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Uniqueness of meromorphic functions that share three sets II

By ABHIJIT BANERJEE (Kolkata)

Abstract. We employ the notion of weighted sharing of sets to prove three unique-

ness theorems which will improve and supplement two recent results of Lü and Xu [11]

related to a well known question of Gross.

1. Introduction, definitions and results

In this paper by meromorphic functions we will always mean meromorphic
functions in the complex plane. It will be convenient to let E denote any set of
positive real numbers of finite linear measure, not necessarily the same at each
occurrence. For any non-constant meromorphic function h(z) we denote by S(r, h)
any quantity satisfying

S(r, h) = o(T (r, h)) (r −→∞, r /∈ E).

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f − a and
g − a have the same zeros with the same multiplicities. Similarly, we say that f

and g share a IM, provided that f − a and g − a have the same zeros ignoring
multiplicities. In addition we say that f and g share∞ CM, if 1/f and 1/g share 0
CM and we say that f and g share∞ IM, if 1/f and 1/g share 0 IM. Let S be a set
of distinct elements of C∪{∞} and Ef (S) =

⋃
a∈S{z : f(z)−a = 0}, where each

zero is counted according to its multiplicity. If we do not count the multiplicity
the set

⋃
a∈S{z : f(z) − a = 0} is denoted by Ef (S). If Ef (S) = Eg(S) we say

that f and g share the set S CM. On the other hand if Ef (S) = Eg(S), we say
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that f and g share the set S IM. Evidently, if S contains only one element, then
it coincides with the usual definition of CM (respectively, IM) shared values.

Inspired by the Nevanlinna’s five and four value theorem, in 1970s F. Gross

and C. C. Yang started to study the similar but more general questions of two
functions that share sets of distinct elements instead of values. For instance, they
proved that if f and g are two non-constant entire functions and S1, S2 and S3

are three distinct finite sets such that f−1(Si) = g−1(Si) for i = 1, 2, 3, then
f ≡ g. In [6] Gross posed the following question:

Can one find two finite sets Sj (j = 1, 2) such that any two non-constant
entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be identical?

Fang and Xu [5] considered the case of meromorphic functions and proved
the following result.

Theorem A. Let S1 = {0}, S2 = {z : z3 − z2 − 1 = 0} and S3 = {∞}.
Suppose that f and g are two non-constant meromorphic functions satisfying

Θ(∞; f) > 1
2 and Θ(∞; g) > 1

2 . If Ef (Sj) = Eg(Sj) for j = 1, 2, 3 then f ≡ g.

Dealing with the question of Gross in 2002 Qui and Fang [12] and in 2004
Yi and Lin [15] also obtained some different types of results corresponding to
Theorem A. In [16] Zhang generalised Theorem A. In 2001 the idea of gradation
of sharing of values and sets known as weighted sharing has been introduced in
[9], [10] which measures how close a shared value is to being shared IM or to being
shared CM. We now give the definition.

Definition 1.1 ([9], [10]). Let k be a nonnegative integer or infinity. For
a ∈ C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a, 0)
or (a,∞) respectively.

Definition 1.2 ([9]). Let S be a set of distinct elements of C∪ {∞} and k be
a nonnegative integer or ∞. We denote by Ef (S, k) the set ∪a∈SEk(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

The notion of weighted sharing of set has rendered an useful tool in order to
deal with the problem of Gross. Recently in [1]–[3], Theorem A has been improved
resorting to the above notion.
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It is to be noted that to prove the uniqueness of meromorphic functions
in Theorem A and all its subsequent improvements some additional suppositions
have been taken under consideration. Also in all the stated results no investigation
has been carried out on further relaxation of the nature of sharing the set {∞}.

In 1999 Fang considered the uniqueness problem of admissible meromorphic
function sharing three sets on unit disc without the aid of any extra condition at
the expense of allowing the range set S1 to be slightly modified. Fang [4] proved
the following result.

Theorem B. Let S1 = {0, 2
3}, S2 = {z : z3 − z2 − 1 = 0} and S3 = {∞}. If

Ef (Sj ,∞) = Eg(Sj ,∞) for j = 1, 2, 3 then f ≡ g.

Lü and Xu [11] improved Theorem B for non-constant meromorphic func-
tions in the complex plane by relaxing the nature of sharing of the range sets.
They [11] proved the following two theorems.

Theorem C. Let Si be given as in Theorem B. If Ef (S1, 0) = Eg(S1, 0),
Ef (S2, 3) = Eg(S2, 3), Ef (S3, 1) = Eg(S3, 1), then f ≡ g.

Theorem D. Let Si be given as in Theorem B. If Ef (S1,∞) = Eg(S1,∞),
Ef (S2, 2) = Eg(S2, 2), Ef (S3, 1) = Eg(S3, 1), then f ≡ g.

The purpose of the paper is to investigate the possibility of further relaxing
the sharing nature of the range sets. The following three theorems are the main
results of the paper.

Theorem 1.1. Let Si be given as in Theorem B. If Ef (S1, 0) = Eg(S1, 0),
Ef (S2, 3) = Eg(S2, 3), Ef (S3, 0) = Eg(S3, 0), then f ≡ g.

Theorem 1.2. Let Si be given as in Theorem B. If Ef (S1, 1) = Eg(S1, 1),
Ef (S2, 2) = Eg(S2, 2), Ef (S3, 1) = Eg(S3, 1), then f ≡ g.

Theorem 1.3. Let Si be given as in Theorem B. If Ef (S1, 0) = Eg(S1, 0),
Ef (S2, 2) = Eg(S2, 2), Ef (S3, 2) = Eg(S3, 2), then f ≡ g.

Remark 1.1. Theorem 1.1 and Theorem 1.2 improves Theorem C and The-
orem D respectively. Also Theorem 1.3 improves Theorem B.

Though for the standard definitions and notations of the value distribution
theory we refer to [7], we now explain some notations which are used in the paper.

Definition 1.3 ([8]). For a ∈ C∪{∞}we denote by N(r, a; f |= 1) the count-
ing function of simple a points of f . For a positive integer m we denote by
N(r, a; f | ≤ m)(N(r, a; f | ≥ m)) the counting function of those a points of f
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whose multiplicities are not greater(less) than m where each a point is counted
according to its multiplicity.

N(r, a; f | ≤ m) (N(r, a; f | ≥ m)) are defined similarly, where in counting
the a-points of f we ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m)
are defined analogously.

Definition 1.4 ([10]). We denote by N2(r, a; f) = N(r, a; f)+N(r, a; f | ≥ 2).

Definition 1.5 ([9], [10]). Let f , g share a value a IM. We denote by
N∗(r, a; f, g) the reduced counting function of those a-points of f whose multi-
plicities differ from the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and in particular if f and g share (a, p)
then N∗(r, a; f, g) ≤ N(r, a; f | ≥ p + 1) = N(r, a; g | ≥ p + 1).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let F and G be two non-constant meromorphic functions defined in C as follows

F = f3 − f2, G = g3 − g2. (2.1)

Henceforth we shall denote by H and Φ the following two functions

H =
(

F ′′

F ′
− 2F ′

F − 1

)
−

(
G′′

G′
− 2G′

G− 1

)
(2.2)

and

Φ =
F ′

F − 1
− G′

G− 1
. (2.3)

Lemma 2.1 ([10], Lemma 1). Let F , G be two non-constant meromorphic

functions sharing (1, 1) and H 6≡ 0. Then

N(r, 1; F |= 1) = N(r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2. Let S1, S2 and S3 be defined as in Theorem B and F , G be

given by (2.1). If for two non-constant meromorphic functions f and g Ef (S1, p) =
Eg(S1, p), Ef (S2, 0) = Eg(S2, 0), Ef (S3, 0) = Eg(S3, 0), where 0 ≤ p < ∞ and

H 6≡ 0 then

N(r,H) ≤ N(r, 0; f | ≥ p + 1) + N

(
r, f ;

2
3
| ≥ p + 1

)
+ N∗(r, 1; F, G)

+N∗(r,∞; f, g) + N0(r, 0; f ′) + N0(r, 0; g′),
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where N0(r, 0; f ′) is the reduced counting function of those zeros of f ′ which are

not the zeros of f
(
f − 2

3

)
(F − 1) and N0(r, 0; g′) is similarly defined.

Proof. First we note that

H =
f ′

f − 2
3

− g′

g − 2
3

+
f ′

f
− g′

g
+

f ′′

f ′
− g′′

g′
−

(
2F ′

F − 1
− 2G′

G− 1

)
.

Since Ef (S1, 0) = Eg(S1, 0) it follows that if z0 be 0-point of f (g) then either
g(z0) = 0 (f(z0) = 0) or g(z0) = 2

3

(
f(z0) = 2

3

)
. Clearly F and G share (1, 0).

Since H has only simple poles, the lemma can easily be proved by simple calcu-
lation. ¤

Lemma 2.3. Let f and g be two meromorphic meromorphic functions shar-

ing (1, m), where 1 ≤ m < ∞. Then

N(r, 1; f) + N(r, 1; g)−N(r, 1; f | =1) +
(

m− 1
2

)
N∗(r, 1; f, g)

≤ 1
2

[N(r, 1; f) + N(r, 1; g)]

Proof. Let z0 be a 1- point of f of multiplicity p and a 1-point of g of
multiplicity q.

Since f , g share (1,m), we note that the 1-points of f and g upto multiplicity
m are same and as a result when p = q ≤ m, z0 is counted min(2, p) times in the
left hand side of the above inequality whereas it is counted p times in the right
hand side of the same. If p = m + 1 then the possible values of q are as follows.
(i) q = m + 1, (ii) q ≥ m + 2. When p = m + 2 then q can take the following
possible values (i) q = m+1, (ii) q = m+2, (iii) q ≥ m+3. Similar explanations
hold if we interchange p and q. Clearly when p = q ≥ m+1, z0 is counted 2 times
in the left hand side and p ≥ m + 1 times in the right hand side of the above
inequality. When p > q ≥ m + 1, in view of Definition 1.5 we know z0 is counted
m + 3

2 times in the left hand side and p+q
2 ≥ m + 3

2 times in the right hand side
of the above inequality. When q > p we can explain similarly. Hence the lemma
follows. ¤

Lemma 2.4 ([13]). Let f be a nonconstant meromorphic function and

P (f) = a0 + a1f + a2f
2 + . . . + anfn, where a0, a1, a2 . . . , an are constants and

an 6= 0. Then T (r, P (f)) = nT (r, f) + O(1).

Lemma 2.5. Let S1, S2 and S3 be defined as in Theorem B and F , G be

given by (2.1). If for two nonconstant meromorphic functions f and g Ef (S1, p) =
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Eg(S1, p), Ef (S2,m) = Eg(S2,m), Ef (S3, k) = Eg(S3, k) and Φ 6≡ 0 then

(2p + 1)
{

N (r, 0; f | ≥ p + 1) + N

(
r,

2
3
; f | ≥ p + 1

)}

≤ N∗(r, 1;F, G) + N∗(r,∞; f, g) + S(r, f) + S(r, g).

Proof. By the given condition clearly F and G share (1,m). Also we see
that

Φ =
3f

(
f − 2

3

)
f ′

F − 1
− 3g

(
g − 2

3

)
g′

G− 1
.

Let z0 be a zero or a 2
3 - point of f with multiplicity r. Since Ef (S1, p) = Eg(S1, p)

then that would be a zero of Φ of multiplicity 2r − 1 if r ≤ p and a zero of at
least 2(p + 1)− 1 = 2p + 1 if r > p. So using Lemma 2.4 by a simple calculation
we can write

(2p + 1)
{

N(r, 0; f | ≥ p + 1) + N

(
r,

2
3
; f | ≥ p + 1

)}

≤ N(r, 0; Φ) ≤ T (r,Φ) ≤ N(r,∞; Φ) + S(r, F ) + S(r,G)

≤ N∗(r, 1; F, G) + N∗(r,∞; f, g) + S(r, f) + S(r, g). ¤

Lemma 2.6 ([14], Lemma 6). If H ≡ 0, and F , G share (∞, 0) then F , G

share (1,∞) and (∞,∞).

Lemma 2.7. Let S1, S2 and S3 be defined as in Theorem B and F , G be

given by (2.1). If for two nonconstant meromorphic functions f and g Ef (S1, p) =
Eg(S1, p), Ef (S2,m) = Eg(S2,m), Ef (S3, k) = Eg(S3, k), where 0 ≤ p < ∞,

2 ≤ m < ∞ and H 6≡ 0. Then

4{T (r, f) + T (r, g)}

≤ 2
{

N(r, 0; f) + N

(
r,

2
3
; f

)}
+ N(r, 0; f | ≥ p + 1) + N

(
r,

2
3
; f | ≥ p + 1

)

+ 2N(r,∞; f) + N∗(r,∞; f, g) +
1
2

[N(r, 1; F ) + N(r, 1;G)]

−
(

m− 3
2

)
N∗(r, 1; F, G) + S(r, f) + S(r, g).

Proof. By the second fundamental theorem we get

4{T (r, f) + T (r, g)} ≤ N(r, 1; F ) + N(r, 0; f) + N

(
r,

2
3
; f

)
+ N(r,∞; f)
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+ N(r, 1; G) + N(r, 0; g) + N

(
r,

2
3
; g

)
+ N(r,∞; g)

−N0(r, 0; f ′)−N0(r, 0; g′) + S(r, f) + S(r, g). (2.4)

Using Lemmas 2.1, 2.2, 2.3 and 2.4 we see that

N(r, 1;F ) + N(r, 1; G) ≤ 1
2

[N(r, 1; F ) + N(r, 1; G)] + N(r, 1;F | =1)

−
(

m− 1
2

)
N∗(r, 1; F, G) ≤ 1

2
[N(r, 1; F ) + N(r, 1;G)] + N(r, 0; f | ≥ p + 1)

+ N

(
r,

2
3
; f | ≥ p + 1

)
+ N∗(r,∞; f, g)−

(
m− 3

2

)
N∗(r, 1; F,G)

+ N0(r, 0; f ′) + N0(r, 0; g′) + S(r, f) + S(r, g). (2.5)

Using (2.5) in (2.4) and noting that N(r, 0; f)+N
(
r, 2

3 ; f
)

= N(r, 0; g)+N
(
r, 2

3 ; g
)

and N(r,∞; f) = N(r,∞; g) the lemma follows. ¤

Lemma 2.8 ([11]). Let S1, S2 and S3 be defined as in Theorem B. If for two

nonconstant meromorphic functions f and g Ef (S1, 0) = Eg(S1, 0), Ef (S3, 0) =
Eg(S3, 0), then S(r, f) = S(r, g).

3. Proofs of the theorems

Proof of Theorem 1.1. Let F , G be given by (2.1). Then F and G share
(1, 3) and f , g share (∞, 1). We consider the following cases.

Case 1. Suppose that Φ 6≡ 0.
Subcase 1.1. Let H 6≡ 0. Then using Lemma 2.4 and Lemma 2.7 with m = 3,
p = 0 and k = 1 and Lemma 2.5 with p = 0 in view of Definition 1.5 we obtain

4{T (r, f) + T (r, g)} ≤ 3
{

N(r, 0; f) + N

(
r,

2
3
; f

)}
+ N(r,∞; f) + N(r,∞; g)

+ N(r,∞; f | ≥ 2) +
1
2

[N(r, 1;F ) + N(r, 1; G)]− 3
2
N∗(r, 1; F,G) + S(r, f)

+ S(r, g) ≤ 3
2
N(r, 1;F | ≥ 4) + N2(r,∞; f) + N2(r,∞; g)

+ 2N(r,∞; f | ≥ 2) +
1
2

[N(r, 1;F ) + N(r, 1; G)] + S(r, f) + S(r, g)

≤ 1
2

[N(r, 1; F ) + N(r, 1;G)] +
3
4
N(r, 1; F | ≥ 4) +

3
4
N(r, 1;G | ≥ 4)
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+ N2(r,∞; f) + N2(r,∞; g) + N(r,∞; f | ≥ 2) + N(r,∞; g | ≥ 2)

+ S(r, f) + S(r, g) ≤ 33
16
{N(r, 1; f) + N(r, 1; g)}

+
3
2
{N(r,∞; f) + N(r,∞; g)}+ S(r, f) + S(r, g)

≤ 57
16
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.1)

(3.1) gives a contradiction.
Subcase 1.2. Let H ≡ 0. From (2.2) we have

1
F − 1

=
A

G− 1
+ B, (3.2)

where (A 6= 0), B are constants. Then by Lemma 2.6 F , G share (1,∞) and f ,
g share (∞,∞). Hence by Lemma 2.5 we get N(r, 0; f) + N

(
r, 2

3 ; f
)

= S(r, f) +
S(r, g). So when ∞ is a Picard exceptional value, by the second fundamental
theorem and Lemma 2.8 we see that

T (r, f) ≤ N(r, 0; f) + N

(
r,

2
3
; f

)
+ N(r,∞; f) + S(r, f) ≤ S(r, f),

a contradiction. Now suppose ∞ is not a Picard exceptional value. We now follow
the same procedure as adopted in [11]. For the sake of convenience we are giving
the outline of the proof. To this end let us suppose there is a point z0 ∈ C such
that

f(z0) = ∞.

Substituting z0 in (3.2) we get B = 0 and so

A(f3 − f2 − 1) = (g3 − g2 − 1). (3.3)

Clearly from above and the fact F and G share (1,∞) we get Ef (Sj ,∞) =
Eg(Sj ,∞) for j = 1, 2, 3 and so from Theorem A we have f ≡ g.

Case 2. Suppose that Φ ≡ 0. Now from (2.3) we get (3.3). Now proceeding the
same way as done in Subcase 1.2 we can prove f ≡ g. ¤

Proof of Theorem 1.2. Let F , G be given by (2.1). Then F and G share
(1, 2), and f , g share (∞, 1). We consider the following cases.

Case 1. Suppose that Φ 6≡ 0.
Subcase 1.1. Let H 6≡ 0. Then using Lemma 2.4 and Lemma 2.7 with m = 2,
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p = 1 and k = 1 and Lemma 2.5 with p = 0, p = 1 and in view of Definition 1.5
we obtain

4{T (r, f) + T (r, g)} ≤ 2
{

N(r, 0; f) + N

(
r,

2
3
; f

)}
+ N(r,∞; f) + N(r,∞; g)

+ N(r,∞; f | ≥ 2) + N(r, 0; f | ≥ 2) + N

(
r,

2
3
; f | ≥ 2

)

+
1
2

[N(r, 1;F ) + N(r, 1; G)]− 1
2
N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ N2(r,∞; f) + N2(r,∞; g) +
4
3
N(r,∞; f | ≥ 2) +

11
6

N(r, 1; F | ≥ 3)

+
1
2

[N(r, 1;F ) + N(r, 1; G)] + S(r, f) + S(r, g)

≤ 29
12
{N(r, 1; f)+ N(r, 1; g)}+

4
3
{N(r,∞; f)+ N(r,∞; g)}+ S(r, f) + S(r, g)

≤ 45
12
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.4)

(3.4) gives a contradiction.
Subcase 1.2. Let H ≡ 0. We now omit the proof since the rest of the proof is
similar to that of Theorem 1.1. ¤

Proof of Theorem 1.3. Let F , G be given by (2.1). Then F and G share
(1, 2), and f , g share (∞, 4). We consider the following cases.

Case 1. Suppose that Φ 6≡ 0.
Subcase 1.1. Let H 6≡ 0. Then using Lemma 2.4 and Lemma 2.7 with m = 2,
p = 0 and k = 2 and Lemma 2.5 with p = 0, in view of Definition 1.5 we obtain

4{T (r, f) + T (r, g)} ≤ 3
{

N(r, 0; f) + N

(
r,

2
3
; f

)}
+ N(r,∞; f) + N(r,∞; g)

+ N(r,∞; f | ≥ 3) +
1
2

[N(r, 1;F ) + N(r, 1; G)]− 1
2
N∗(r, 1; F, G)

+ S(r, f) + S(r, g) ≤ N(r,∞; f) + N(r,∞; g) + 2N(r,∞; f | ≥ 3)

+ 2N(r,∞; g | ≥ 3) +
5
2
N(r, 1; F | ≥ 3) +

1
2

[N(r, 1; F ) + N(r, 1; G)]

+ S(r, f) + S(r, g)≤ 33
12
{N(r, 1; f)+ N(r, 1; g)}+ {N(r,∞; f)+ N(r,∞; g)}

+ S(r, f) + S(r, g) ≤ 45
12
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.5)

(3.5) gives a contradiction.
Subcase 1.2. Let H ≡ 0. We now omit the proof since the rest of the proof is
similar to that of Theorem 1.1. ¤
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