right)$
= $\exp\left(\frac{t}{2} \sum_{\nu+\alpha_1+\alpha_2=\omega} c_{\alpha_1,\nu} c_{\alpha_2,\nu+\alpha_1} y_{\alpha_1} y_{\alpha_2} Z\right) \exp\left(tX_{\nu} - t\sum_{\alpha \in A} c_{\alpha,\nu} y_{\alpha} Y_{\alpha+\nu}\right)$

So (12) gives $p^{\nu}(n) = \frac{1}{2} \sum_{\nu+\alpha_1+\alpha_2=\omega} c_{\alpha_1,\nu} c_{\alpha_2,\nu+\alpha_1} y_{\alpha_1} y_{\alpha_2}$, where α_1 and α_2 are in $\Sigma_{1/2}$.

(v) Take $\gamma \in \Sigma_{1/2}$. Then

$$n_{1/2}^{-1} n_1^{-1} \exp(tY_{-\gamma}) n_1 n_{1/2} = n_{1/2}^{-1} \exp(tY_{-\gamma} - tc_{\omega,-\gamma}zY_{\omega-\gamma}) n_{1/2}$$

= $\exp\left(tY_{-\gamma} - tc_{\omega,-\gamma}zY_{\omega-\gamma} - t\sum_{\alpha \in \Sigma_{1/2}} y_{\alpha}[Y_{\alpha}, Y_{-\gamma}]\right)$
+ $tz\sum_{\alpha \in \Sigma_{1/2}} c_{\omega,-\gamma}y_{\alpha}[Y_{\alpha}, Y_{\omega-\gamma}] + \frac{t}{2}\sum_{\alpha_1,\alpha_2 \in \Sigma_{1/2}} y_{\alpha_1}y_{\alpha_2}[Y_{\alpha_2}, [Y_{\alpha_1}, Y_{-\gamma}]]$
- $\frac{t}{6}\sum_{\alpha_1,\alpha_2,\alpha_3 \in \Sigma_{1/2}} y_{\alpha_1}y_{\alpha_2}y_{\alpha_3}[Y_{\alpha_3}, [Y_{\alpha_2}, [Y_{\alpha_1}, Y_{-\gamma}]]]\right).$

Since $(-\gamma + \alpha, \omega) = -(\gamma, \omega) + (\alpha, \omega) = -\frac{1}{2}(\omega, \omega) + \frac{1}{2}(\omega, \omega) = 0$ for every $\alpha \in \Sigma_{1/2}$, it follows that $-\gamma + \alpha$ is either in $\pm \Sigma_0$ or 0, or not a root. This implies that the bracket $[Y_{\alpha_1}, Y_{-\gamma}]$ is respectively in \mathfrak{n}_0 , \mathfrak{a} or zero. Then (12) yields the desired expression for $p^{-\gamma}(n)$, since the Jacobi identity implies that $c_{\omega,-\gamma}c_{\gamma,\omega-\gamma} = -\omega(H_{\gamma})$.

(vi) Notice that in order to obtain ω we must add to $-\omega$ exactly four roots in $\Sigma_{1/2}$. We have

$$n_{1/2}^{-1}n_{1}^{-1}\exp tX_{-\omega}n_{1}n_{1/2} = n_{1/2}^{-1}\exp\left(tX_{-\omega} - tzH_{\omega} - \frac{t}{2}z^{2}\omega(H_{\omega})Z\right)n_{1/2}$$

$$= \exp\left(-\frac{t}{2}z^{2}\omega(H_{\omega})Z\right)\exp\left(tX_{-\omega} - tzH_{\omega} - t\sum_{\alpha\in\Sigma_{1/2}}c_{\alpha,-\omega}y_{\alpha}Y_{-\omega+\alpha}\right)$$

$$- tz\sum_{\alpha\in\Sigma_{1/2}}\alpha(H_{\omega})y_{\alpha}Y_{\alpha} + \frac{t}{2}\sum_{\alpha_{1},\alpha_{2}\in\Sigma_{1/2}}y_{\alpha_{1}}y_{\alpha_{2}}[Y_{\alpha_{2}},[Y_{\alpha_{1}},X_{-\omega}]]$$

$$+ \frac{t}{2}z\sum_{\alpha\in\Sigma_{1/2}}c_{\omega-\alpha,\alpha}\alpha(H_{\omega})y_{\alpha}y_{\omega-\alpha}Z - \frac{t}{6}\sum_{\alpha_{1},\alpha_{2},\alpha_{3}\in\Sigma_{1/2}}y_{\alpha_{1}}y_{\alpha_{2}}y_{\alpha_{3}}[Y_{\alpha_{3}},[Y_{\alpha_{2}},[Y_{\alpha_{1}},X_{-\omega}]]]$$

$$+ \frac{t}{24}\sum_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\in\Sigma_{1/2}}y_{\alpha_{1}}y_{\alpha_{2}}y_{\alpha_{3}}y_{\alpha_{4}}[Y_{\alpha_{4}},[Y_{\alpha_{3}},[Y_{\alpha_{2}},[Y_{\alpha_{1}},X_{-\omega}]]]]\right)$$

$$= \exp\left(\left(-\frac{t}{2}z^{2}\omega(H_{\omega}) + \frac{t}{2}z\sum_{\alpha\in\Sigma_{1/2}}c_{\omega-\alpha,\alpha}\alpha(H_{\omega})y_{\alpha}y_{\omega-\alpha}\right)$$

$$+ \frac{t}{24}\sum_{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\in\Sigma_{1/2}}c_{\alpha_{1},-\omega}c_{\alpha_{2},-\omega+\alpha_{1}}$$

$$\times c_{\alpha_{3},-\omega+\alpha_{1}+\alpha_{2}}c_{\alpha_{4},-\omega+\alpha_{1}+\alpha_{2}+\alpha_{3}}y_{\alpha_{1}}y_{\alpha_{2}}y_{\alpha_{3}}y_{\alpha_{4}}\right)Z\right)\dots$$

Therefore (vi) follows.

5. Example

We consider $\mathfrak{g} = \mathfrak{sl}(3, \mathbb{R})$, the simple Lie algebra of real 3×3 matrices with zero trace. Its Iwasawa nilpotent Lie algebra \mathfrak{n} is given by the matrices

$$\nu(x, y, z) = \begin{bmatrix} 0 & x & z \\ 0 & 0 & y \\ 0 & 0 & 0 \end{bmatrix},$$

for x, y and z in \mathbb{R} . Notice that this is the Lie algebra of the three dimensional Heisenberg group. Take α and β to be the simple roots relative to the standard Cartan subspace \mathfrak{a} of $\mathfrak{sl}(3,\mathbb{R})$ of diagonal matrices: $\alpha(\operatorname{diag}(a,b,c)) = (a-b)$ and $\beta((\operatorname{diag}(a,b,c)) = (b-c)$. Then

$$\begin{split} \mathfrak{g}_{\alpha} &= \{\nu(x,0,0): x \in \mathbb{R}\},\\ \mathfrak{g}_{\beta} &= \{\nu(0,y,0): y \in \mathbb{R}\},\\ \mathfrak{g}_{\alpha+\beta} &= \{\nu(0,0,z): z \in \mathbb{R}\}, \end{split}$$

where $\alpha + \beta$ is the highest root also denoted ω . The Lie algebra \mathfrak{g} decomposes as

$$\mathfrak{g} = \mathfrak{g}_{lpha} \oplus \mathfrak{g}_{eta} \oplus \mathfrak{g}_{lpha+eta} \oplus \mathfrak{a} \oplus heta(\mathfrak{g}_{lpha}) \oplus heta(\mathfrak{g}_{eta}) \oplus heta(\mathfrak{g}_{lpha+eta}),$$

where θ is the Cartan involution. We choose the basis of \mathfrak{n} given by $X = \nu(1, 0, 0)$, $Y = \nu(0, 1, 0)$ and $Z = \nu(0, 0, 1)$ and the basis of \mathfrak{a}

$$H_{\alpha} = \operatorname{diag}\left(\frac{1}{2}, -\frac{1}{2}, 0\right)$$
$$H_{\beta} = \operatorname{diag}\left(0, \frac{1}{2}, -\frac{1}{2}\right).$$

We can complete $\{X, Y, Z, H_{\alpha}, H_{\beta}\}$ to a basis of $\mathfrak{sl}(3, \mathbb{R})$ adding $\theta(X) = -X^{tr}$, $\theta(Y) = -Y^{tr}$ and $\theta(Z) = -Z^{tr}$, which are a basis of $\mathfrak{g}_{-\alpha}$, $\mathfrak{g}_{-\beta}$ and $\mathfrak{g}_{-\alpha-\beta}$ respectively. In order to apply the formulas of Proposition 3 to the chosen basis of \mathfrak{g} we need the structure constants, that can be easily computed, and the vector $H_{\omega} = H_{\alpha} + H_{\beta} = \operatorname{diag}(1/2, 0, -1/2)$. The indeterminates of the polynomials are the canonical coordinates $n = (x, y, z) = \exp(zZ) \exp(xX + yY)$. Hence, a straightforward calculation yields the following polynomials.

$$p^{\alpha}(n) = y, \qquad p^{H_{\alpha}}(n) = \frac{1}{2}z + \frac{3}{4}xy, \quad p^{-\alpha}(n) = -\frac{1}{2}xz + \frac{1}{12}x^{2}y,$$

$$p^{\beta}(n) = -x, \quad p^{H_{\beta}}(n) = \frac{1}{2}z - \frac{1}{4}xy, \quad p^{-\beta}(n) = -\frac{1}{2}yz + \frac{5}{4}xy^{2},$$

$$p^{\alpha+\beta}(n) = 1, \qquad \qquad p^{-\alpha-\beta}(n) = -\frac{1}{2}z^{2} - \frac{1}{6}x^{2}y^{2}.$$

References

 N. BOURBAKI, Group et Algèbre de Lie. Éléments de Mathématique, Fascicule XXXIV, Hermann, Paris, 1968.

- [2] P. CIATTI, A Clifford algebra approach to real simple Lie algebras with reduced root system, Math. Z. 242, no. 4 (2002), 781–797.
- [3] M. COWLING, F. DE MARI, A. KORÁNYI and H. M. REIMANN, Contact and conformal maps on Iwasawa N groups, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13, no. 3–4 (2002), 219–232.
- [4] M. COWLING, F. DE MARI, A. KORÁNYI and H. M. REIMANN, Contact and conformal mappings in parabolic geometry. I, *Geom. Dedicata* 111 (2005), 65–86.
- [5] F. W. GEHRING, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393.
- [6] A. KNAPP, Lie Groups Beyond an Introduction, Vol. 140, second edition. Progress in Math., Birkhäuser, Boston – Basel – Berlin, 2002.
- [7] A. KORÁNYI and H. M. REIMANN, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80, no. 2 (1985), 309–338.
- [8] R. NEVANLINNA, On differentiable mappings, Analytic Functions, Vol. 24, Princeton Math. Series, (R. Nevanlinna et al., eds.), *Princeton Univ. Press, Princeton N.J.*, 1960, 3–9.
- [9] A. OTTAZZI, Multicontact vector fields on Hessenberg manifolds, J. Lie Theory 15, no. 2 (2005), 357–377.
- [10] P. PANSU, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129(2), no. 1 (1989), 1–60.

ALESSANDRO OTTAZZI DIPARTIMENTO DI MATEMATICA E APPLICAZIONI UNIVERSITA' DI MILANO "BICOCCA" VIA COZZI, 53 20125 MILANO ITALY

E-mail: alessandro.ottazzi@unimib.it

(Received October 16, 2008; revised April 17, 2009)