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Polynomial bases of split simple Lie algebras

By ALESSANDRO OTTAZZI (Milano)

Abstract. We show that every simple Lie algebra g of real rank at least two is

isomorphic to a space of polynomials defined on the group N = exp n, where n is the

nilpotent component of the Iwasawa decomposition of g. Using suitable coordinates

on N , we then write a basis of this space of polynomials when g is split.

1. Introduction

When n ≥ 3, the action of the conformal group O(1, 4) on R
3 ∪ {∞} may

be characterized in differential geometric terms: Liouville proved in 1850 that a

C4 map between domains U and V in R
3 whose differential is a multiple of an

isometry at each point of U is the restriction to U of the action of some g ∈ O(1, 4).

This type of result has been extended to R
n with weaker smoothness assumptions

and to more general spaces, see for instance [3]–[5], [7]–[10].

In [4], the authors consider the problem of characterizing the action of a

semisimple Lie group G on the homogeneous spaces G/P , where P is a minimal

parabolic subgroup. More precisely, they prove a Liouville type theorem for every

semisimple Lie group G with rank at least two. The proof of this theorem passes

through a polynomial representation of simple real Lie algebras, that we intend to

make explicit. In particular, it is possible to define an isomorphism I between the

Lie algebra of G and a space of polynomials on N , the nilpotent component of the

Iwasawa decomposition of G. The isomorphism induces a Lie algebra structure

on this space of polynomials. We are interested in investigating the polynomial

representation of the simple Lie algebras given by I.
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The paper is organized as follows. In Section 2 we fix the notations and re-

call a result of [4] that we are going to need. In particular, we give the definition

of multicontact map and vector field, and recall (Theorem 1) that the space of

multicontact vector fields on N is isomorphic to the simple Lie algebra g whose

nilradical is n = Lie(N). In Section 3 we discuss the isomorphism I in some de-

tails. First we introduce the notion of homogeneous function and vector field and

observe that the space of multicontact vector fields is generated as a vector space

by its homogeneous parts. In fact, there is a one to one correspondence between

suitable bases of g and homogeneous generators of the multicontact vector fields.

This correspondence allows us to define I. The idea is to fix a basis of each root

space and therefore a basis of g. Hence I is the linear map that assigns to each

such basis element a suitable vector of polynomials. In Section 4 we restrict to

the case of split simple Lie algebras g. In this case the image I(X) is exactly one

polynomial. In Lemma 2 we give a formula for computing I(X), whenever X lies

in a root space or in the Cartan subspace. We then use this in Proposition 3 to

find an explicit basis of the space of the polynomials in canonical coordinates. In

the last section we consider the case where g is sl(3, R) and therefore N is the

Heisenberg group and apply Proposition 3 in order to write the polynomial basis

of sl(3, R).

2. Notations and preliminaries

We introduce some tools which come from the classical theory of semisimple

Lie groups [1], [6], as well as some further properties proved in [4]. Let g be a

simple Lie algebra with Killing form B and Cartan involution θ. Then Bθ(X, Y ) =

−B(X, θY ) is an inner product on g. Let k⊕ p be the Cartan decomposition of g,

where k = {X ∈ g : θX = X} and p = {X ∈ g : θX = −X}. Fix a maximal

abelian subspace a of p and denote by Σ the set of restricted roots, Σ is a subset

of the dual a′ of a, which is endowed with an inner product ( · , · ) induced by Bθ.

Choose an ordering � on a′. Call Σ+ and ∆ = {δ1, . . . , δr} the subsets for positive

and simple positive restricted roots. We call rank of g the cardinality of ∆. Every

positive root α can be written as α =
∑r

i=1 niδi for uniquely defined non-negative

integers n1, . . . , nr. The positive integer ht(α) =
∑r

i=1 ni is called the height of α.

It is well-known that there is exactly one root ω, called the highest root, that

satisfies ω ≻ α (strictly) for every other root α. The root space decomposition of

g is g = m⊕a⊕
⊕

α∈Σ gα, where m = {X ∈ k : [X, H ] = 0, H ∈ a}. The Iwasawa

decomposition is g = k ⊕ a ⊕ n, where n = ⊕γ∈Σ+
gγ . We write ni = ⊕ht(γ)=igγ
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for every i = 1, . . . , ht(ω). Then n is a stratified nilpotent Lie algebra, that is

[ni, n1] = ni+1. Finally, we denote by G a Lie group whose Lie algebra is g.

Consider a diffeomorphism f between open subsets U and V of N . For every

positive root α, the space gα defines a subspace of the tangent space of N at

the identity and by left translation it defines a sub-bundle of the tangent bundle,

for which we abuse the notation gα. We say that f is a multicontact mapping

if its differential f∗ preserves gδ, for every simple root δ. This is a generalized

notion of contact mapping in the usual sense, because n1 = ⊕δ∈∆gδ and a basis

of left invariant vector fields of n1 generates via Lie bracket the whole algebra of

left invariant vector fields. If U = V we can compose two multicontact mappings,

obtaining another multicontact map. We define a multicontact vector field as a

vector field V on U whose local flow {φV
t } consists of multicontact maps. Such a

vector field satisfies

[V, gδ] ⊂ gδ,

for every simple root δ. The group G acts on G/P . By means of the Bruhat

decomposition, the action can be restricted to N . Let X(N) denote the Lie algebra

of vector fields on N . We define a representation of g as vector fields on N

τ : g → X(N)

as

(τ(X)f)(n) =
d

dt
f([exp(tX)n])

∣

∣

∣

t=0
.

Hence [exp(tX)n] is the N -component of the product exp(tX) · n in the Bruhat

decomposition of G/P (see [4] for more details). The following theorem is proved

in [4] and its proof contains the results we need.

Theorem 1 ([4]). Suppose that g has real rank at least two. Then every C1

multicontact vector field is in fact smooth, and the Lie algebra of multicontact

vector fields on U consists of the restrictions of τ(g) to U .

3. The polynomial algebra P

From now on we assume that g has real rank at least two. For every α ∈ Σ+,

denote by mα the dimension of gα and fix a basis {Xα,i : α ∈ Σ+, i = 1, . . . , mα}

of n consisting of left-invariant vector fields on N . A smooth vector field V on

U is

V =
∑

α∈Σ+

mα
∑

i=1

vα,iXα,i, (1)
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with smooth functions vα,i. The proof of Theorem 1 points out that a multicontact

vector field is determined by its component along the directions corresponding to

the highest root, namely {vω,i : i = 1, . . . , mω}, the remaining components being

obtained differentiating those. Further, the functions vω,i are in fact polynomials

in canonical coordinates.

We select an element H0 in the Cartan subspace a such that δ(H0) = −1

for all simple roots δ. We say that a function v on N is homogeneous of degree

r if it does not vanish identically and satisfies τ(H0)v = rv. A vector field V is

said to be homogeneous of degree s if it does not vanish identically and satisfies

[τ(H0), V ] = sV . Hence

deg(vV ) = deg(V ) + deg(v),

deg(V (v)) = deg(v) + deg(V ) (except when V (v) = 0),

deg([V, W ]) = deg(V ) + deg(V ) (except when V and W commute).

The Lie algebra of multicontact vector fields is then generated by its homogeneous

parts. More precisely, the set

{τ(Xα,i), α ∈ Σ ∪ {0}, i = 1, . . . , mα}

defines a basis. Since τ is a representation, we have

[τ(H0), τ(Xα,i)] = τ([H0, Xα,i]) = α(H0)τ(Xα,i) = −ht(α)τ(Xα,i).

Let p be a ω-component of τ(Xα,i). Then the height of α and the degree of p are

related:

−ht(α) = deg(τ(Xα,i)) = deg(pXω,j) = deg(p) + deg(Xω,j) = deg(p) − ht(ω),

whence

deg(p) = ht(ω) − ht(α).

Define

I : g −→ P , (2)

by extending linearly the assignment I(Xα,i) = (vω,1, . . . , vω,mω ), the vector of

polynomials that corresponds to the coefficients of τ(Xα,i) along ω. Here P is

a vector space of polynomial vectors, namely the image of the above mapping

inside the mω-fold cartesian product of the algebra of polynomials in dim(n)

indeterminates over the reals. The map I is an isomorphism, that induces a Lie

algebra structure on P .
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Since the homogeneity degree of the polynomials I(Xα,i) depends only on the

root space gα, all the components of a single basis vector have the same degree.

Let α be a positive root, X ∈ g±α or X ∈ m ⊕ a, and let p be a ω-component of

τ(X). The following diagram clarifies the various notions of degree:

root space deg(τ(X)) deg p

gα −ht(α) ht(ω) − ht(α)

m ⊕ a 0 ht(ω)

g−α ht(α) ht(ω) + ht(α).

In particular each polynomial has degree between 0 and 2h, where h = ht(ω).

4. The split case

We compute explicit formulas for a basis of P . We restrict our discussion

to the case of the split real form g of a simple complex Lie algebra. The most

relevant consequences of this assumption for our considerations are that m = {0}

and that each restricted root space has real dimension one. In particular, this

implies that I(gα) consists for all α of the real multiples of a single polynomial.

Our decomposition formulas are relative to a suitable decomposition of the

restricted root system (see e.g. [2]), namely Σ+ = Σ0 ⊕ Σ1/2 ⊕ Σ1, where

Σ0 = {β ∈ Σ+ : (ω, β) = 0},

Σ1/2 =

{

β ∈ Σ+ : (ω, β) =
1

2
(ω, ω)

}

,

Σ1 = {β ∈ Σ+ : (ω, β) = (ω, ω)} = {ω}.

We shall write ∆1/2 = Σ1/2∩∆ and ∆0 = Σ0∩∆. According to the decomposition

of Σ+, we put

n = n0 ⊕ n1/2 ⊕ n1,

with obvious notations. Since [gα, gβ] = gα+β , and (α + β, ω) = (α, ω) + (β, ω),

it follows that n0 is a subalgebra and n1/2 ⊕ n1 is an ideal in n. The Cartan

involution θ maps each root space gα to g−α, so that n = θn = ⊕γ∈Σ
−

gγ , where

Σ− = −Σ+. We write

n = n0 ⊕ n1/2 ⊕ n1,
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so that

g = n1 ⊕ n1/2 ⊕ n0 ⊕ a ⊕ n0 ⊕ n1/2 ⊕ n1. (3)

By linearity of the scalar product, the following commutation rules hold

[a, n0] ⊂ n0 [a, n1/2] ⊂ n1/2 [a, n1] ⊂ n1

[n0, n0] ⊂ n0 ⊕ a ⊕ n0 [n0, n1/2] ⊂ n1/2 [n0, n1] = {0}

[n1/2, n0] ⊂ n1/2 [n1/2, n1/2] ⊂ n0 ⊕ a ⊕ n0 [n1/2, n1] ⊂ n1/2

[n1, n0] = {0} [n1, n1/2] ⊂ n1/2 [n1, n1] ⊂ a

(4)

We fix the following canonical coordinates on N :

n = n1n 1
2
n0 = exp (zZ) exp

(

∑

α∈Σ1/2

yαYα

)

exp

(

∑

β∈Σ0

xβXβ

)

, (5)

where {Xβ, β ∈ Σ0}, {Yα, α ∈ Σ1/2} and Z are a basis of n0, n1/2 and n1 respec-

tively.

Set X ∈ gα, α ∈ Σ ∪ {0} and n in N . By the Bruhat decomposition, for t

small enough there exists b(t) ∈ P such that exp(tX)nb(t) ∈ N . Then consider

the decomposition of n−1 exp(tX)nb(t) with respect to the chosen coordinates,

namely

n−1 exp(tX)nb(t) = nX
1 (t)nX

1/2(t)n
X
0 (t).

Lemma 2. With the notations as above, writing n = n1n1/2n0, we have

(i) there exists A ∈ n1 and B ∈ n1/2 ⊕ n0 ⊕ a ⊕ n such that

n−1
1/2n

−1
1 exp(tX)n1n1/2 = exp(tA) exp(tB) exp(o(t));

(ii) d

dt

(

nX
1 (t)

)

∣

∣

∣

t=0
= A;

(iii) If I is the isomorphism defined in (2), then I(X) = A.

Proof. Write

n−1 exp(tX)n = n−1
0 n−1

1/2n
−1
1 exp (tX)n1n1/2n0.

Observe first that since n1 = exp(zZ),

n−1
1 exp (tX)n1 = exp(e− ad(zZ)tX).
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Now, by (4)

[Z, X ] ∈















n1 if X ∈ a

n1/2 if X ∈ n1/2

a if X ∈ n1,

and if X belongs to some other summand in the decomposition (3), then [Z,X ]= 0.

Therefore by the Baker–Campbell–Hausdorff formula

n−1
1 exp (tX)n1 = exp(tX + t(H1 + A1/2 + A1) + o(t))

= exp(tA1 + o(t)) exp(tX + t(H1 + A1/2) + o(t)), (6)

where H1 ∈ a, A1/2 ∈ n1/2 and A1 ∈ n1.

Secondly, since n1 commutes with n, we consider

n−1
1/2 exp(tX + t(H1 + A1/2))n1/2 = exp(e−

P
α yα ad Yα(tX + tH1 + tA1/2)).

Since n1/2 is the exponential of some element in n1/2, in the above formula α ∈

Σ1/2. Therefore, if the commutator [Yα, X ] 6= 0, then by (4)

[Yα, X ] ∈























n1/2 if X ∈ n1

a if X ∈ n1/2

n1/2 if X ∈ n0 ⊕ n0 ⊕ a

n1 if X ∈ n1/2.

Moreover,

[Yα, H1] ∈ a, [Yα, A1/2] ∈ n1.

Hence

n−1
1/2 exp(tX + t(H1 + A1/2))n1/2 = exp(tX + t(B−

1/2 + H2 + B1/2 + B1) + o(t)),

= exp(tB1 + o(t)) exp(tX + t(B−

1/2 + H2 + B1/2) + o(t)), (7)

for some B−

1/2 ∈ n1/2, H2 ∈ a, B1/2 ∈ n1/2 and B1 ∈ n1. Also, observe that by

the Baker–Campbell–Hausdorff formula

exp(tL + o(t)) = exp(tL) exp(o(t)) (8)

for any L ∈ g. Thus, by (6) and (4) we obtain that

n−1
1/2n

−1
1 exp(tX)n1n1/2 = exp(tA) exp(tB) exp(o(t)),
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with

A =

{

A1 + B1 if X /∈ n1

A1 + B1 + X if X ∈ n1

and

B =

{

B−

1/2 + H2 + B1/2 if X ∈ n1

B−

1/2 + H2 + B1/2 + X if X /∈ n1.

This proves (i).

Next, consider

n−1
0 exp(tX + t(B−

1/2 + H2 + B1/2))n0

= exp(e− ad(
P

β xβXβ)(tX + tB−

1/2 + tH2 + tB1/2)).

If [Xβ , X ] 6= 0, then by (4)

[Xβ , X ] ∈















n1/2 if X ∈ n1/2

n0 ⊕ n0 ⊕ a if X ∈ n0 ⊕ n0 ⊕ a

n1/2 if X ∈ n1/2.

Furthermore,

[Xβ , B−

1/2] ∈ n1/2, [Xβ, H2] ∈ n0, [Xβ, B1/2] ∈ n1/2.

Hence

n−1
0 exp(tX + t(B−

1/2 + H2 + B1/2))n0

= exp(tX + t(C−

1/2 + C−

0 + H3 + C+
0 + C1/2) + o(t)), (9)

for some C−

1/2 ∈ n1/2, C−

0 ∈ n0, H3 ∈ a, C+
0 ∈ n0 and C1/2 ∈ n1/2.

Since n1 commutes with n, using (6), (4), (8) and (9) we obtain

n−1 exp(tX)n = exp(tA1 + tB1 + o(t))

× exp(tX + t(C−

1/2 + C−

0 + H3 + C+
0 + C1/2) + o(t))

= exp(tA1 + tB1 + o(t)) exp(tX + tC+
0 tC1/2 + o(t))

× exp(t(C−

1/2 + C−
0 + H3) + o(t))

= exp(tA1 + tB1 + tk1(X)) exp(tC1/2 + tk1/2(X))

× exp(tC0 + tk0(X)) exp(tC−

1/2 + tC−

0 + tH3 + tk(X)) exp(o(t))

= exp(tA) exp(tC) exp(tD) exp(tE) exp(o(t)), (10)
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where

k(X) =

{

X if X ∈ a ⊕ n

0 otherwise,

ki(X) =

{

X if X ∈ n(i), i = 0, 1/2, 1

0 otherwise,

and

C = C1/2 + k1/2(X), D = C0 + k0(X), E = C−

1/2 + C−

0 + H3 + k(X).

On the other hand, by hypothesis

n−1 exp(tX)n = nX
1 (t)nX

1/2(t)n
X
0 (t)b(t)−1. (11)

Observe that since n−1 exp(tX)n is the identity for t = 0, then necessarily

nX
r (0) = e for every r = 1, 1/2, 0, and b(0) = e. Therefore, comparing (10)

and (11),

d

dt
(exp(tA) exp(tC) exp(tD) exp(tE) exp(o(t)))

∣

∣

∣

t=0

=
d

dt

(

nX
1 (t)nX

1/2(t)n
X
0 (t)b(t)−1

) ∣

∣

∣

t=0
,

whence

A + C + D + E =
d

dt

(

nX
1 (t)

)

∣

∣

∣

t=0
nX

1/2(0)nX
0 (0)b(0)−1

+ nX
1 (0)

d

dt

(

nX
1/2(t)

) ∣

∣

∣

t=0
nX

0 (0)b(0)−1

+ nX
1 (0)nX

1/2(0)
d

dt

(

nX
0 (t)

)

∣

∣

∣

t=0
b(0)−1

+ nX
1 (0)nX

1/2(0)nX
0 (0)

d

dt

(

b(t)−1
)

∣

∣

∣

t=0
.

This implies

A =
d

dt

(

nX
1 (t)

)

∣

∣

∣

t=0
,

because A and d
dt

(

nX
1 (t)

)∣

∣

t=0
are the only two terms in the above sum that lie

along Z. Thus also (ii) is proved.

In order to prove (iii), consider the multicontact vector field associated to X :

τ(X)f(n) =
d

dt
f([exp(tX)n])

∣

∣

∣

t=0
,

where [exp(tX)n] is the N - component of exp(tX)n in the Bruhat decomposition.
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This is equivalent to saying that for t small enough there exists b(t) ∈ P such

that [exp(tX)n] = exp(tX)nb(t) ∈ N . Hence

τ(X)f(n) =
d

dt
f(exp(tX)nb(t))

∣

∣

∣

t=0

=
d

dt
f(nn−1 exp(tX)nb(t))

∣

∣

∣

t=0

=
d

dt
f(n1n1/2n0n

X
1 (t)nX

1/2(t)n
X
0 (t))

∣

∣

∣

t=0
.

Consider the left-invariant vector fields corresponding to the basis of n chosen

in (5) and write τ(X) accordingly. Then the image of X via the isomorphism I

defined in (2) is p, the coefficient along Z of τ(X). We observed that nX
r (0) = e,

for every r = 0, 1/2, 1. Therefore,

p =
d

dt
(nX

1 (t))
∣

∣

∣

t=0
, (12)

and so p = A. �

We showed above that p(n) is obtained in two steps: first we compute the con-

jugation n−1
1/2n

−1
1 exp(tX)n1n1/2 and then write it in the form exp(tA) exp(tB +

o(t)), where A ∈ n1 and B has no components along n1, according to the decom-

position (3).

We shall obtain explicit formulas for the homogeneous polynomials corre-

sponding to g using (12). We consider separately the cases with α in Σ0, Σ1/2,

Σ1, {0}, −Σ1, −Σ1/2, −Σ0. The resulting polynomials are a basis of the space P

and we collect them in the next proposition. We define on Σ1/2 the equivalence

relation ∼ given by

α ∼ β ⇔ α + β = ω,

and we choose one representative for each element of the quotient (Σ1/2/ ∼).

Denote the set of such representatives by Σ̃1/2.

Proposition 3. Denote pα = I(Xα) for every Xα ∈ gα and every non zero

root α and pH = I(H) for every H ∈ a. We write cα,β for the structure constants

of [Xα, Xβ ] and Hγ for the unique element in a for which γ(Hγ) = 1. Then the

following formulas hold.

(i) If γ ∈ Σ1/2, then pγ(n) = cγ,ω−γyω−γ .

(ii) If H ∈ a, then

pH(n) = ω(H)z −
1

2

∑

α∈Σ̃1/2

yαyω−α ((ω − α)(H) − α(H)) cα,ω−α.
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(iii) pω(n) = 1.

(iv) If ν ∈ Σ0 ∪ −Σ0, then

pν(n) =
1

2

∑

ν+α1+α2=ω

cα1,νcα2,ν+α1
yα1

yα2
,

where α1 and α2 vary in Σ1/2.

(v) If γ ∈ Σ1/2, then

p−γ(n) = −ω(Hγ)yγz
1

6

∑

α∈Σ1/2

α(Hγ)cω−α,αyγyαyω−α

−
1

6

∑

−γ+α1+α2+α3=ω

cα1,−γcα2,−γ+α1
cα3,−γ+α1+α2

yα1
yα2

yα3
,

with α1,α2,α3 ∈ Σ1/2.

(vi) Finally,

p−ω(n) = −
1

2
z2ω(Hω) +

1

2
z
∑

α∈Σ1/2

cω−α,αα(Hω)yαyω−α

+
t

24

∑

α1,α2,α3,α4∈Σ1/2

cα1,−ωcα2,−ω+α1
cα3,−ω+α1+α2

cα4,−ω+α1+α2+α3
yα1

yα2
yα3

yα4
.

Proof. (i) We will repeatedly use the following simple observation: if α, γ ∈

Σ1/2 and α+ γ ∈ Σ, then γ = ω−α. Indeed (α+ γ, ω) = (α, ω)+ (γ, ω) = (ω, ω).

This implies that α = ω − γ. Since [Z, n] = 0,

n−1
1/2n

−1
1 exp (tYγ)n1n1/2 = n−1

1/2 exp

(

+∞
∑

n=0

(−1)n (ad zZ)n

n!
tYγ

)

n1/2

= n−1
1/2 exp(tYγ)n1/2

= exp

(

+∞
∑

n=0

(−1)n
(ad(

∑

α∈Σ1/2
yαYα))n

n!
tYγ

)

= exp(tYγ − tyω−γ [Yω−γ , Yγ ])

= exp(tcγ,ω−γyω−γZ) exp
(

tYγ

)

.

By (12) and the remark thereafter, we have pγ(n) = cγ,ω−γyω−γ .
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(ii) Since [n1/2, n1/2] ⊆ n1, every bracket involving three or more vectors in

n1/2 is zero. If H ∈ a, then

n−1
1/2n

−1
1 exp (tH)n1n1/2 = n−1

1/2 exp (tH − tz[Z, H ])n1/2

= exp(tω(H)zZ) exp

(

tH − t
∑

α∈Σ1/2

yα[Yα, H ] + t/2
∑

α+β=ω

yαyβ

[

Yβ , [Yα, H ]
]

)

= exp

(

ω(H)z +
1

2

∑

α+β=ω

α(H)cα,βyαyβ

)

tZ . . .

where the only relevant component is the linear term in t along Z. Therefore

pH(n) = ω(H)z −
1

2

∑

α∈Σ̃1/2

yαyω−α ((ω − α)(H) − α(H)) cα,ω−α,

as required.

(iii) Since [Z, n] = 0, the conclusion is obvious.

(iv) If α ∈ Σ1/2, then (ν + α, ω) = (ν, ω) + (α, ω) = 1
2 (ω, ω), whence ν + α ∈

Σ1/2, provided it is a root. Moreover by definition ω + ν is not a root. Therefore

n−1
1/2n

−1
1 exp (tXν)n1n1/2 = n−1

1/2 exp (tXν)n1/2

= exp

(

tXν − t
∑

α∈Σ1/2

yα[Yα, Xν ] +
t

2

∑

α1,α2∈Σ1/2

yα1
yα2

[

Yα2
, [Yα1

, Xν ]
]

)

= exp

(

t

2

∑

ν+α1+α2=ω

cα1,νcα2,ν+α1
yα1

yα2
Z
)

exp
(

tXν − t
∑

α∈A

cα,νyαYα+ν

)

So (12) gives pν(n) = 1
2

∑

ν+α1+α2=ω cα1,νcα2,ν+α1
yα1

yα2
, where α1 and α2 are

in Σ1/2.

(v) Take γ ∈ Σ1/2. Then

n−1
1/2n

−1
1 exp (tY−γ)n1n1/2 = n−1

1/2 exp (tY−γ − tcω,−γzYω−γ)n1/2

= exp

(

tY−γ − tcω,−γzYω−γ − t
∑

α∈Σ1/2

yα[Yα, Y−γ ]

+ tz
∑

α∈Σ1/2

cω,−γyα[Yα, Yω−γ ] +
t

2

∑

α1,α2∈Σ1/2

yα1
yα2

[Yα2
, [Yα1

, Y−γ ]

−
t

6

∑

α1,α2,α3∈Σ1/2

yα1
yα2

yα3

[

Yα3
, [Yα2

, [Yα1
, Y−γ ]]

]

)

.
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Since (−γ + α, ω) = −(γ, ω) + (α, ω) = − 1
2 (ω, ω) + 1

2 (ω, ω) = 0 for every α ∈

Σ1/2, it follows that −γ + α is either in ±Σ0 or 0, or not a root. This implies

that the bracket [Yα1
, Y−γ ] is respectively in n0, a or zero. Then (12) yields the

desired expression for p−γ(n), since the Jacobi identity implies that cω,−γcγ,ω−γ =

−ω(Hγ).

(vi) Notice that in order to obtain ω we must add to −ω exactly four roots

in Σ1/2. We have

n−1
1/2n

−1
1 exp tX−ωn1n1/2 = n−1

1/2 exp

(

tX−ω − tzHω −
t

2
z2ω(Hω)Z

)

n1/2

= exp

(

−
t

2
z2ω(Hω)Z

)

exp

(

tX−ω − tzHω − t
∑

α∈Σ1/2

cα,−ωyαY−ω+α

− tz
∑

α∈Σ1/2

α(Hω)yαYα +
t

2

∑

α1,α2∈Σ1/2

yα1
yα2

[

Yα2
, [Yα1

, X−ω]
]

+
t

2
z
∑

α∈Σ1/2

cω−α,αα(Hω)yαyω−αZ −
t

6

∑

α1,α2,α3∈Σ1/2

yα1
yα2

yα3

[

Yα3
,[Yα2

, [Yα1
, X−ω]]

]

+
t

24

∑

α1,α2,α3,α4∈Σ1/2

yα1
yα2

yα3
yα4

[

Yα4
, [Yα3

, [Yα2
, [Yα1

, X−ω] ] ]
]

)

= exp

((

−
t

2
z2ω(Hω) +

t

2
z
∑

α∈Σ1/2

cω−α,αα(Hω)yαyω−α

+
t

24

∑

α1,α2,α3,α4∈Σ1/2

cα1,−ωcα2,−ω+α1

× cα3,−ω+α1+α2
cα4,−ω+α1+α2+α3

yα1
yα2

yα3
yα4

)

Z

)

. . . .

Therefore (vi) follows. �

5. Example

We consider g = sl(3, R), the simple Lie algebra of real 3 × 3 matrices with

zero trace. Its Iwasawa nilpotent Lie algebra n is given by the matrices

ν(x, y, z) =







0 x z

0 0 y

0 0 0






,
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for x, y and z in R. Notice that this is the Lie algebra of the three dimensional

Heisenberg group. Take α and β to be the simple roots relative to the standard

Cartan subspace a of sl(3, R) of diagonal matrices: α(diag(a, b, c)) = (a − b) and

β((diag(a, b, c)) = (b − c). Then

gα = {ν(x, 0, 0) : x ∈ R},

gβ = {ν(0, y, 0) : y ∈ R},

gα+β = {ν(0, 0, z) : z ∈ R},

where α + β is the highest root also denoted ω. The Lie algebra g decomposes as

g = gα ⊕ gβ ⊕ gα+β ⊕ a ⊕ θ(gα) ⊕ θ(gβ) ⊕ θ(gα+β),

where θ is the Cartan involution. We choose the basis of n given by X = ν(1, 0, 0),

Y = ν(0, 1, 0) and Z = ν(0, 0, 1) and the basis of a

Hα = diag

(

1

2
,−

1

2
, 0

)

Hβ = diag

(

0,
1

2
,−

1

2

)

.

We can complete {X, Y, Z, Hα, Hβ} to a basis of sl(3, R) adding θ(X) = −Xtr,

θ(Y ) = −Y tr and θ(Z) = −Ztr, which are a basis of g−α, g−β and g−α−β

respectively. In order to apply the formulas of Proposition 3 to the chosen basis

of g we need the structure constants, that can be easily computed, and the vector

Hω = Hα + Hβ = diag(1/2, 0,−1/2). The indeterminates of the polynomials

are the canonical coordinates n = (x, y, z) = exp(zZ) exp(xX + yY ). Hence, a

straightforward calculation yields the following polynomials.

pα(n) = y, pHα(n) =
1

2
z +

3

4
xy, p−α(n) = −

1

2
xz +

1

12
x2y,

pβ(n) = −x, pHβ (n) =
1

2
z −

1

4
xy, p−β(n) = −

1

2
yz +

5

4
xy2,

pα+β(n) = 1, p−α−β(n) = −
1

2
z2 −

1

6
x2y2.
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