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On the Diophantine equation z2 = f(x)2 ± f(y)2

By MACIEJ ULAS (Kraków and Warszawa) and ALAIN TOGBÉ (Westville)

Abstract. Let f ∈ Q[X] and let us consider a Diophantine equation z2 = f(x)2±
f(y)2. In this paper, we show that if deg f = 2 and there exists a rational number t such

that on the quartic curve V 2 = f(U)2 + f(t)2 there are infinitely many rational points,

then the set of rational parametric solutions of the equation z2 = f(x)2 + f(y)2 is non-

empty. Without any assumptions we show that the surface related to the Diophantine

equation z2 = f(x)2 − f(y)2 is unirational over the field Q in this case. If deg f = 3

and f has the form f(x) = x(x2 + ax + b) with a 6= 0 then both of the equations

z2 = f(x)2 ± f(y)2 have infinitely many rational parametric solutions. A similarly

result is proved for the equation z2 = f(x)2 − f(y)2 with f(X) = X3 + aX2 + b and

a 6= 0.

1. Introduction

Let f ∈ Q[X] and let us consider the Diophantine equation

z2 = f(x)2 ± f(y)2. (1)

We are interested in the existence of infinitely many rational solutions (x, y, z) of
equation (1). A similar problem was studied by the first author in [3]. In fact, he
considered the Diophantine equation

f(x)f(y) = f(z)2, (2)

where f ∈ Q[X] is a polynomial function of deg f ≤ 3. In [3], he proved that
if f is a quadratic function, then the Diophantine equation f(x)f(y) = f(z)2 has
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infinitely many nontrivial solutions in Q(t). Let us recall that a triple (x, y, z)
of rational numbers is a nontrivial solution of equation (2) if f(x) 6= f(y) and
f(z) 6= 0. In the case where f is a cubic polynomial function of the form f(X) =
X(X2+aX+b), a, b being nonzero integers such that if p|a, then p2 - b, he showed
that for all but finitely many integers a, b satisfying these conditions, equation (2)
has infinitely many nontrivial solutions in rational numbers.

In this paper, we study equation (1). This type of equations has a strong
geometric flavor. Indeed, each non-trivial solution (i.e. with f(x)f(y) 6= 0) of the
equation z2 = f(x)2 + f(y)2 gives a right triangle with legs of the length f(x),
f(y) and hypotenuse z. Similarly, each non-trivial solution (i.e. f(x)2 6= f(y)2)
of the equation z2 = f(x)2 − f(y)2 gives a right triangle with legs z, f(y) and
hypotenuse f(x).

In Section 2, we consider equation (1) under the assumption that f is a
polynomial of degree two with rational coefficients. It is obvious to observe that
one can consider a polynomial of the form f(X) = X2 + a, a 6= 0. We prove
that if there exists a rational number t0 such that the set of rational points on
the quartic curve V 2 = (U2 + a)2 + (t20 + a)2 is infinite then the set of rational
parametric solutions of the equation z2 = (x2 + a)2 + (y2 + a)2 is non-empty
(Theorem 2.3). Next, we prove that if f is of degree two and has two distinct
roots over the field C then the surface related to the Diophantine equation z2 =
f(x)2 − f(y)2 is unirational over the field Q (Theorem 2.4). Finally in Section 2,
we consider a quadratic polynomial of the form f(X) = (aX + b)(cX + d) where
a, b, c, d ∈ Z and we prove that if b/a 6= d/c then the quartic equation f(z)2 =
f(x)2 +f(y)2 has infinitely many rational parametric solutions. For the proof, we
make a correspondence between solutions of this equation and rational points on
an elliptic curve Ef in Weierstrass form, defined over the field Q(t). We show that
the rank of Ef (as a curve defined over the field Q(t)) is at least one (Theorem 2.5).

Section 3 is devoted to equation (1) when f is a cubic polynomial. We start
with a cubic polynomial of the form f(X)= X(X2+ aX + b) with a∈Z\{0}, b∈Z.
The method used is similar to that of the quadratic polynomial. Using suitable
(non-invertible) change of variables we reduce the study of our problem to the
problem of existence of Q(t)-rational points on an elliptic curve Ef . Again here, we
show that the set of Q(t)-rational points on the appropriate chosen elliptic curve
Ef is not finite by showing the existence of Q(t)-rational points of infinite order.
Therefore, by means of this reduction, we prove that equation (1) has infinitely
many solutions in Q(t) (Theorem 3.1, Theorem 3.2). We finish the section by
using the same method for polynomials of the form f(x) = X3 +aX2 + b, (a 6= 0)
and obtain a similar result for the equation z2 = f(x)2 − f(y)2 (Theorem 3.3).
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In the last section, we consider the equation z2 = f(x)2− f(y)2 with f(x) =
x4 + a, (a 6= 0). Under some additional assumptions we proved that the set of
rational solutions of this equation is infinite.

2. The equation z2 = f(x)2 ± f(y)2 for some quadratic functions

In this section, we are interested in the rational solutions of the Diophantine
equation z2 = (x2 + a)2 ± (y2 + a)2. We start our study with the “ + ” equation.
However, before we state and prove theorems concerning this equation we will
prove a quite general result about rational points on certain geometrically rational
elliptic surfaces (it means that such a surface is rational over the field of complex
numbers C). More precisely, we will prove the following result.

Theorem 2.1. Let f4, g4 ∈ Q[t] be two even functions of degree 4 and let us

consider an elliptic surface given by the equation E : Y 2 = X3 + f4(t)X + g4(t).
Suppose that there exist a rational number t = t0 such that the curve Et0 has

infinitely many rational points. Then the set of rational curves on the surface E
is non-empty.

Proof. Without loss of generality we can assume that f4(t) = at4 + bt2 + c,
g4(t) = dt4+et2+f , where a, b, c, d, e, f ∈ Z and ad 6= 0. Let us define F (X, Y, t) =
Y 2 − (X3 + f4(t)X + g4(t)). From the assumption we know that there exists
a rational number t0 such that the curve F (X,Y, t0) = 0 has infinitely many
rational points. Let us take x0, y0 such that F (x0, y0, t0) = 0. In order to prove
our theorem we put X = pT 2 + qT + x0, Y = rT 3 + sT 2 + uT + y0, t = T + t0.
Then, for X, Y , t defined in this way we get F (X, Y, t) =

∑6
i=1 aiT

i, where

a1 = −aqt40 − (4d + 4ax0)t30 − bqt20 − (2e + 2bx0)t0 + 2uy0 − 3qx2
0 − cq,

a2 = −apt40 − 4aqt30 − (6d + bp + 6ax0)t20 − 2bqt0 − bx0 − 3q2x0 − 3px2
0

+ 2sy0 − e− cp + u2,

a3 = −4apt30 − 6aqt20 − (4d + 2bp + 4ax0)t0 − 6pqx0 + 2ry0 − bq + q3 + 2su,

a4 = −6apt20 − 4aqt0 − ax0 − 3p2x0 − d− bp− 3pq2 + s2 + 2ru,

a5 = −4apt0 − aq + 3p2q + 2rs,

a6 = −ap + p3 + r2.

The system of equations a1 = a2 = a3 = a4 = 0 in variables p, q, r, u has exactly
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one solution defined over the field Q(s). This solution is given by

q = −2(et0 + 2dt30 + bt0x0 + 2at30x0 − uy0)
c + bt20 + at40 + 3x2

0

,

p = −e− u2 + 2bqt0 + 6dt20 + 4aqt30 + bx0 + 3q2x0 + 6at20x0 − 2sy0

c + bt20 + at40 + 3x2
0

,

r =
bq + q3 − 2su + 4dt0 + 2bpt0 + 6aqt20 + 4apt30 + 6pqx0 + 4at0x0

2y0
,

u =
d + bp + 3pq2 − s2 + 4aqt0 + 6apt20 + ax0 + 3p2x0

2r
.

Due to the fact that the curve Et0 : Y 2 = X3+f4(t0)X+g4(t0) has infinitely many
rational points, we can choose x0, y0 such that the quantities p, q, r, u ∈ Q(s)
given above are well defined i.e. all denominators are non-zero. Moreover, we
can assume that p, q, r, u ∈ Q(s) \ {0}. Thus, if we take p, q, r, u defined above,
then the equation F (x, y, t) = 0 treated as equation over the field Q(s) has two
Q(s)-rational roots: T = 0 of multiplicity five and the root

T =
−aq − 3p2q + 2rs− 4apt0

ap + p3 − r2
=: ϕ(s).

Therefore, on the surface E , we have a parametric rational curve given by the
equations

X = pϕ(s)2 + qϕ(s) + x0, Y = rϕ(s)3 + sϕ(s)2 + uϕ(s) + y0, t = ϕ(s) + t0,

where p, q, r, u ∈ Q(s)\{0} are defined above. This observation finishes the proof
of our theorem. ¤

Remark 2.2. The above result is a complementary result of Theorem 5.1
of [4].

Now, we are ready to prove the following result.

Theorem 2.3. Let f ∈ Q[X] and suppose that deg f = 2 and f has two dis-

tinct roots over C. Let us suppose that there exists a rational number y = t0 such

that the set of rational solutions on the (quartic) curve Ct0 : V 2 = f(U)2 +f(t0)2

is infinite. Then there exists a rational parametric solution of the Diophantine

equation z2 = f(x)2 + f(y)2.
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Proof. It is clear that without loss of generality we can assume that f(X) =
X2 + a with a ∈ Z \ {0}. Let us consider the curve C : v2 = (u2 + a)2 + (t2 + a)2

defined over the field Q(t). This curve is birationally equivalent with the elliptic
curve E given by the equation in Weierstrass form

E : Y 2 = X3 − 108(3t4 + 6at2 + 7a2)X − 432a(9t4 + 18at2 + 17a2).

The mapping ϕ : E 3 (X, Y ) 7→ (u, v) ∈ C is given by

u =
Y

6(X + 12a)
, v = −

(
Y

6(X + 12a)

)2

+
X − 6a

18
.

The discriminant of E is given by ∆(E) = 28312(t2 + a)4(t4 + 2at2 + 2a2), and
thus E is non-singular over Q(t) for any choice of t ∈ Q.

From the assumption we know that there exists a rational number t0 such that
the elliptic curve Et0 is of positive rank. From this observation and Theorem 2.1,
we get the desired result. ¤

Next, we prove a similar result when we take equation (1) for the sign “− ”.

Theorem 2.4. Suppose f ∈ Q[X] where deg f = 2 and f has two distinct

roots over C. Let us consider the surface S2
f : z2 = f(x)2 − f(y)2. Then S2

f

is unirational over the field Q. In other words, the Diophantine equation z2 =
f(x)2 − f(y)2 has rational parametric solutions in two parameters.

Proof. Without loss of generality we can assume that f(X) = X2 + a for
some a ∈ Z \ {0}. In order to prove Theorem 2.4, let us put z = xz1, y = tx

where t is an indeterminate. Then we have the equality

z2 − (f(x)2 − f(y)2) = x2(z2
1 − (1− t2)(2a + (t2 + 1)x2)).

Let us note that the curve z2
1 = (1 − t2)(2a + (t2 + 1)x2) =: h(x, t) is a quadric

curve defined over the field of rational functions Q(t). Now, we want to find a
substitution t = g(u) such that the function h(0, g(u)) is a square of a rational
function. If x = 0, then h(0, t) = 2a(1− t2). The equation z2

1 = 2a(1− t2) defines
a quadric curve, say Q1, with a rational point (t, z1) = (1, 0). Using the standard
method of the projection from the point (1, 0), we can parameterize all rational
points on Q1. In order to use this method, we put t = uz1 + 1. We find the
parametrization in the form

t =
1− 2au2

1 + 2au2
=: g(u), z1 = − 4au

1 + 2au2
.
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Now, let us note that the curve Q2 : z2
1 = h(x, g(u)) is a quadric curve

defined over the field of rational functions Q(u). On the curve Q2, we have a
Q(u)-rational point P =

(
0, g(u)−1

u

)
. Similarly as in the case of the curve Q1,

we can parameterize all Q(u)-rational points on Q2. In order to do this, we put
x = v

(
z1 + g(u)−1

u

)
and we find that

x = v

(
z1 +

g(u)− 1
u

)
, z1 = − 4au((1 + 2au2)4 + 16au2(1 + 4a2u4)v2)

(1 + 2au2)((1 + 2au2)4 − 16au2(1 + 4a2u4)v2)
.

Finally, we find a two-parametric solution of the equation defining the surface S2
f

in the form

x(u, v) = − 8au(1 + 2au2)3v
(1 + 2au2)4 − 16au2(1 + 4a2u4)v2

,

y(u, v) =
1− 2au2

1 + 2au2
x(u, v),

z(u, v) = − 4au((1 + 2au2)4 + 16au2(1 + 4a2u4)v2)
(1 + 2au2)((1 + 2au2)4 − 16au2(1 + 4a2u4)v2)

x(u, v).

Let us define the set

Ba = {(u, v) ∈ Q2 : (1 + 2au2)((1 + 2au2)4 − 16au2(1 + 4a2u4)v2) = 0},

which is the set where the functions x, y, z are not defined. Using the above
definition of x(u, v), y(u, v), z(u, v) and of the set Ba, then we get a rational
function

Φ : Q2 \Ba 3 (u, v) 7→ (x(u, v), y(u, v), z(u, v)) ∈ Q3.

Because

det




x(u, v) y(u, v) z(u, v)
∂ux(u, v) ∂uy(u, v) ∂uz(u, v)
∂vx(u, v) ∂vy(u, v) ∂vz(u, v)


 =

220a6u7(1 + 2au2)10(1 + 4a2u4)v4

(16au2(1 + 4a2u4)v2 − (1 + 2au2)4)5

is a non-zero element of the field Q(u, v), we see that the closure (in the Zariski
topology) of the image Im Φ is of dimension two in C3. This means that the
surface S2

f is unirational. ¤

Although our main object of study is the Diophantine equation of the form
z2 = f(x)2 + f(y)2, we couldn’t resist to prove the following result.
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Theorem 2.5. Let us consider the polynomial f(X) = (aX + b)(cX + d) ∈
Z[X] and suppose that the equation f(X) = 0 has two distinct roots. Then the set

of rational parametric solutions of the Diophantine equation f(x)2+f(y)2 = f(z)2

is infinite.

Proof. Without loss of generality, we can assume that f(X) = X(X + 1).
Indeed, using the substitution (x, y, z) 7→ (Ax + B,Ay + B, Az + B), where A =
(ad−bc)/ac and B = −b/a, we can transform the equation f(x)2 +f(y)2 = f(z)2

into the form x2(x + 1)2 + y2(y + 1)2 = z2(z + 1)2. So we consider the surface Sf

given by the equation

Sf : x2(x + 1)2 + y2(y + 1)2 = z2(z + 1)2. (3)

Let us define f(x, y, z) = x2(x + 1)2 + y2(y + 1)2 − z2(z + 1)2. In order to prove
our theorem, let us put

x = T, y =
2t

t2 − 1
T, z = UT, (4)

where t, T , U are indeterminate variables. For x, y, z defined in this way we have
the equality

f(x, y, z) = − T 2

(t2 − 1)4
FU (T ),

where FU (T ) = a0T
2 + a1T + a2 and

a0 = −1 + 4t2 − 22t4 + 4t6 − t8 + (t2 − 1)4U4,

a1 = 2(t2 − 1)(1− 3t2 − 8t3 + 3t4 − t6 + (t2 − 1)3U3),

a2 = (t2 − 1)2(−(t2 + 1)2 + (t2 − 1)2U2).

To prove Theorem 2.5, it is enough to show that the set of such U ∈ Q(t) for
which the equation FU (T ) = 0 (treated as equation in the variable T ) has roots in
the field Q(t), is infinite. It is equivalent that the discriminant ∆(U) = 4∆′(U),
where

∆′(U) = (U − 1)((t2 − 1)U − 2t)

× ((t2 − 1)(t2 + 1)2U2− (t2 − 2t− 1)2(t2 + 2t− 1)U − 2t(t2 − 2t− 1)2),

of the polynomial FU should be a square in the field Q(t). In other words, we
must consider the curve Cf defined over the field Q(t) by the equation

Cf : V 2 = ∆′(U).
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The discriminant of the polynomial ∆′(U) is equal to

D = 212t6(t2 − 1)8(1 + t2)2(t2 − 4t− 1)2(t2 − 2t− 1)4(t2 − t− 1)2

× (1− 8t− 12t2 − 8t3 + 38t4 + 8t5 − 12t6 + 8t7 + t8),

and due to the fact that D 6= 0 as an element of the field Q(t), we see that
the curve Cf is smooth over Q(t). Let us also note that the Q(t)-rational point
P = (U, V ) = (1, 0) lies on Cf . If we treat Q as a point at infinity on the curve
Cf , we conclude that Cf is birationally equivalent over Q(t) to the elliptic curve
with the Weierstrass equation

Ef : Y 2 = X3 − 27A(t)X + 54B(t),
where

A(t) = 1− 56t2 − 192t3 − 36t4 + 192t5 − 136t6 + 384t7 + 710t8+

− 384t9 − 136t10 − 192t11 − 36t12 + 192t13 − 56t14 + t16,

B(t) = (1 + 4t− 6t2 − 4t3 + t4)(1− 4t− 6t2 + 4t3 + t4)

× (A(t) + 96t3(t2 − 1)3(t2 − 4t− 1)(t2 − t− 1)).

The mapping ϕ : Cf 3 (U, V ) 7→ (X, Y ) ∈ Ef is given by

U =
144t2(−1− 2t + t2)(−1− t + t2)

X − 3(1 + 20t2 + 48t3 − 26t4 − 48t5 + 20t6 + t8
+ 1,

V =
48t2(−1− 2t + t2)(−1− t + t2)Y

(X − 3(1 + 20t2 + 48t3 − 26t4 − 48t5 + 20t6 + t8)2
.

Note that on the curve Ef we have a torsion point of order two given by

T = (3(1 + 4t− 6t2 − 4t3 + t4)(1− 4t− 6t2 + 4t3 + t4), 0).

Moreover on the curve Ef , we have the point P = (XP , YP ), where

XP =
3F1(t)

(3 + 2t + 2t2 − 2t3 + 3t4)2
,

YP =
432(t2 − 1)3(t2 + 1)(t2 − 2t− 1)(t2 − t− 1)(1 + t + 4t2 − t3 + t4)F2(t)

(3 + 2t + 2t2 − 2t3 + 3t4)3
,

and

F1(t) = 57 + 156t + 100t2 − 148t3 − 476t4 − 292t5+

− 612t6 + 1036t7 + 2886t8 − 1036t9 − 612t10

+ 292t11 − 476t12 + 148t13 + 100t14 − 156t15 + 57t16,
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F2(t) = 5 + t + 8t2 + t3 + 54t4 − t5 + 8t6 − t7 + 5t8.

In order to finish the proof, it is enough to show that the point P is of infinite
order on the curve Ef . Now, if we specialize the curve Ef for t = 2, we obtain the
elliptic curve

Ef,2 : Y 2 = X3 − 1899963X + 947964438,

with the point

P2 =
(
−658077

2209
, −4004309520

103823

)
,

which is the point P at t = 2. As we know, the points of finite order on the elliptic
curve y2 = x3 + ax + b, a, b ∈ Z have integer coordinates [2, p. 177], while P2 is
not integral; therefore, P2 is not a point of finite order on Ef,2, which means that
P is not a point of finite order on Ef . Therefore, Ef is a curve of positive rank.
Hence, its set of Q(t)-rational points is infinite and our theorem is proved. ¤

Corollary 2.6. Let us consider the polynomial f(X) = (aX + b)(cX + d) ∈
Z[X] and suppose that the equation f(X) = 0 has two distinct roots. Then the

set of rational points on the surface S : f(x)2 + f(y)2 = f(z)2 is dense in the

Zariski topology.

Proof. Because the curve E we have constructed in the proof of Theorem 2.5
is of positive rank over Q(t), the set of multiplicities of the point P i.e. mP =
(Xm(t), Ym(t)) for m = 1, 2, . . ., gives us infinitely many Q(t)-rational points on
the curve E . Now, if we look on the curve E as on the elliptic surface in the
space with coordinates (X, Y, t) we can see that each rational curve (Xm, Ym, t) is
included in the Zariski closure, say R, of the set of rational points on E . Because
this closure consists of only finitely many components, it has dimension two,
and as the surface E is irreducible, R is the whole surface. Thus the set of
rational points on E is dense in the Zariski topology and the same is true for the
surface S. ¤

3. The equation z2 = f(x)2 ± f(y)2 for some cubic functions

In this section we will solve equation (1) for most cubic polynomial functions.
So we start this section with the following result in which we consider a cubic
function of the form f(X) = X(X2 + aX + b) with a ∈ Z \ {0}, b ∈ Z.

Theorem 3.1. Let us put f(X) = X(X2 +aX + b) with a ∈ Z \ {0}, b ∈ Z.

Then the Diophantine equation z2 = f(x)2 + f(y)2 has infinitely many rational

parametric solutions defined over Q.
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Proof. Let us note that without loss of generality we can assume that
f(X) = X(X2 + X + c) where c ∈ Q \ {0}. Indeed, after the change of variables
(x, y, z) 7→ (ax, ay, a3z) we transform the surface z2 = x2(x2 + ax + b)2 + y2(y2 +
ay + b)2 into the surface with the equation z2 = f(x)2 + f(y)2, where f(X) =
X(X2 + X + b/a2).

Let us put f(x, y, z) = z2 − f(x)2 − f(y)2. In order to prove our theorem
we put

x = (t2 − 1)U, y = 2tU, z = UV.

For x, y, z defined in this way we get

f(x, y, z) = U2(V 2 − F (U)),

where F (U) = a0U
4 + a1U

3 + a2U
2 + a3U + a4, and ai ∈ Z[t] are defined in the

following way

a0 = (t2 + 1)2(1− 8t2 + 30t4 − 8t6 + t8),

a1 = 2(t2 + 2t− 1)(1 + 2t + 2t3 + 14t4 − 2t5 − 2t7 + t8),

a2 = (2c + 1)(1− 4t2 + 22t4 − 4t6 + t8),

a3 = 2c(t2 + 2t− 1)(1 + 2t + 2t2 − 2t3 + t4),

a4 = c2(t2 + 1)2.

From the above computations, we can see that in order to prove our theorem
we must show that on the curve C defined over the field Q(t) by the equation

C : V 2 = F (U),

there are infinitely many Q(t)-rational points. The curve C is a quartic curve with
rational point Q′ = (0, c(t2 + 1)). Using this point we can produce another point
Q = (U, V ) which satisfy the condition UV 6= 0. Indeed, in order to construct
a such point Q we put V = pU2 + qU + c(t2 + 1), where p, q are indeterminate
variables. Then we have that V 2 − F (U) =

∑4
i=1 fiU

i, where the quantities
fi = fi(p, q) are given by

f1 = −2c(−1− q + (3− q)t2 + 8t3 − 3t4 + t6),

f2 = 2cp− 2c− 1 + q2 +2(2 + 4c + cp)t2− 22(2c + 1)t4 +4(2c +1)t6− (2c +1)t8,

f3 = 2(1 + pq − 5t2 + 10t4 − 32t5 − 10t6 + 5t8 − t10),

f4 = −1 + p2 + 6t2 − 15t4 − 44t6 − 15t8 + 6t10 − t12.
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The system of equations f1 = f2 = 0 in p, q has a solution given by

p =
2t2(1 + 2t− 2t2 − 2t3 + t4)2 + c(t2 + 1)2(1− 4t2 + 22t4 − 4t6 + t8)

c(t2 + 1)3
,

q =
(t2 + 2t− 1)(t4 − 2t3 + 2t2 + 2t + 1)

t2 + 1
.

This implies that the equation
∑4

i=1 fiU
i = 0 has double root T = 0 and a

rational root T = −f3(p, q)/f4(p, q), where p, q are given above. It is easy to
check that for c ∈ Q \ {0} we have f4 6= 0 as an element of Q(t). So, we get that
the Q(t)-rational point

Q = (UQ, VQ) =
(
−f3

f4
,
pf2

3 − qf3f4 + cf2
4 + ct2f2

4

f2
4

)
(5)

lies on the curve C. We do not give the exact values of the coordinates of the point
Q because they are huge rational functions. Note that for the coordinates U , V

of the point Q we have UV 6= 0 for any choice of c ∈ Q. Later we will use the
point Q in order to finish the proof of our theorem.

Now, we construct an appropriate map from C to an elliptic curve E with
Weierstrass equation. In order to construct the desired mapping we treat Q′ =
(0, c(t2+1)) as a point at infinity on the curve C and we use the method described
in [1, p. 77]. One more time, we conclude that C is birationally equivalent over
Q(t) to the elliptic curve with the Weierstrass equation

E : Y 2 = X3 − 27A(t)X − 54(4c− 1)(1− 4t2 + 22t4 − 4t6 + t8)B(t),

where A(t) =
∑16

i=0 Ai(c)ti, B(t) =
∑16

i=0 Bi(c)ti. Because Ai(c) = (−1)iA16−i(c)
and Bi(c) = (−1)iB16−i(c) it is enough to know Ai, Bi for i = 1, 2, . . . , 8. These
coefficients are given below.

A0(c) = (4c− 1)2, B0(c) = (4c− 1)2,

A1(c) = 0, B1(c) = 0,

A2(c) = −8(10c2 − 8c + 1), B2(c) = −8(c− 1)(7c− 1),

A3(c) = 96c, B3(c) = 144c,

A4(c) = 12(24c2 − 8c + 5), B4(c) = −12(2c− 5)(2c + 1),

A5(c) = −96c, B5(c) = −144c,
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A6(c) = 8(10c2 − 8c− 23), B6(c) = 8(199c2 − 104c− 23),

A7(c) = −192c, B7(c) = −288c,

A8(c) = 2(1744c2 − 920c + 259), B8(c) = 2(544c2 − 344c + 259).

The mapping ϕ : E 3 (X, Y ) 7→ (U, V ) ∈ C is given by

U = 2c2(t2 + 1)2

×
(

2c3(t2 + 1)3Y − 27D(t)
6(c2(t2 + 1)2X − 9C(t))

− c(t2 + 2t− 1)(1 + 2t + 2t2 − 2t3 + t4)
)−1

,

V = − 9
4c3(t2 + 1)3U2

(
2c2(1 + t2)

U
+ c(t2 + 2t− 1)(1 + 2t + 2t2 − 2t3 + t4)

)2

+
1

36c3(t2 + 1)3U2
(2c2(t2 + 1)2X + 9C(t)),

where

C(t) = −c2

3
((4c− 1)t12 − 2(4c− 7)t10 − 48t9 + 15(4c− 1)t8 + 144t7

+ 12(12c− 5)t6 − 144t5 + 15(4c− 1)t4 + 48t3 − 2(4c− 7)t2 + 4c− 1),

D(t) = 8c3t2(t2 − 1)2(t2 − 2t− 1)2(t2 + 2t− 1)

× ((2c− 1)t4 + 2t3 + 2(2c− 1)t2 − 2t + 2c− 1).

Let us note that on the curve E we have a Q(t)-rational point of order two
given by

T = (−3(4c− 1)(1− 4t2 + 22t4 − 4t6 + t8), 0).

Now, we will show that the point

P = (XP , YP ) = ϕ−1(Q) = ϕ−1((UQ, VQ)),

where Q is defined by (5), is of infinite order on the curve E . In order to do this,
let us put t = −2 and consider the point

Q−2 =
(

25c(50c− 37)
625c2 − 8425c− 1764

,

5c(5526612 + 19933200c + 62865000c2 + 9375000c3 + 390625c4)
(625c2 − 8425c− 1764)2

)
,
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which is the point Q at t = −2. It is clear that the point Q−2 lies on the curve
C−2 which is the curve C at t = −2. We have that the point P−2 = ϕ−1(Q−2) =
(XP,−2, YP,−2), where

XP,−2 =
3(48874177 + 240212200c + 847212500c2 + 28250000c3 + 4687500c4)

25(50c− 37)2
,

YP,−2 =
108(25c + 6)(25c + 294)G(c)

125(50c− 37)3
,

G(c) = 781250c4 − 2312500c3 − 148214375c2 − 36125700c− 8638308,

is the point P = ϕ−1(Q) at t = −2 and lies on the curve E−2. If c = p/q ∈ Q,
with GCD(p, q) = 1, satisfies the condition (50c−37)(25c+6)(25c+294) 6= 0 then
the coordinates of the point P ′−2 = (q2XP,−2, q

3YP,−2) are not integers. Moreover
the point P ′−2 lies on the curve

E ′−2 : Y 2 = X3 − 27q2(113569q2 + 107512pq + 1901776p2)X+

− 18198q3(4p− q)(113569q2 + 615544pq + 1944112p2).

The curve E ′−2 is isomorphic to E by the transformation (X,Y ) 7→ (q2X, q3Y )
and the point P ′−2 is the image of the point P−2 under this transformation. So
P ′−2 is not integral on the curve E ′−2. Using now Nagell–Lutz theorem we get that
the point P ′−2 is not of finite order on the curve E ′−2, thus the point P−2 is not of
finite order on the curve E−2. Finally, one can see that the Q(t)-rational point P

is not of finite order on the curve E . Therefore, we exclude three rational values
of c in order to prove that the point P−2 is not of finite order. But is easy to see
that in order to cover these values we can take another specialization at t = t0,
where t0 is a suitable chosen integer. For example we can take t = 8 and then
we exclude only c = 3217/8450 and in particular we cover these values of c for
which (50c− 37)(25c + 6)(25c + 294) = 0. This observation finishes the proof of
our theorem. ¤

Using a similar method we will prove the following result.

Theorem 3.2. Let us put f(X) = X(X2 +aX + b) with a ∈ Z \ {0}, b ∈ Z.

Then the Diophantine equation z2 = f(x)2 − f(y)2 has infinitely many rational

parametric solutions defined over Q.

Proof. Similarly as in the proof of previous theorem we can assume that
f(X) = X(X2+X+c) where c ∈ Q\{0}. Let us put f(x, y, z) = z2−f(x)2+f(y)2.
In order to prove our theorem we put

x = (t2 + 1)U, y = 2tU, z = (t− 1)UV.
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For x, y, z defined in this way we get

f(x, y, z) = (t− 1)2U2(V 2 −G(U)),
where

G(U) = ((1 + 2t + 6t2 + 2t3 + t4)U2 + (t + 1)2U + c)

× ((1 + t)2(1− 2t + 6t2 − 2t3 + t4)U2 + (1 + 6t2 + t4)U + c(t + 1)2)).

From the above computations, we can see that in order to prove our theorem
we must show that on the curve C defined over the field Q(t) by the equation

C : V 2 = G(U),

there are infinitely many Q(t)-rational points. The curve C is a quartic curve with
rational point Q = (0, c(t + 1)). We treat Q = (0, c(t + 1)) as a point at infinity
on the curve C and we use the method described in [1, p. 77]. One more time, we
conclude that C is birationally equivalent over Q(t) to the elliptic curve with the
Weierstrass equation

E : Y 2 = X3 − 27A(t)X − 54(4c− 1)(t + 1)2(1 + 6t2 + t4)B(t),

where A(t) =
∑12

i=0 Ai(c)ti, B(t) =
∑12

i=0 Bi(c)ti. Because Ai(c) = A12−i(c) and
Bi(c) = B12−i(c) it is enough to know Ai, Bi for i = 1, 2, . . . , 6. These coefficients
are given below.

A0(c) = (4c− 1)2, B0(c) = (4c− 1)2,

A1(c) = 4(4c− 1)2, B1(c) = 4(4c− 1)2,

A2(c) = 6(40c2 − 24c + 3), B2(c) = 18(2c− 1)(6c− 1),

A3(c) = 4(160c2 − 80c + 13), B3(c) = 4(136c2 − 68c + 13),

A4(c) = 3(464c2 − 296c + 37), B4(c) = 3(400c2 − 296 + 37),

A5(c) = 8(328c2 − 164c + 25), B5(c) = 8(292c2 − 146c + 25),

A6(c) = 84(40c2 − 24c + 3), B6(c) = 252(2c− 1)(6c− 1).

The mapping ϕ : E 3 (X, Y ) 7→ (U, V ) ∈ C is given by

U =
(

2(t + 1)3Y − 27D(t)
12c(t + 1)2((t + 1)2X − 9C(t))

− 1 + 2t + 6t2 + 2t3 + t4

2c(t + 1)2

)−1
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V =
U2

4c(t + 1)3

(
− 4c2(t + 1)4

(
U−1 +

1 + 2t + 6t2 + 2t3 + t4

2c(t + 1)2

)2

+
2(t + 1)2X

9
+ C(t)

)
.

where

C(t) =
1
3
(
(1− 4c)(t8 + 1) + 4(1− 4c)t(t6 + 1)

+ 24(1− 2c)t2(t4 + 1) + 28(1− 4c)t3(t2 + 1) + 2(31− 76c)t4
)
,

D(t) = −8t2(t2 + 1)2((2c− 1)(t4 + 1) + 2(4c− 1)t(t2 + 1) + 6(2c− 1)t2). (6)

Let us note that on the curve E we have two Q(t)-rational points: the point
of order two given by

T = (−3(4c− 1)(t + 1)2(t4 + 6t2 + 1), 0),

and the point

P = (XP , YP ) =
(

9C(t)
(t + 1)2

,
27D(t)

2(t + 1)3

)
,

where C(t), D(t) are given by (6). We will show that the point P is of infinite
order on the curve C. In order to do this, let us specialize the curve E at t = 2
and let us consider a rational number c = p/q with GCD(p, q) = 1. Then the
curve

E ′2 : Y 2 = X3 − 81q2(596592p2 − 331096pq + 45387q2)X+

− 179334(4p− q)q3(177264p2 − 105032pq + 15129q2)

has the point P ′2 = (−(4428p − 1507q)q,−400(162p − 61q)q2). The curve E ′2 is
isomorphic to E2 by the transformation (X, Y ) 7→ (q2X, q3Y ) and the point P ′2 is
the image of the point P2 under this transformation. We have that

2P ′2 =
(

T − (4428p− 1507q)q,

− 3(4374p2 − 5508pq + 1307q2)
162p− 61q

T − 400(162p− 61q)q2

)
,

where

T =
12(6561p2 − 710q2)(2187p2 − 1080pq + 170q2)

(162p− 61q)2
.
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We see that for all but finitely many p, q ∈ Z \ {0} with GCD(p, q) = 1 the point
2P ′2 is not integral. Therefore, from Nagell–Lutz theorem we deduce that the
point P ′2 is of infinite order on the curve E ′2. Finally, we deduce that the point P

is not of finite order on the curve E . We exclude some values of c = p/q in order
to prove that the point P ′2 is not of finite order. But is easy to see that in order
to cover these values we can take another specialization at t = t0, where t0 is
suitable chosen integer. Thus our theorem is proved. ¤

A natural question arises whether similar results could be proved for irre-
ducible cubic polynomials. We prove the following result.

Theorem 3.3. Let us put f(X) = X3 + aX2 + b with a ∈ Z \ {0}, b ∈ Z.

Then the Diophantine equation z2 = f(x)2 − f(y)2 has infinitely many rational

parametric solutions defined over Q.

Proof. Let us note that without loss of generality we can assume that
f(X) = X3+X2+c where c ∈ Q\{0}. Indeed, after change of variables (x, y, z) 7→
(ax, ay, a3z) we transform the surface z2 = (x3 + ax2 + b)2 − (y3 + ay2 + b)2 into
the surface with the equation z2 = f(x)2− f(y)2, where f(X) = X3 +X2 + b/a3.

Let us put f(x, y, z) = z2 − (f(x)2 − f(y)2). In order to prove our theorem,
we put

x = (t2 + 2c)U, y = (t2 − 2c)U, z = UV.

For x, y, z defined in this way, we get

f(x, y, z) = U2(V 2 − F (U)),
where

F (U) = 8c(2t2 + (4c2 + 3t4)U)(c + (4c2 + t4)U2 + t2(12c2 + t4)U3).

So, we see that in order to prove our theorem we must consider a quartic curve
C : V 2 = F (U) defined over the field Q(t). Note that on the curve C we have
two Q(t)-rational points: Q′ = (−2t2/(4c2 + 3t4), 0) and Q = (0, 4ct). We treat
the point Q′ as a point at infinity on the curve C and we conclude that C is
birationally equivalent over Q(t) with an elliptic curve given by the Weierstrass
equation

E : Y 2 = X3 + 108c2f(t4)X + 216c3t2g(t4),

where

f(t) = 192c7 − 16c4(33c + 4)t− 4c2(135c + 8)t2 − (27c + 4)t3,

g(t) = 2304c9(9c + 4) + 256c6(4− 9c + 189c2)t

+ 96c4(8 + 222c + 405c2)t2 + 48c2(9c + 1)(27c + 4)t3 + (27c + 4)2t4.
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The mapping ϕ : E 3 (X, Y ) 7→ (U, V ) ∈ C is given by

U =
2(−t2X + 144c6 + 24c3(9c + 2)t4 + 3c(27c + 4)t8)

96c3t2(4c2 − 5t4) + (4c2 + 3t4)X
,

V =
12c(64c7 + 16c4(9c + 4)t4 + 4c2(27c− 8)t8 + (27c + 4)t12)Y

(96c3t2(4c2 − 5t4) + (4c2 + 3t4)X)2
.

Now we will show that E has a positive rank over Q(t). In order to do this,
we consider the point P = ϕ−1(Q) = (XP , YP ), where

XP =
3c(48c5 + 8c2(9c + 2)t4 + (27c + 4)t8)

t2
,

YP =
27c2(64c7 + 16c4(9c + 4)t4 + 4c2(27c− 8)t8 + (27c + 4)t12)

t3
.

Let us note that for any choice of rational number c = p/q the polynomials
108q9c2f(t4) and 216q13c3t3g(t4) have integer coefficients. These polynomials are
coefficients of elliptic curve E ′ which is isomorphic to the E by the transformation
(X, Y ) 7→ (q4X, q6Y ). Now, we can choose an integer t = t0 such that the
point P ′t0 = (q3XP,t0 , q

6YP,t0) is not an integral point on the curve E ′t0 . Using
now Nagell–Lutz theorem we get that the point P ′t0 is not of finite order on the
curve E ′t0 , thus the point P ′ is not of finite order on the curve E ′. Finally, one
can see that the Q(t)-rational point P is not of finite order on the curve E . This
completes the proof of our theorem. ¤

In the view of the above theorem and the results of this section we state the
following

Question 3.4. Does it exist an irreducible polynomial f ∈ Q[X] of degree
three such that the equation z2 = f(x)2 + f(y)2 has infinitely many solutions in
rationals?

4. Some other results

In the previous section, we have proved that for most cubic polynomials, the
Diophantine equations z2 = f(x)2±f(y)2 have infinitely many rational parametric
solutions. What’s about quartic polynomial functions? We prove the following
result.
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Theorem 4.1. Let a ∈ Z\{0}. Suppose that there exists a non-zero rational

number t such that the curve

Ct : V 2 = (1− t8)U4 + 2a(1− t4)

has infinitely many rational points. Then the set of rational solutions of the

Diophantine equation z2 = (x4+a)2−(y4+a)2 satisfying the conditions 0 < y < x,

z 6= 0, is infinite.

Proof. Let us put f(x, y, z) = z2 − ((x4 + a)2 − (y4 + a)2). From the
assumption, we know that there is a rational number t 6= 0 such that the set
of rational points on the curve Ct is infinite. Moreover we know that for all but
finitely many points on the curve Ct with coordinates U, V we have UV 6= 0. Note
the following identity

f(U, tU, U2V ) = U4(V 2 − (1− t8)U4 − 2a(1− t4)).

Therefore, we conclude that if (U, V ) is the rational point on the curve Ct than the
triple (x, y, z) = (U, tU, U2V ) is a rational solution of the Diophantine equation
z2 = (x4 + a)2 − (y4 + a)2. ¤

In the view of the above theorem, it is natural to ask the following question.

Question 4.2. Let us take a ∈ Z\{0}. Is it possible to find a rational number t

such that the set of rational points on the curve

Ct : V 2 = (1− t8)U4 + 2a(1− t4)
is infinite?

Finally, one can thing about the following general question.

Question 4.3. Does there exist a polynomial f ∈ Q[X] of degree greater
than three without multiple roots such that the equation z2 = f(x)2 + f(y)2 has
infinitely many solutions in rational numbers?
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