Title: On the Diophantine equation $z^{2}=f(x)^{2} \pm f(y)^{2}$
Author(s): Maciej Ulas and Alain Togbé
Let $f \in \mathbb{Q}[X]$ and let us consider a Diophantine equation $z^{2}=f(x)^{2} \pm f(y)^{2}$. In this paper, we show that if $\operatorname{deg} f=2$ and there exists a rational number t such that on the quartic curve $V^{2}=f(U)^{2}+f(t)^{2}$ there are infinitely many rational points, then the set of rational parametric solutions of the equation $z^{2}=f(x)^{2}+f(y)^{2}$ is nonempty. Without any assumptions we show that the surface related to the Diophantine equation $z^{2}=f(x)^{2}-f(y)^{2}$ is unirational over the field \mathbb{Q} in this case. If $\operatorname{deg} f=3$ and f has the form $f(x)=x\left(x^{2}+a x+b\right)$ with $a \neq 0$ then both of the equations $z^{2}=f(x)^{2} \pm f(y)^{2}$ have infinitely many rational parametric solutions. A similarly result is proved for the equation $z^{2}=f(x)^{2}-f(y)^{2}$ with $f(X)=X^{3}+a X^{2}+b$ and $a \neq 0$.

Address:

Maciej Ulas
Institute of Mathematics
Jagiellonian University
Łojasiewicza 6
30-348 Kraków
Poland
and

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-950 Warszawa
Poland

Address:

Alain Togbé
Mathematics Department
Purdue University North Central
1401 S, U.S. 421
Westville IN 46391
USA

