Publ. Math. Debrecen **76/1-2** (2010), 183–201

On the Diophantine equation $z^2 = f(x)^2 \pm f(y)^2$

By MACIEJ ULAS (Kraków and Warszawa) and ALAIN TOGBÉ (Westville)

Abstract. Let $f \in \mathbb{Q}[X]$ and let us consider a Diophantine equation $z^2 = f(x)^2 \pm f(y)^2$. In this paper, we show that if deg f = 2 and there exists a rational number t such that on the quartic curve $V^2 = f(U)^2 + f(t)^2$ there are infinitely many rational points, then the set of rational parametric solutions of the equation $z^2 = f(x)^2 + f(y)^2$ is non-empty. Without any assumptions we show that the surface related to the Diophantine equation $z^2 = f(x)^2 - f(y)^2$ is unirational over the field \mathbb{Q} in this case. If deg f = 3 and f has the form $f(x) = x(x^2 + ax + b)$ with $a \neq 0$ then both of the equations $z^2 = f(x)^2 \pm f(y)^2$ have infinitely many rational parametric solutions. A similarly result is proved for the equation $z^2 = f(x)^2 - f(y)^2$ with $f(X) = X^3 + aX^2 + b$ and $a \neq 0$.

1. Introduction

Let $f \in \mathbb{Q}[X]$ and let us consider the Diophantine equation

$$z^{2} = f(x)^{2} \pm f(y)^{2}.$$
 (1)

We are interested in the existence of infinitely many rational solutions (x, y, z) of equation (1). A similar problem was studied by the first author in [3]. In fact, he considered the Diophantine equation

$$f(x)f(y) = f(z)^2,$$
(2)

where $f \in \mathbb{Q}[X]$ is a polynomial function of deg $f \leq 3$. In [3], he proved that if f is a quadratic function, then the Diophantine equation $f(x)f(y) = f(z)^2$ has

Mathematics Subject Classification: Primary: 11D25, 11D41; Secondary: 11G052.

Key words and phrases: pythagorean triples, Diophantine equations, elliptic curves.

The second author is partially supported by Purdue University North Central.

infinitely many nontrivial solutions in $\mathbb{Q}(t)$. Let us recall that a triple (x, y, z) of rational numbers is a nontrivial solution of equation (2) if $f(x) \neq f(y)$ and $f(z) \neq 0$. In the case where f is a cubic polynomial function of the form $f(X) = X(X^2 + aX + b)$, a, b being nonzero integers such that if p|a, then $p^2 \nmid b$, he showed that for all but finitely many integers a, b satisfying these conditions, equation (2) has infinitely many nontrivial solutions in rational numbers.

In this paper, we study equation (1). This type of equations has a strong geometric flavor. Indeed, each non-trivial solution (i.e. with $f(x)f(y) \neq 0$) of the equation $z^2 = f(x)^2 + f(y)^2$ gives a right triangle with legs of the length f(x), f(y) and hypotenuse z. Similarly, each non-trivial solution (i.e. $f(x)^2 \neq f(y)^2$) of the equation $z^2 = f(x)^2 - f(y)^2$ gives a right triangle with legs z, f(y) and hypotenuse f(x).

In Section 2, we consider equation (1) under the assumption that f is a polynomial of degree two with rational coefficients. It is obvious to observe that one can consider a polynomial of the form $f(X) = X^2 + a$, $a \neq 0$. We prove that if there exists a rational number t_0 such that the set of rational points on the quartic curve $V^2 = (U^2 + a)^2 + (t_0^2 + a)^2$ is infinite then the set of rational parametric solutions of the equation $z^2 = (x^2 + a)^2 + (y^2 + a)^2$ is non-empty (Theorem 2.3). Next, we prove that if f is of degree two and has two distinct roots over the field \mathbb{C} then the surface related to the Diophantine equation $z^2 = f(x)^2 - f(y)^2$ is unirational over the field \mathbb{Q} (Theorem 2.4). Finally in Section 2, we consider a quadratic polynomial of the form f(X) = (aX + b)(cX + d) where $a, b, c, d \in \mathbb{Z}$ and we prove that if $b/a \neq d/c$ then the quartic equation $f(z)^2 = f(x)^2 + f(y)^2$ has infinitely many rational parametric solutions. For the proof, we make a correspondence between solutions of this equation and rational points on an elliptic curve \mathcal{E}_f in Weierstrass form, defined over the field $\mathbb{Q}(t)$. We show that the rank of \mathcal{E}_f (as a curve defined over the field $\mathbb{Q}(t)$) is at least one (Theorem 2.5).

Section 3 is devoted to equation (1) when f is a cubic polynomial. We start with a cubic polynomial of the form $f(X) = X(X^2 + aX + b)$ with $a \in \mathbb{Z} \setminus \{0\}, b \in \mathbb{Z}$. The method used is similar to that of the quadratic polynomial. Using suitable (non-invertible) change of variables we reduce the study of our problem to the problem of existence of $\mathbb{Q}(t)$ -rational points on an elliptic curve \mathcal{E}_f . Again here, we show that the set of $\mathbb{Q}(t)$ -rational points on the appropriate chosen elliptic curve \mathcal{E}_f is not finite by showing the existence of $\mathbb{Q}(t)$ -rational points of infinite order. Therefore, by means of this reduction, we prove that equation (1) has infinitely many solutions in $\mathbb{Q}(t)$ (Theorem 3.1, Theorem 3.2). We finish the section by using the same method for polynomials of the form $f(x) = X^3 + aX^2 + b$, $(a \neq 0)$ and obtain a similar result for the equation $z^2 = f(x)^2 - f(y)^2$ (Theorem 3.3).

In the last section, we consider the equation $z^2 = f(x)^2 - f(y)^2$ with $f(x) = x^4 + a$, $(a \neq 0)$. Under some additional assumptions we proved that the set of rational solutions of this equation is infinite.

2. The equation $z^2 = f(x)^2 \pm f(y)^2$ for some quadratic functions

In this section, we are interested in the rational solutions of the Diophantine equation $z^2 = (x^2 + a)^2 \pm (y^2 + a)^2$. We start our study with the "+" equation. However, before we state and prove theorems concerning this equation we will prove a quite general result about rational points on certain geometrically rational elliptic surfaces (it means that such a surface is rational over the field of complex numbers \mathbb{C}). More precisely, we will prove the following result.

Theorem 2.1. Let $f_4, g_4 \in \mathbb{Q}[t]$ be two even functions of degree 4 and let us consider an elliptic surface given by the equation $\mathcal{E} : Y^2 = X^3 + f_4(t)X + g_4(t)$. Suppose that there exist a rational number $t = t_0$ such that the curve \mathcal{E}_{t_0} has infinitely many rational points. Then the set of rational curves on the surface \mathcal{E} is non-empty.

PROOF. Without loss of generality we can assume that $f_4(t) = at^4 + bt^2 + c$, $g_4(t) = dt^4 + et^2 + f$, where $a, b, c, d, e, f \in \mathbb{Z}$ and $ad \neq 0$. Let us define $F(X, Y, t) = Y^2 - (X^3 + f_4(t)X + g_4(t))$. From the assumption we know that there exists a rational number t_0 such that the curve $F(X, Y, t_0) = 0$ has infinitely many rational points. Let us take x_0, y_0 such that $F(x_0, y_0, t_0) = 0$. In order to prove our theorem we put $X = pT^2 + qT + x_0$, $Y = rT^3 + sT^2 + uT + y_0$, $t = T + t_0$. Then, for X, Y, t defined in this way we get $F(X, Y, t) = \sum_{i=1}^6 a_i T^i$, where

$$\begin{split} a_1 &= -aqt_0^4 - (4d + 4ax_0)t_0^3 - bqt_0^2 - (2e + 2bx_0)t_0 + 2uy_0 - 3qx_0^2 - cq, \\ a_2 &= -apt_0^4 - 4aqt_0^3 - (6d + bp + 6ax_0)t_0^2 - 2bqt_0 - bx_0 - 3q^2x_0 - 3px_0^2 \\ &+ 2sy_0 - e - cp + u^2, \\ a_3 &= -4apt_0^3 - 6aqt_0^2 - (4d + 2bp + 4ax_0)t_0 - 6pqx_0 + 2ry_0 - bq + q^3 + 2su, \\ a_4 &= -6apt_0^2 - 4aqt_0 - ax_0 - 3p^2x_0 - d - bp - 3pq^2 + s^2 + 2ru, \\ a_5 &= -4apt_0 - aq + 3p^2q + 2rs, \\ a_6 &= -ap + p^3 + r^2. \end{split}$$

The system of equations $a_1 = a_2 = a_3 = a_4 = 0$ in variables p, q, r, u has exactly

one solution defined over the field $\mathbb{Q}(s)$. This solution is given by

$$\begin{split} q &= -\frac{2(et_0 + 2dt_0^3 + bt_0x_0 + 2at_0^3x_0 - uy_0)}{c + bt_0^2 + at_0^4 + 3x_0^2},\\ p &= -\frac{e - u^2 + 2bqt_0 + 6dt_0^2 + 4aqt_0^3 + bx_0 + 3q^2x_0 + 6at_0^2x_0 - 2sy_0}{c + bt_0^2 + at_0^4 + 3x_0^2},\\ r &= \frac{bq + q^3 - 2su + 4dt_0 + 2bpt_0 + 6aqt_0^2 + 4apt_0^3 + 6pqx_0 + 4at_0x_0}{2y_0},\\ u &= \frac{d + bp + 3pq^2 - s^2 + 4aqt_0 + 6apt_0^2 + ax_0 + 3p^2x_0}{2r}. \end{split}$$

Due to the fact that the curve $\mathcal{E}_{t_0}: Y^2 = X^3 + f_4(t_0)X + g_4(t_0)$ has infinitely many rational points, we can choose x_0 , y_0 such that the quantities $p, q, r, u \in \mathbb{Q}(s)$ given above are well defined i.e. all denominators are non-zero. Moreover, we can assume that $p, q, r, u \in \mathbb{Q}(s) \setminus \{0\}$. Thus, if we take p, q, r, u defined above, then the equation F(x, y, t) = 0 treated as equation over the field $\mathbb{Q}(s)$ has two $\mathbb{Q}(s)$ -rational roots: T = 0 of multiplicity five and the root

$$T = \frac{-aq - 3p^2q + 2rs - 4apt_0}{ap + p^3 - r^2} =: \varphi(s).$$

Therefore, on the surface \mathcal{E} , we have a parametric rational curve given by the equations

$$X = p\varphi(s)^{2} + q\varphi(s) + x_{0}, \quad Y = r\varphi(s)^{3} + s\varphi(s)^{2} + u\varphi(s) + y_{0}, \quad t = \varphi(s) + t_{0},$$

where $p, q, r, u \in \mathbb{Q}(s) \setminus \{0\}$ are defined above. This observation finishes the proof of our theorem. \Box

Remark 2.2. The above result is a complementary result of Theorem 5.1 of [4].

Now, we are ready to prove the following result.

Theorem 2.3. Let $f \in \mathbb{Q}[X]$ and suppose that deg f = 2 and f has two distinct roots over \mathbb{C} . Let us suppose that there exists a rational number $y = t_0$ such that the set of rational solutions on the (quartic) curve $C_{t_0} : V^2 = f(U)^2 + f(t_0)^2$ is infinite. Then there exists a rational parametric solution of the Diophantine equation $z^2 = f(x)^2 + f(y)^2$.

PROOF. It is clear that without loss of generality we can assume that $f(X) = X^2 + a$ with $a \in \mathbb{Z} \setminus \{0\}$. Let us consider the curve $\mathcal{C} : v^2 = (u^2 + a)^2 + (t^2 + a)^2$ defined over the field $\mathbb{Q}(t)$. This curve is birationally equivalent with the elliptic curve \mathcal{E} given by the equation in Weierstrass form

$$\mathcal{E}: Y^2 = X^3 - 108(3t^4 + 6at^2 + 7a^2)X - 432a(9t^4 + 18at^2 + 17a^2).$$

The mapping $\varphi : \mathcal{E} \ni (X, Y) \mapsto (u, v) \in \mathcal{C}$ is given by

$$u = \frac{Y}{6(X+12a)}, \quad v = -\left(\frac{Y}{6(X+12a)}\right)^2 + \frac{X-6a}{18}.$$

The discriminant of \mathcal{E} is given by $\Delta(\mathcal{E}) = 2^8 3^{12} (t^2 + a)^4 (t^4 + 2at^2 + 2a^2)$, and thus \mathcal{E} is non-singular over $\mathbb{Q}(t)$ for any choice of $t \in \mathbb{Q}$.

From the assumption we know that there exists a rational number t_0 such that the elliptic curve \mathcal{E}_{t_0} is of positive rank. From this observation and Theorem 2.1, we get the desired result.

Next, we prove a similar result when we take equation (1) for the sign "-".

Theorem 2.4. Suppose $f \in \mathbb{Q}[X]$ where deg f = 2 and f has two distinct roots over \mathbb{C} . Let us consider the surface $S_f^2 : z^2 = f(x)^2 - f(y)^2$. Then S_f^2 is unirational over the field \mathbb{Q} . In other words, the Diophantine equation $z^2 = f(x)^2 - f(y)^2$ has rational parametric solutions in two parameters.

PROOF. Without loss of generality we can assume that $f(X) = X^2 + a$ for some $a \in \mathbb{Z} \setminus \{0\}$. In order to prove Theorem 2.4, let us put $z = xz_1$, y = txwhere t is an indeterminate. Then we have the equality

$$z^{2} - (f(x)^{2} - f(y)^{2}) = x^{2}(z_{1}^{2} - (1 - t^{2})(2a + (t^{2} + 1)x^{2})).$$

Let us note that the curve $z_1^2 = (1 - t^2)(2a + (t^2 + 1)x^2) =: h(x,t)$ is a quadric curve defined over the field of rational functions $\mathbb{Q}(t)$. Now, we want to find a substitution t = g(u) such that the function h(0, g(u)) is a square of a rational function. If x = 0, then $h(0,t) = 2a(1-t^2)$. The equation $z_1^2 = 2a(1-t^2)$ defines a quadric curve, say \mathcal{Q}_1 , with a rational point $(t, z_1) = (1, 0)$. Using the standard method of the projection from the point (1, 0), we can parameterize all rational points on \mathcal{Q}_1 . In order to use this method, we put $t = uz_1 + 1$. We find the parametrization in the form

$$t = \frac{1 - 2au^2}{1 + 2au^2} =: g(u), \quad z_1 = -\frac{4au}{1 + 2au^2}.$$

Now, let us note that the curve $Q_2 : z_1^2 = h(x, g(u))$ is a quadric curve defined over the field of rational functions $\mathbb{Q}(u)$. On the curve Q_2 , we have a $\mathbb{Q}(u)$ -rational point $P = (0, \frac{g(u)-1}{u})$. Similarly as in the case of the curve Q_1 , we can parameterize all $\mathbb{Q}(u)$ -rational points on Q_2 . In order to do this, we put $x = v(z_1 + \frac{g(u)-1}{u})$ and we find that

$$x = v\left(z_1 + \frac{g(u) - 1}{u}\right), \quad z_1 = -\frac{4au((1 + 2au^2)^4 + 16au^2(1 + 4a^2u^4)v^2)}{(1 + 2au^2)((1 + 2au^2)^4 - 16au^2(1 + 4a^2u^4)v^2)}$$

Finally, we find a two-parametric solution of the equation defining the surface \mathcal{S}_f^2 in the form

$$\begin{aligned} x(u,v) &= -\frac{8au(1+2au^2)^3v}{(1+2au^2)^4 - 16au^2(1+4a^2u^4)v^2},\\ y(u,v) &= \frac{1-2au^2}{1+2au^2} \; x(u,v),\\ z(u,v) &= -\frac{4au((1+2au^2)^4 + 16au^2(1+4a^2u^4)v^2)}{(1+2au^2)((1+2au^2)^4 - 16au^2(1+4a^2u^4)v^2)} \; x(u,v). \end{aligned}$$

Let us define the set

$$B_a = \{(u,v) \in \mathbb{Q}^2 : (1+2au^2)((1+2au^2)^4 - 16au^2(1+4a^2u^4)v^2) = 0\},\$$

which is the set where the functions x, y, z are not defined. Using the above definition of x(u, v), y(u, v), z(u, v) and of the set B_a , then we get a rational function

$$\Phi: \mathbb{Q}^2 \setminus B_a \ni (u, v) \mapsto (x(u, v), y(u, v), z(u, v)) \in \mathbb{Q}^3.$$

Because

$$\det \begin{pmatrix} x(u,v) & y(u,v) & z(u,v) \\ \partial_u x(u,v) & \partial_u y(u,v) & \partial_u z(u,v) \\ \partial_v x(u,v) & \partial_v y(u,v) & \partial_v z(u,v) \end{pmatrix} = \frac{2^{20} a^6 u^7 (1+2au^2)^{10} (1+4a^2u^4)v^4}{(16au^2(1+4a^2u^4)v^2 - (1+2au^2)^4)^5}$$

is a non-zero element of the field $\mathbb{Q}(u, v)$, we see that the closure (in the Zariski topology) of the image Im Φ is of dimension two in \mathbb{C}^3 . This means that the surface S_f^2 is unirational.

Although our main object of study is the Diophantine equation of the form $z^2 = f(x)^2 + f(y)^2$, we couldn't resist to prove the following result.

Theorem 2.5. Let us consider the polynomial $f(X) = (aX + b)(cX + d) \in \mathbb{Z}[X]$ and suppose that the equation f(X) = 0 has two distinct roots. Then the set of rational parametric solutions of the Diophantine equation $f(x)^2 + f(y)^2 = f(z)^2$ is infinite.

PROOF. Without loss of generality, we can assume that f(X) = X(X + 1). Indeed, using the substitution $(x, y, z) \mapsto (Ax + B, Ay + B, Az + B)$, where A = (ad - bc)/ac and B = -b/a, we can transform the equation $f(x)^2 + f(y)^2 = f(z)^2$ into the form $x^2(x+1)^2 + y^2(y+1)^2 = z^2(z+1)^2$. So we consider the surface S_f given by the equation

$$S_f : x^2(x+1)^2 + y^2(y+1)^2 = z^2(z+1)^2.$$
(3)

Let us define $f(x, y, z) = x^2(x+1)^2 + y^2(y+1)^2 - z^2(z+1)^2$. In order to prove our theorem, let us put

$$x = T, \quad y = \frac{2t}{t^2 - 1}T, \quad z = UT,$$
 (4)

where t, T, U are indeterminate variables. For x, y, z defined in this way we have the equality

$$f(x, y, z) = -\frac{T^2}{(t^2 - 1)^4} F_U(T),$$

where $F_U(T) = a_0 T^2 + a_1 T + a_2$ and

$$a_0 = -1 + 4t^2 - 22t^4 + 4t^6 - t^8 + (t^2 - 1)^4 U^4,$$

$$a_1 = 2(t^2 - 1)(1 - 3t^2 - 8t^3 + 3t^4 - t^6 + (t^2 - 1)^3 U^3),$$

$$a_2 = (t^2 - 1)^2 (-(t^2 + 1)^2 + (t^2 - 1)^2 U^2).$$

To prove Theorem 2.5, it is enough to show that the set of such $U \in \mathbb{Q}(t)$ for which the equation $F_U(T) = 0$ (treated as equation in the variable T) has roots in the field $\mathbb{Q}(t)$, is infinite. It is equivalent that the discriminant $\Delta(U) = 4\Delta'(U)$, where

$$\Delta'(U) = (U-1)((t^2-1)U-2t) \times ((t^2-1)(t^2+1)^2U^2 - (t^2-2t-1)^2(t^2+2t-1)U - 2t(t^2-2t-1)^2),$$

of the polynomial F_U should be a square in the field $\mathbb{Q}(t)$. In other words, we must consider the curve \mathcal{C}_f defined over the field $\mathbb{Q}(t)$ by the equation

$$\mathcal{C}_f: V^2 = \Delta'(U).$$

The discriminant of the polynomial $\Delta'(U)$ is equal to

$$D = 2^{12}t^6(t^2 - 1)^8(1 + t^2)^2(t^2 - 4t - 1)^2(t^2 - 2t - 1)^4(t^2 - t - 1)^2$$
$$\times (1 - 8t - 12t^2 - 8t^3 + 38t^4 + 8t^5 - 12t^6 + 8t^7 + t^8),$$

and due to the fact that $D \neq 0$ as an element of the field $\mathbb{Q}(t)$, we see that the curve \mathcal{C}_f is smooth over $\mathbb{Q}(t)$. Let us also note that the $\mathbb{Q}(t)$ -rational point P = (U, V) = (1, 0) lies on \mathcal{C}_f . If we treat Q as a point at infinity on the curve \mathcal{C}_f , we conclude that \mathcal{C}_f is birationally equivalent over $\mathbb{Q}(t)$ to the elliptic curve with the Weierstrass equation

$$\mathcal{E}_f: Y^2 = X^3 - 27A(t)X + 54B(t),$$

where

$$\begin{split} A(t) &= 1 - 56t^2 - 192t^3 - 36t^4 + 192t^5 - 136t^6 + 384t^7 + 710t^8 + \\ &- 384t^9 - 136t^{10} - 192t^{11} - 36t^{12} + 192t^{13} - 56t^{14} + t^{16}, \\ B(t) &= (1 + 4t - 6t^2 - 4t^3 + t^4)(1 - 4t - 6t^2 + 4t^3 + t^4) \\ &\times (A(t) + 96t^3(t^2 - 1)^3(t^2 - 4t - 1)(t^2 - t - 1)). \end{split}$$

The mapping $\varphi : \mathcal{C}_f \ni (U, V) \mapsto (X, Y) \in \mathcal{E}_f$ is given by

$$U = \frac{144t^2(-1-2t+t^2)(-1-t+t^2)}{X-3(1+20t^2+48t^3-26t^4-48t^5+20t^6+t^8} + 1,$$

$$V = \frac{48t^2(-1-2t+t^2)(-1-t+t^2)Y}{(X-3(1+20t^2+48t^3-26t^4-48t^5+20t^6+t^8)^2}.$$

Note that on the curve \mathcal{E}_f we have a torsion point of order two given by

$$T = (3(1+4t-6t^2-4t^3+t^4)(1-4t-6t^2+4t^3+t^4), 0).$$

Moreover on the curve \mathcal{E}_f , we have the point $P = (X_P, Y_P)$, where

$$X_P = \frac{3F_1(t)}{(3+2t+2t^2-2t^3+3t^4)^2},$$

$$Y_P = \frac{432(t^2-1)^3(t^2+1)(t^2-2t-1)(t^2-t-1)(1+t+4t^2-t^3+t^4)F_2(t)}{(3+2t+2t^2-2t^3+3t^4)^3}.$$

and

$$F_{1}(t) = 57 + 156t + 100t^{2} - 148t^{3} - 476t^{4} - 292t^{5} + - 612t^{6} + 1036t^{7} + 2886t^{8} - 1036t^{9} - 612t^{10} + 292t^{11} - 476t^{12} + 148t^{13} + 100t^{14} - 156t^{15} + 57t^{16} + 57t^{16$$

191

$$F_2(t) = 5 + t + 8t^2 + t^3 + 54t^4 - t^5 + 8t^6 - t^7 + 5t^8$$

In order to finish the proof, it is enough to show that the point P is of infinite order on the curve \mathcal{E}_f . Now, if we specialize the curve \mathcal{E}_f for t = 2, we obtain the elliptic curve

$$\mathcal{E}_{f,2}: Y^2 = X^3 - 1899963X + 947964438,$$

with the point

$$P_2 = \left(-\frac{658077}{2209}, -\frac{4004309520}{103823}\right)$$

which is the point P at t = 2. As we know, the points of finite order on the elliptic curve $y^2 = x^3 + ax + b$, $a, b \in \mathbb{Z}$ have integer coordinates [2, p. 177], while P_2 is not integral; therefore, P_2 is not a point of finite order on $\mathcal{E}_{f,2}$, which means that P is not a point of finite order on \mathcal{E}_f . Therefore, \mathcal{E}_f is a curve of positive rank. Hence, its set of $\mathbb{Q}(t)$ -rational points is infinite and our theorem is proved.

Corollary 2.6. Let us consider the polynomial $f(X) = (aX + b)(cX + d) \in \mathbb{Z}[X]$ and suppose that the equation f(X) = 0 has two distinct roots. Then the set of rational points on the surface $S : f(x)^2 + f(y)^2 = f(z)^2$ is dense in the Zariski topology.

PROOF. Because the curve \mathcal{E} we have constructed in the proof of Theorem 2.5 is of positive rank over $\mathbb{Q}(t)$, the set of multiplicities of the point P i.e. $mP = (X_m(t), Y_m(t))$ for $m = 1, 2, \ldots$, gives us infinitely many $\mathbb{Q}(t)$ -rational points on the curve \mathcal{E} . Now, if we look on the curve \mathcal{E} as on the elliptic surface in the space with coordinates (X, Y, t) we can see that each rational curve (X_m, Y_m, t) is included in the Zariski closure, say \mathcal{R} , of the set of rational points on \mathcal{E} . Because this closure consists of only finitely many components, it has dimension two, and as the surface \mathcal{E} is irreducible, \mathcal{R} is the whole surface. Thus the set of rational points on \mathcal{E} is dense in the Zariski topology and the same is true for the surface \mathcal{S} .

3. The equation $z^2 = f(x)^2 \pm f(y)^2$ for some cubic functions

In this section we will solve equation (1) for most cubic polynomial functions. So we start this section with the following result in which we consider a cubic function of the form $f(X) = X(X^2 + aX + b)$ with $a \in \mathbb{Z} \setminus \{0\}, b \in \mathbb{Z}$.

Theorem 3.1. Let us put $f(X) = X(X^2 + aX + b)$ with $a \in \mathbb{Z} \setminus \{0\}$, $b \in \mathbb{Z}$. Then the Diophantine equation $z^2 = f(x)^2 + f(y)^2$ has infinitely many rational parametric solutions defined over \mathbb{Q} .

PROOF. Let us note that without loss of generality we can assume that $f(X) = X(X^2 + X + c)$ where $c \in \mathbb{Q} \setminus \{0\}$. Indeed, after the change of variables $(x, y, z) \mapsto (ax, ay, a^3 z)$ we transform the surface $z^2 = x^2(x^2 + ax + b)^2 + y^2(y^2 + ay + b)^2$ into the surface with the equation $z^2 = f(x)^2 + f(y)^2$, where $f(X) = X(X^2 + X + b/a^2)$.

Let us put $f(x, y, z) = z^2 - f(x)^2 - f(y)^2$. In order to prove our theorem we put

$$x = (t^2 - 1)U, \quad y = 2tU, \quad z = UV.$$

For x, y, z defined in this way we get

$$f(x, y, z) = U^{2}(V^{2} - F(U)),$$

where $F(U) = a_0U^4 + a_1U^3 + a_2U^2 + a_3U + a_4$, and $a_i \in \mathbb{Z}[t]$ are defined in the following way

$$a_{0} = (t^{2} + 1)^{2}(1 - 8t^{2} + 30t^{4} - 8t^{6} + t^{8}),$$

$$a_{1} = 2(t^{2} + 2t - 1)(1 + 2t + 2t^{3} + 14t^{4} - 2t^{5} - 2t^{7} + t^{8})$$

$$a_{2} = (2c + 1)(1 - 4t^{2} + 22t^{4} - 4t^{6} + t^{8}),$$

$$a_{3} = 2c(t^{2} + 2t - 1)(1 + 2t + 2t^{2} - 2t^{3} + t^{4}),$$

$$a_{4} = c^{2}(t^{2} + 1)^{2}.$$

From the above computations, we can see that in order to prove our theorem we must show that on the curve C defined over the field $\mathbb{Q}(t)$ by the equation

$$\mathcal{C}: V^2 = F(U),$$

there are infinitely many $\mathbb{Q}(t)$ -rational points. The curve \mathcal{C} is a quartic curve with rational point $Q' = (0, c(t^2 + 1))$. Using this point we can produce another point Q = (U, V) which satisfy the condition $UV \neq 0$. Indeed, in order to construct a such point Q we put $V = pU^2 + qU + c(t^2 + 1)$, where p, q are indeterminate variables. Then we have that $V^2 - F(U) = \sum_{i=1}^4 f_i U^i$, where the quantities $f_i = f_i(p,q)$ are given by

$$\begin{split} f_1 &= -2c(-1-q+(3-q)t^2+8t^3-3t^4+t^6), \\ f_2 &= 2cp-2c-1+q^2+2(2+4c+cp)t^2-22(2c+1)t^4+4(2c+1)t^6-(2c+1)t^8\\ f_3 &= 2(1+pq-5t^2+10t^4-32t^5-10t^6+5t^8-t^{10}), \\ f_4 &= -1+p^2+6t^2-15t^4-44t^6-15t^8+6t^{10}-t^{12}. \end{split}$$

The system of equations $f_1 = f_2 = 0$ in p, q has a solution given by

$$p = \frac{2t^2(1+2t-2t^2-2t^3+t^4)^2 + c(t^2+1)^2(1-4t^2+22t^4-4t^6+t^8)}{c(t^2+1)^3},$$
$$q = \frac{(t^2+2t-1)(t^4-2t^3+2t^2+2t+1)}{t^2+1}.$$

This implies that the equation $\sum_{i=1}^{4} f_i U^i = 0$ has double root T = 0 and a rational root $T = -f_3(p,q)/f_4(p,q)$, where p, q are given above. It is easy to check that for $c \in \mathbb{Q} \setminus \{0\}$ we have $f_4 \neq 0$ as an element of $\mathbb{Q}(t)$. So, we get that the $\mathbb{Q}(t)$ -rational point

$$Q = (U_Q, V_Q) = \left(-\frac{f_3}{f_4}, \frac{pf_3^2 - qf_3f_4 + cf_4^2 + ct^2f_4^2}{f_4^2}\right)$$
(5)

lies on the curve C. We do not give the exact values of the coordinates of the point Q because they are huge rational functions. Note that for the coordinates U, V of the point Q we have $UV \neq 0$ for any choice of $c \in \mathbb{Q}$. Later we will use the point Q in order to finish the proof of our theorem.

Now, we construct an appropriate map from \mathcal{C} to an elliptic curve \mathcal{E} with Weierstrass equation. In order to construct the desired mapping we treat $Q' = (0, c(t^2+1))$ as a point at infinity on the curve \mathcal{C} and we use the method described in [1, p. 77]. One more time, we conclude that \mathcal{C} is birationally equivalent over $\mathbb{Q}(t)$ to the elliptic curve with the Weierstrass equation

$$\mathcal{E}: Y^2 = X^3 - 27A(t)X - 54(4c-1)(1 - 4t^2 + 22t^4 - 4t^6 + t^8)B(t),$$

where $A(t) = \sum_{i=0}^{16} A_i(c)t^i$, $B(t) = \sum_{i=0}^{16} B_i(c)t^i$. Because $A_i(c) = (-1)^i A_{16-i}(c)$ and $B_i(c) = (-1)^i B_{16-i}(c)$ it is enough to know A_i , B_i for i = 1, 2, ..., 8. These coefficients are given below.

 $\begin{aligned} A_0(c) &= (4c-1)^2, & B_0(c) &= (4c-1)^2, \\ A_1(c) &= 0, & B_1(c) &= 0, \\ A_2(c) &= -8(10c^2 - 8c + 1), & B_2(c) &= -8(c-1)(7c-1), \\ A_3(c) &= 96c, & B_3(c) &= 144c, \\ A_4(c) &= 12(24c^2 - 8c + 5), & B_4(c) &= -12(2c-5)(2c+1), \\ A_5(c) &= -96c, & B_5(c) &= -144c, \end{aligned}$

$$A_{6}(c) = 8(10c^{2} - 8c - 23), \qquad B_{6}(c) = 8(199c^{2} - 104c - 23),$$
$$A_{7}(c) = -192c, \qquad B_{7}(c) = -288c,$$
$$A_{8}(c) = 2(1744c^{2} - 920c + 259), \qquad B_{8}(c) = 2(544c^{2} - 344c + 259).$$

The mapping $\varphi : \mathcal{E} \ni (X, Y) \mapsto (U, V) \in \mathcal{C}$ is given by

$$\begin{split} U &= 2c^2(t^2+1)^2 \\ & \times \left(\frac{2c^3(t^2+1)^3Y-27D(t)}{6(c^2(t^2+1)^2X-9C(t))} - c(t^2+2t-1)(1+2t+2t^2-2t^3+t^4)\right)^{-1}, \\ V &= -\frac{9}{4c^3(t^2+1)^3U^2} \left(\frac{2c^2(1+t^2)}{U} + c(t^2+2t-1)(1+2t+2t^2-2t^3+t^4)\right)^2 \\ & + \frac{1}{36c^3(t^2+1)^3U^2} (2c^2(t^2+1)^2X+9C(t)), \end{split}$$

where

$$C(t) = -\frac{c^2}{3}((4c-1)t^{12} - 2(4c-7)t^{10} - 48t^9 + 15(4c-1)t^8 + 144t^7 + 12(12c-5)t^6 - 144t^5 + 15(4c-1)t^4 + 48t^3 - 2(4c-7)t^2 + 4c-1),$$

$$D(t) = 8c^3t^2(t^2-1)^2(t^2-2t-1)^2(t^2+2t-1) + ((2c-1)t^4 + 2t^3 + 2(2c-1)t^2 - 2t + 2c-1).$$

Let us note that on the curve ${\mathcal E}$ we have a ${\mathbb Q}(t)\text{-rational point of order two given by$

$$T = (-3(4c - 1)(1 - 4t^2 + 22t^4 - 4t^6 + t^8), 0).$$

Now, we will show that the point

$$P = (X_P, Y_P) = \varphi^{-1}(Q) = \varphi^{-1}((U_Q, V_Q)),$$

where Q is defined by (5), is of infinite order on the curve \mathcal{E} . In order to do this, let us put t = -2 and consider the point

$$\begin{aligned} Q_{-2} &= \left(\frac{25c(50c-37)}{625c^2-8425c-1764}, \\ &\frac{5c(5526612+19933200c+62865000c^2+9375000c^3+390625c^4)}{(625c^2-8425c-1764)^2}\right), \end{aligned}$$

which is the point Q at t = -2. It is clear that the point Q_{-2} lies on the curve C_{-2} which is the curve C at t = -2. We have that the point $P_{-2} = \varphi^{-1}(Q_{-2}) = (X_{P,-2}, Y_{P,-2})$, where

$$X_{P,-2} = \frac{3(48874177 + 240212200c + 847212500c^2 + 28250000c^3 + 4687500c^4)}{25(50c - 37)^2},$$

$$Y_{P,-2} = \frac{108(25c + 6)(25c + 294)G(c)}{125(50c - 37)^3},$$

$$G(c) = 781250c^4 - 2312500c^3 - 148214375c^2 - 36125700c - 8638308,$$

is the point $P = \varphi^{-1}(Q)$ at t = -2 and lies on the curve \mathcal{E}_{-2} . If $c = p/q \in \mathbb{Q}$, with $\operatorname{GCD}(p,q) = 1$, satisfies the condition $(50c-37)(25c+6)(25c+294) \neq 0$ then the coordinates of the point $P'_{-2} = (q^2 X_{P,-2}, q^3 Y_{P,-2})$ are not integers. Moreover the point P'_{-2} lies on the curve

$$\begin{aligned} \mathcal{E}_{-2}': Y^2 &= X^3 - 27q^2(113569q^2 + 107512pq + 1901776p^2)X + \\ &\quad -18198q^3(4p-q)(113569q^2 + 615544pq + 1944112p^2). \end{aligned}$$

The curve \mathcal{E}'_{-2} is isomorphic to \mathcal{E} by the transformation $(X, Y) \mapsto (q^2 X, q^3 Y)$ and the point P'_{-2} is the image of the point P_{-2} under this transformation. So P'_{-2} is not integral on the curve \mathcal{E}'_{-2} . Using now Nagell–Lutz theorem we get that the point P'_{-2} is not of finite order on the curve \mathcal{E}'_{-2} , thus the point P_{-2} is not of finite order on the curve \mathcal{E}_{-2} . Finally, one can see that the $\mathbb{Q}(t)$ -rational point Pis not of finite order on the curve \mathcal{E} . Therefore, we exclude three rational values of c in order to prove that the point P_{-2} is not of finite order. But is easy to see that in order to cover these values we can take another specialization at $t = t_0$, where t_0 is a suitable chosen integer. For example we can take t = 8 and then we exclude only c = 3217/8450 and in particular we cover these values of c for which (50c - 37)(25c + 6)(25c + 294) = 0. This observation finishes the proof of our theorem. \Box

Using a similar method we will prove the following result.

Theorem 3.2. Let us put $f(X) = X(X^2 + aX + b)$ with $a \in \mathbb{Z} \setminus \{0\}$, $b \in \mathbb{Z}$. Then the Diophantine equation $z^2 = f(x)^2 - f(y)^2$ has infinitely many rational parametric solutions defined over \mathbb{Q} .

PROOF. Similarly as in the proof of previous theorem we can assume that $f(X) = X(X^2+X+c)$ where $c \in \mathbb{Q} \setminus \{0\}$. Let us put $f(x, y, z) = z^2 - f(x)^2 + f(y)^2$. In order to prove our theorem we put

$$x = (t^2 + 1)U, \quad y = 2tU, \quad z = (t - 1)UV.$$

For x, y, z defined in this way we get

$$f(x, y, z) = (t - 1)^2 U^2 (V^2 - G(U)),$$

where

$$\begin{split} G(U) &= ((1+2t+6t^2+2t^3+t^4)U^2+(t+1)^2U+c) \\ &\times ((1+t)^2(1-2t+6t^2-2t^3+t^4)U^2+(1+6t^2+t^4)U+c(t+1)^2)). \end{split}$$

From the above computations, we can see that in order to prove our theorem we must show that on the curve C defined over the field $\mathbb{Q}(t)$ by the equation

$$\mathcal{C}: V^2 = G(U),$$

there are infinitely many $\mathbb{Q}(t)$ -rational points. The curve \mathcal{C} is a quartic curve with rational point Q = (0, c(t+1)). We treat Q = (0, c(t+1)) as a point at infinity on the curve \mathcal{C} and we use the method described in [1, p. 77]. One more time, we conclude that \mathcal{C} is birationally equivalent over $\mathbb{Q}(t)$ to the elliptic curve with the Weierstrass equation

$$\mathcal{E}: Y^2 = X^3 - 27A(t)X - 54(4c - 1)(t + 1)^2(1 + 6t^2 + t^4)B(t),$$

where $A(t) = \sum_{i=0}^{12} A_i(c)t^i$, $B(t) = \sum_{i=0}^{12} B_i(c)t^i$. Because $A_i(c) = A_{12-i}(c)$ and $B_i(c) = B_{12-i}(c)$ it is enough to know A_i , B_i for i = 1, 2, ..., 6. These coefficients are given below.

$$\begin{split} A_0(c) &= (4c-1)^2, & B_0(c) = (4c-1)^2, \\ A_1(c) &= 4(4c-1)^2, & B_1(c) = 4(4c-1)^2, \\ A_2(c) &= 6(40c^2-24c+3), & B_2(c) = 18(2c-1)(6c-1), \\ A_3(c) &= 4(160c^2-80c+13), & B_3(c) = 4(136c^2-68c+13), \\ A_4(c) &= 3(464c^2-296c+37), & B_4(c) = 3(400c^2-296+37), \\ A_5(c) &= 8(328c^2-164c+25), & B_5(c) = 8(292c^2-146c+25), \\ A_6(c) &= 84(40c^2-24c+3), & B_6(c) = 252(2c-1)(6c-1). \end{split}$$

The mapping $\varphi : \mathcal{E} \ni (X, Y) \mapsto (U, V) \in \mathcal{C}$ is given by

$$U = \left(\frac{2(t+1)^3Y - 27D(t)}{12c(t+1)^2((t+1)^2X - 9C(t))} - \frac{1 + 2t + 6t^2 + 2t^3 + t^4}{2c(t+1)^2}\right)^{-1}$$

$$V = \frac{U^2}{4c(t+1)^3} \left(-4c^2(t+1)^4 \left(U^{-1} + \frac{1+2t+6t^2+2t^3+t^4}{2c(t+1)^2} \right)^2 + \frac{2(t+1)^2X}{9} + C(t) \right).$$

where

$$C(t) = \frac{1}{3} \left((1 - 4c)(t^8 + 1) + 4(1 - 4c)t(t^6 + 1) + 24(1 - 2c)t^2(t^4 + 1) + 28(1 - 4c)t^3(t^2 + 1) + 2(31 - 76c)t^4 \right),$$

$$D(t) = -8t^2(t^2 + 1)^2((2c - 1)(t^4 + 1) + 2(4c - 1)t(t^2 + 1) + 6(2c - 1)t^2).$$
 (6)

Let us note that on the curve \mathcal{E} we have two $\mathbb{Q}(t)$ -rational points: the point of order two given by

$$T = (-3(4c-1)(t+1)^2(t^4+6t^2+1), 0),$$

and the point

$$P = (X_P, Y_P) = \left(\frac{9C(t)}{(t+1)^2}, \frac{27D(t)}{2(t+1)^3}\right),$$

where C(t), D(t) are given by (6). We will show that the point P is of infinite order on the curve C. In order to do this, let us specialize the curve \mathcal{E} at t = 2and let us consider a rational number c = p/q with GCD(p,q) = 1. Then the curve

$$\mathcal{E}'_{2}: Y^{2} = X^{3} - 81q^{2}(596592p^{2} - 331096pq + 45387q^{2})X + - 179334(4p - q)q^{3}(177264p^{2} - 105032pq + 15129q^{2})$$

has the point $P'_2 = (-(4428p - 1507q)q, -400(162p - 61q)q^2)$. The curve \mathcal{E}'_2 is isomorphic to \mathcal{E}_2 by the transformation $(X, Y) \mapsto (q^2 X, q^3 Y)$ and the point P'_2 is the image of the point P_2 under this transformation. We have that

$$2P'_{2} = \left(T - (4428p - 1507q)q, -\frac{3(4374p^{2} - 5508pq + 1307q^{2})}{162p - 61q}T - 400(162p - 61q)q^{2}\right),$$

where

$$T = \frac{12(6561p^2 - 710q^2)(2187p^2 - 1080pq + 170q^2)}{(162p - 61q)^2}.$$

We see that for all but finitely many $p, q \in \mathbb{Z} \setminus \{0\}$ with GCD(p,q) = 1 the point $2P'_2$ is not integral. Therefore, from Nagell-Lutz theorem we deduce that the point P'_2 is of infinite order on the curve \mathcal{E}'_2 . Finally, we deduce that the point P is not of finite order on the curve \mathcal{E} . We exclude some values of c = p/q in order to prove that the point P'_2 is not of finite order. But is easy to see that in order to cover these values we can take another specialization at $t = t_0$, where t_0 is suitable chosen integer. Thus our theorem is proved.

A natural question arises whether similar results could be proved for irreducible cubic polynomials. We prove the following result.

Theorem 3.3. Let us put $f(X) = X^3 + aX^2 + b$ with $a \in \mathbb{Z} \setminus \{0\}$, $b \in \mathbb{Z}$. Then the Diophantine equation $z^2 = f(x)^2 - f(y)^2$ has infinitely many rational parametric solutions defined over \mathbb{Q} .

PROOF. Let us note that without loss of generality we can assume that $f(X) = X^3 + X^2 + c$ where $c \in \mathbb{Q} \setminus \{0\}$. Indeed, after change of variables $(x, y, z) \mapsto (ax, ay, a^3z)$ we transform the surface $z^2 = (x^3 + ax^2 + b)^2 - (y^3 + ay^2 + b)^2$ into the surface with the equation $z^2 = f(x)^2 - f(y)^2$, where $f(X) = X^3 + X^2 + b/a^3$.

Let us put $f(x, y, z) = z^2 - (f(x)^2 - f(y)^2)$. In order to prove our theorem, we put

$$x = (t^2 + 2c)U, \quad y = (t^2 - 2c)U, \quad z = UV.$$

For x, y, z defined in this way, we get

$$f(x, y, z) = U^2(V^2 - F(U)),$$

where

$$F(U) = 8c(2t^{2} + (4c^{2} + 3t^{4})U)(c + (4c^{2} + t^{4})U^{2} + t^{2}(12c^{2} + t^{4})U^{3})$$

So, we see that in order to prove our theorem we must consider a quartic curve $\mathcal{C}: V^2 = F(U)$ defined over the field $\mathbb{Q}(t)$. Note that on the curve \mathcal{C} we have two $\mathbb{Q}(t)$ -rational points: $Q' = (-2t^2/(4c^2 + 3t^4), 0)$ and Q = (0, 4ct). We treat the point Q' as a point at infinity on the curve \mathcal{C} and we conclude that \mathcal{C} is birationally equivalent over $\mathbb{Q}(t)$ with an elliptic curve given by the Weierstrass equation

$$\mathcal{E}: Y^2 = X^3 + 108c^2 f(t^4) X + 216c^3 t^2 g(t^4),$$

where

$$\begin{split} f(t) &= 192c^7 - 16c^4(33c+4)t - 4c^2(135c+8)t^2 - (27c+4)t^3, \\ g(t) &= 2304c^9(9c+4) + 256c^6(4-9c+189c^2)t \\ &+ 96c^4(8+222c+405c^2)t^2 + 48c^2(9c+1)(27c+4)t^3 + (27c+4)^2t^4. \end{split}$$

The mapping $\varphi : \mathcal{E} \ni (X, Y) \mapsto (U, V) \in \mathcal{C}$ is given by

$$\begin{split} U &= \frac{2(-t^2X+144c^6+24c^3(9c+2)t^4+3c(27c+4)t^8)}{96c^3t^2(4c^2-5t^4)+(4c^2+3t^4)X},\\ V &= \frac{12c(64c^7+16c^4(9c+4)t^4+4c^2(27c-8)t^8+(27c+4)t^{12})Y}{(96c^3t^2(4c^2-5t^4)+(4c^2+3t^4)X)^2}. \end{split}$$

Now we will show that \mathcal{E} has a positive rank over $\mathbb{Q}(t)$. In order to do this, we consider the point $P = \varphi^{-1}(Q) = (X_P, Y_P)$, where

$$X_P = \frac{3c(48c^5 + 8c^2(9c+2)t^4 + (27c+4)t^8)}{t^2},$$
$$Y_P = \frac{27c^2(64c^7 + 16c^4(9c+4)t^4 + 4c^2(27c-8)t^8 + (27c+4)t^{12})}{t^3}.$$

Let us note that for any choice of rational number c = p/q the polynomials $108q^9c^2f(t^4)$ and $216q^{13}c^3t^3g(t^4)$ have integer coefficients. These polynomials are coefficients of elliptic curve \mathcal{E}' which is isomorphic to the \mathcal{E} by the transformation $(X, Y) \mapsto (q^4X, q^6Y)$. Now, we can choose an integer $t = t_0$ such that the point $P'_{t_0} = (q^3X_{P,t_0}, q^6Y_{P,t_0})$ is not an integral point on the curve \mathcal{E}'_{t_0} . Using now Nagell–Lutz theorem we get that the point P'_{t_0} is not of finite order on the curve \mathcal{E}'_{t_0} , thus the point P' is not of finite order on the curve \mathcal{E}' . Finally, one can see that the $\mathbb{Q}(t)$ -rational point P is not of finite order on the curve \mathcal{E} . This completes the proof of our theorem. \Box

In the view of the above theorem and the results of this section we state the following

Question 3.4. Does it exist an irreducible polynomial $f \in \mathbb{Q}[X]$ of degree three such that the equation $z^2 = f(x)^2 + f(y)^2$ has infinitely many solutions in rationals?

4. Some other results

In the previous section, we have proved that for most cubic polynomials, the Diophantine equations $z^2 = f(x)^2 \pm f(y)^2$ have infinitely many rational parametric solutions. What's about quartic polynomial functions? We prove the following result.

Theorem 4.1. Let $a \in \mathbb{Z} \setminus \{0\}$. Suppose that there exists a non-zero rational number t such that the curve

$$C_t: V^2 = (1 - t^8)U^4 + 2a(1 - t^4)$$

has infinitely many rational points. Then the set of rational solutions of the Diophantine equation $z^2 = (x^4+a)^2 - (y^4+a)^2$ satisfying the conditions 0 < y < x, $z \neq 0$, is infinite.

PROOF. Let us put $f(x, y, z) = z^2 - ((x^4 + a)^2 - (y^4 + a)^2)$. From the assumption, we know that there is a rational number $t \neq 0$ such that the set of rational points on the curve C_t is infinite. Moreover we know that for all but finitely many points on the curve C_t with coordinates U, V we have $UV \neq 0$. Note the following identity

$$f(U, tU, U^{2}V) = U^{4}(V^{2} - (1 - t^{8})U^{4} - 2a(1 - t^{4})).$$

Therefore, we conclude that if (U, V) is the rational point on the curve C_t than the triple $(x, y, z) = (U, tU, U^2V)$ is a rational solution of the Diophantine equation $z^2 = (x^4 + a)^2 - (y^4 + a)^2$.

In the view of the above theorem, it is natural to ask the following question.

Question 4.2. Let us take $a \in \mathbb{Z} \setminus \{0\}$. Is it possible to find a rational number t such that the set of rational points on the curve

$$C_t: V^2 = (1 - t^8)U^4 + 2a(1 - t^4)$$

is infinite?

Finally, one can thing about the following general question.

Question 4.3. Does there exist a polynomial $f \in \mathbb{Q}[X]$ of degree greater than three without multiple roots such that the equation $z^2 = f(x)^2 + f(y)^2$ has infinitely many solutions in rational numbers?

ACKNOWLEDGMENTS. The authors express their gratitude to the anonymous referee for constructive suggestions to improve an earlier draft of this paper.

References

- [1] L. J. MORDELL, Diophantine Equations, Academic Press, London, 1969.
- [2] J. SILVERMAN, The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1986.

[3] M. ULAS, On the Diophantine equation f(x)f(y)² = f(z)², Colloq. Math. 107 (2007), 1–6.
[4] M. ULAS, Rational points on certain elliptic surfaces, Acta Arith. 129 (2007), 167–185.

MACIEJ ULAS INSTITUTE OF MATHEMATICS JAGIELLONIAN UNIVERSITY LOJASIEWICZA 6 30-348 KRAKÓW POLAND AND INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES ŚNIADECKICH 8 00-950 WARSZAWA POLAND

E-mail: maciej.ulas@uj.edu.pl

ALAIN TOGBÉ MATHEMATICS DEPARTMENT PURDUE UNIVERSITY NORTH CENTRAL 1401 S, U.S. 421 WESTVILLE IN 46391 USA *E-mail:* atogbe@pnc.edu

(Received January 9, 2009)