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An inequality for moments and its applications

to the generalized allocation scheme
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Dedicated to the 100th anniversary of the birthday of Béla Gyires

Abstract. An inequality for conditional moments of centered random variables

is proved. This inequality is applied to the generalized allocation scheme. For the

generalized allocation scheme an exponential inequality is obtained. The exponential

inequality is applied to prove (partial) analogues of the Law of the Iterated Logarithm

and an analogue of Prokhorov’s Law of Large Numbers.

1. Introduction

Consider the probability measure P and the conditional probability measure

P
A with respect to the fixed event A. Let E

A denote the expectation with re-

spect to P
A. We prove the following inequality for centered moments of random

variables E
A|S − E

AS|p ≤ cp
E|S−ES|p

P(A) (Lemma 2.1). We construct an example

showing that it is the best inequality between the ordinary and the conditional

moments if P(A) → 0.

This inequality is applied to the generalized allocation scheme. The random

variables η1, . . . , ηN satisfy a generalized allocation scheme, if equation (3.1) is

true with ξ1, . . . , ξN having distribution (3.4). This scheme is widely studied, see

[5], [6], [11].
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Let µs = µsnN be the number of cells containing s particles when n particles

are allocated into N cells. First we apply Theorem 4 of [6] to obtain a lower

bound for the denominator of our upper bound (Lemma 3.1). Then we prove

an exponential inequality for the random variable µs−Eµs√
N

(Lemma 4.1). The

method of the proof of the exponential inequality is the following. We estimate

the tail probability of |µs−Eµs|√
N

by the p-th moment of the centered sum of certain

independent indicators which we majorize using Khintchine’s inequality. Finally

we compute the minimum in p.

The exponential inequality allows us to prove (partial) analogues of the Law

of the Iterated Logarithm (Theorem 4.1 and Theorem 4.2) and an analogue of

Prokhorov’s Law of Large Numbers for random variables µs (Theorem 4.3). More-

over, Laws of Large Numbers for weighted sums of µs are obtained (Theorem 4.4,

Theorem 4.5). We remark that the random variables µs = µsnN depend on the

number of cells (N) and the number of particles (n), so that n, N → ∞. Therefore

we have proved analogues of the Law of the Iterated Logarithm and an analogue

of the Law of Large Numbers for a two-indexed sequence of random variables

with indices varying in a sector.

2. The inequality for moments

Let (Ω,A, P) be a probability space. Let A ∈ A be a fixed event such that

P(A) > 0. Recall that the conditional probability P
A is defined by the formula

P
A(B) =

P(B ∩ A)

P(A)
, B ∈ A.

We will denote by E
A the expectation with respect to the probability measure P

A.

It is easy to see that for any random variable S and for any p > 0 we have

E
A|S|p ≤ 1

P(A)E|S|p. The following lemma shows that a similar inequality is true

for centered absolute moments of S. The statement is simple. However, as we

could not find an appropriate reference, we give a proof.

Lemma 2.1. Let 1 ≤ p < ∞. Then we have

E
A|S − E

AS|p ≤ cp
E|S − ES|p

P(A)
. (2.1)

Here one can choose cp = 4p/2.
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Proof. Using the definition of the conditional probability and the cp in-

equality, we obtain

E
A|S − E

AS|p = E

∣∣∣∣SIA − E(SIA)

P(A)
IA

∣∣∣∣
p

1

P(A)

= E

∣∣∣∣SIA − (ES)IA + (ES)IA − E(SIA)

P(A)
IA

∣∣∣∣
p

1

P(A)

≤ 2p−1

(
E|SIA − (ES)IA|p

1

P(A)
+

∣∣∣∣ES − E(SIA)

P(A)

∣∣∣∣
p

P(A)

P(A)

)

= 2p−1

(
E|(S − ES)IA|p

1

P(A)
+

∣∣∣∣
(ES)P(A) − E(SIA)

P(A)

∣∣∣∣
p)

= 2p−1

(
E|(S − ES)IA|p

1

P(A)
+

∣∣∣∣
E ((S − ES)(IA − P(A)))

P(A)

∣∣∣∣
p)

. (2.2)

First let p > 1. Let p′ be such that 1
p + 1

p′
= 1. By Holder’s inequality, we have

( |E ((S − ES)(IA − P(A)))|
P(A)

)p

≤
(

(E|S − ES|p) 1
p (E|IA − P(A)|p′

)
1
p′

P(A)

)p

≤ E|S − ES|p (2P(A))
p

p′

(P(A))p
≤ 2p−1 E|S − ES|p

P(A)
. (2.3)

Moreover

E|(S − ES)IA|p ≤ E|S − ES|p. (2.4)

Substituting (2.3) and (2.4) into (2.2), we obtain (2.1). Now let p = 1. We have

|E(S − ES)(IA − P(A))| ≤ E|S − ES|. (2.5)

By (2.5) and (2.2), we obtain (2.1). The proof is complete. �

Remark 2.1. Let D
2(S) be the variance of S. Since

( |E(S −ES)(IA −P(A))|
P(A)

)p

≤
(

(E(S −ES)2)
1
2 (E(IA −P(A))2)

1
2

P(A)

)p

≤(D2(S))p/2

(P(A))p/2
,

from the proof of Lemma 2.1 it follows that

E
A|S − E

AS|p ≤ 2p−1

(
E|S − ES|p

P(A)
+

(D2(S))p/2

(P(A))p/2

)
. �
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Example 2.1. Let 0 < P(A) < 1. Let B1, B2 be disjoint subsets of A such

that a P(B1) = P(B2) = P(A)/2. Define the random variable S as follows. S = 1

on the set B1, S = −1 on the set B2, and S = 0 on the set Ac. Then ES = 0,

E
AS = 0, E|S|p = P(A), E

A|S|p = 1. Therefore E
A|S − E

AS|p = 1 = 1
P(A)E|S −

ES|p. Therefore we cannot delete P(A) from the denominator of the right hand

side of (2.1). �

Corollary 2.1. Let the conditions of Lemma 2.1 be valid. Then we have

E
A exp(|S − E

AS|p) ≤ 1

P(A)
E exp((4|S − ES|)p).

Proof. Using the monotone convergence theorem and Lemma 2.1, we obtain

E
A exp(|S − E

AS|p) =

∞∑

k=0

E
A(|S − E

AS|)kp

k!

≤ 1

P(A)

∞∑

k=0

E(4|S − ES|)kp

k!
=

1

P(A)
E exp((4|S − ES|)p).

The proof is complete. �

Corollary 2.2. Let the conditions of Lemma 2.1 be valid. Let S =
∑m

i=1 ξi,

where ξ1, . . . , ξm are independent identically distributed (i.i.d.) random variables.

Then we have

E
A exp(|S − E

AS|) ≤ 1

P(A)
bm

where b = E exp((4|ξ1 − Eξ1|)).

Proof. Apply Corollary 2.1 with p = 1. �

3. The generalized allocation scheme

In the generalized scheme of allocations of particles into cells, the distrib-

ution of the cell contents is represented as the conditional distribution of inde-

pendent random variables under the condition that their sum is fixed, see [5],

[11]. We can describe the generalized allocation scheme as follows. Let η1, . . . , ηN

be nonnegative integer-valued random variables (we do not assume the indepen-

dence of η1, . . . , ηN ). They are considered as certain numerical characteristics of

the combinatorial structure of n elements consisting of N components such that
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η1 + · · · + ηN = n. If there exist independent random variables ξ1, . . . , ξN such

that the joint distribution of η1, . . . , ηN admits the representation

P{η1 = k1, . . . , ηN = kN} = P{ξ1 = k1, . . . , ξN = kN | ξ1 + · · · + ξN = n}, (3.1)

where k1, . . . , kN are arbitrary nonnegative integers, we say that η1, . . . , ηN repre-

sent a generalized allocation scheme with parameters n and N , and independent

random variables ξ1, . . . , ξN . Throughout the paper we assume that the random

variables η1, . . . , ηN and ξ1, . . . , ξN satisfy (3.1).

In view of independence of the random variables ξ1, . . . , ξN , the study of

several questions of the generalized allocation scheme can be reduced to problems

of sums of independent random variables. Let µs be the number of the random

variables η1, . . . , ηN being equal to s, s = 0, 1, . . . , n. Observe that

µs = µsnN =

N∑

i=1

I{ηi=s} (3.2)

is the number of cells containing s particles. Details of the theory of generalized

allocation schemes can be found in [5], [11].

Let the random variables ξ1, . . . , ξN be identically distributed. Usually (see,

e.g., [6]) the random variables ξ1, . . . , ξN follow a power-series distribution: qk =

P{ξ1 = k} = (bkθk)/(k!B(θ)) where b0, b1, . . . is a certain sequence of non-

negative numbers, and B(θ) =
∑∞

k=0 bkθk/k!.

Consider a simple example.

Example 3.1. Let ξi have binomial distribution, i.e. P(ξi = k) =(
t
k

)
pk(1 − p)t−k, k = 0, 1, . . . , t. Then

P{ξ1 = k1, . . . , ξN = kN | ξ1 + · · · + ξN = n} =

(
t

k1

)
. . .

(
t

kN

) / (Nt

n

)

if k1 + · · · + kN = n. That is {η1 = k1, . . . , ηN = kN} has poly-hypergeometric

distribution. �

Examples considering usual random allocations and random forests can be

found in [5], [11] (see also Section 5 of the present paper).

Therefore, in what follows, we consider a sequence of non-negative numbers

b0, b1, . . . with b0 > 0, b1 > 0 and assume that the convergence radius R of the

series

B(θ) =

∞∑

k=0

bkθk

k!
(3.3)
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is positive. Let us introduce the integer-valued random variable ξ = ξ(θ) (where

θ > 0) with distribution

P{ξ = k} =
bkθk

k!B(θ)
, k = 0, 1, 2, . . . . (3.4)

By [6], one has

m = m(θ) = Eξ =
θB′(θ)

B(θ)

and

σ2 = σ2(θ) = D
2ξ =

θ2B
′′

(θ)

B(θ)
+

θB′(θ)

B(θ)
− θ2(B′(θ))2

(B(θ))2
. (3.5)

The last equality implies that

σ2(θ) = θm′(θ). (3.6)

Let 0 < θ′ < θ
′′

< R. If σ2(θ) = 0 for some θ ∈ [θ′, θ
′′

], then the random

variable ξ(θ) is a constant. Since b0 > 0, b1 > 0, the random variable ξ(θ) is

not a constant. Therefore σ2(θ), θ ∈ [θ′, θ
′′

] is a positive continuous function.

Consequently,

0 < C1 = inf
θ∈[θ′,θ′′ ]

σ2(θ) ≤ sup
θ∈[θ′,θ′′ ]

σ2(θ) = C2 < ∞. (3.7)

By (3.6) and (3.7), we have

0 <
C1

θ′′
≤ inf

θ∈[θ′,θ′′ ]
m′(θ) ≤ sup

θ∈[θ′,θ′′ ]

m′(θ) ≤ C2

θ′
< ∞.

So m(θ), θ ∈ [θ′, θ
′′

], is a positive, continuous, strictly increasing function. We

will denote by m−1 the inverse function of m.

We see that the random variable ξ(θ) has all moments, if θ < R.

Throughout the paper let ξ1(θ), . . . , ξN (θ) be independent copies of ξ(θ)

where ξ(θ) has distribution (3.4). Introduce notation α = n/N . In this section

we will consider the event

A = AN (n) = {ω ∈ Ω : ξ1(θα)(ω) + ξ2(θα)(ω) + · · · + ξN (θα)(ω) = n}

where θα = m−1(α). Let PN (n) = P(AN (n)).

Lemma 3.1. Let 0 < α ′ < α ′′ be such that m−1(α ′′) < R. Let α = n/N .

Then there exists N0 ∈ N with the following property: if n, N ∈ N are such that

N > N0 and α ′ ≤ α ≤ α ′′, then we have

PN (n) >
1

4σ(θα)
√

N
. (3.8)



An inequality for moments and its applications. . . 277

Proof. Let θ′ = m−1(α ′) and θ
′′

= m−1(α ′′). Then α ′ ≤ α ≤ α ′′ if and

only if θ′ ≤ θα ≤ θ
′′

. Therefore, by Theorem 4 from [6], there exists N0 ∈ N such

that if N > N0 and α ′ ≤ α ≤ α ′′, then

σ(θα)
√

NPN (n) − 1√
2π

exp

{
− (n − m(θα)N)2

2σ2(θα)N

}
>

1

4
− 1√

2π
. (3.9)

Since m(θα) = α, we have 1√
2π

exp
{
− (n−m(θα)N)2

2σ2(θα)N

}
= 1√

2π
. Consequently, (3.9)

implies (3.8). �

4. Limit theorems for the generalized allocation scheme

In this section we shall prove limit theorems for µs = µsnN =
∑N

i=1 I{ηi=s}
defined in (3.2). Recall Khintchine’s inequality (see [7], [1], Section 10.3) which

we will use. Let 1 ≤ p < ∞ and let ri, i ∈ N, be the Rademacher functions. Let

Er denote the expectation with respect to {ri}. Then for any ci ∈ R, 1 ≤ i ≤ l,

we have (
Er

∣∣∣∣
l∑

i=1

ciri

∣∣∣∣
p
)1/p

≤ Ch
√

p

(
l∑

i=1

(ci)
2

)1/2

,

where Ch does not depend on {ci} and p.

Introduce notation I
(s)
i = I{ηi=s}, J

(s)
i = I{ξi=s}, σ2

s = qs(1− qs) = D
2(J (s)),

qs = P{ξi = s} and ps = P{ηi = s}.
We will use the following exponential inequality.

Lemma 4.1. Let 0 < α ′ < α ′′ be such that m−1(α ′′) < R. Suppose that

N0 ∈ N is such that the assertion of Lemma 3.1 is valid. Let n, N ∈ N are such

that N > N0 and α ′ ≤ α = n/N ≤ α ′′. Then for ε ≥ 4Ch

√
2e we have

P

{ |µs − Eµs|√
N

≥ ε

}
≤ 8σ2

s

√
Nσ(θα)e

− ε2

32eC2
h . (4.1)

Proof. Let {J (ss)
i , 1 ≤ i ≤ N} be an independent copy of {J (s)

i , 1 ≤ i ≤ N}.
We can suppose that {J (ss)

i , 1 ≤ i ≤ N}, {J (s)
i , 1 ≤ i ≤ N} and {ri, 1 ≤ i ≤

N} are independent families. Using (2.1), Lemma 3.1, Jensen’s inequality, and

Khintchine’s inequality for p ≥ 2, we obtain

P

{ |µs − Eµs|√
N

≥ ε

}
= P

{ |
∑N

i=1(I
(s)
i − ps)|√
N

≥ ε

}
≤ 1

εp
E

∣∣∣∣
∑N

i=1(I
(s)
i − ps)√
N

∣∣∣∣
p
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≤ 4p

εpP(A)
E

∣∣∣∣
∑N

i=1(J
(s)
i − qs)√
N

∣∣∣∣
p

≤ 4σ(θ)N1/24p

εp
E

∣∣∣∣
∑N

i=1(J
(s)
i − J

(ss)
i )√

N

∣∣∣∣
p

=
4σ(θ)N1/24p

εp
EEr

∣∣∣∣
∑N

i=1 ri(J
(s)
i − J

(ss)
i )√

N

∣∣∣∣
p

≤ 4σ(θ)N1/24p

εp
E

(
Ch

√
p

( N∑

i=1

(J
(s)
i − J

(ss)
i )2

N

)1/2)p

≤ 4σ(θ)N1/24pCp
hpp/2

εp
E

( N∑

i=1

(J
(s)
i − J

(ss)
i )2

N

)

= 2σ2
s

4σ(θ)N1/24pCp
hpp/2

εp
. (4.2)

For p = ε2

16eC2
h

from (4.2) follows (4.1). �

Remark 4.1. Actually, the above calculations imply the following analogue of

the Kolmogorov exponential inequality ([10]). Let ζ1, ζ2, . . . , ζn be independent

centered random variables such that
∑n

i=1(ζi)
2 ≤ c2 almost surely. Then for

ε ≥ 2cCh
√

e we have

P

{∣∣∣∣
n∑

i=1

ζi

∣∣∣∣ ≥ ε

}
≤ 1

2c2

(
n∑

i=1

D
2(ζi)

)
e
− ε2

8e(cCh)2 .

If, moreover, ζi, 1 ≤ i ≤ n, are symmetric, then for ε ≥ cCh
√

e we have

P

{∣∣∣∣
n∑

i=1

ζi

∣∣∣∣ ≥ ε

}
≤ 1

c2

(
n∑

i=1

D
2(ζi)

)
e
− ε2

2e(cCh)2 . �

In the following theorems we will assume that the random variables consid-

ered are defined on the same probability space (Ω,A, P).

Let nk, Nk be positive integer numbers such that Nk < Nk+1, k ∈ N. Let

αk = nk/Nk, θk = m−1(αk) and

µsk =

Nk∑

i=1

I{ηi=s}. (4.3)

Now we will prove two analogues of the Law of the Iterated Logarithm.

Theorem 4.1. Let 0 < α ′ < α ′′ be such that m−1(α ′′) < R. Suppose that

0 < α ′ ≤ αk ≤ α ′′ for all k ∈ N. Then we have

lim sup
k→∞

|µsk − Eµsk|√
Nk ln(Nk)

≤ 4Ch

√
3e almost surely. (4.4)
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Proof. Let N0 be the value from Lemma 3.1. Let t > 4Ch

√
3e. Then

t2

32eC2
h

− 1
2 > 1. Therefore, by (4.1), we obtain for N > N0

∞∑

k=N0+1

P

{ |µsk − Eµsk|√
Nk ln(Nk)

≥ t

}
=

∞∑

k=N0+1

P

{ |µsk − Eµsk|√
Nk

≥
√

ln(Nk)t

}

≤
∞∑

k=N0+1

8σ2
s

√
Nkσ(θk)e

− (
√

ln(Nk)t)2

32eC2
h ≤ 8σ2

s

√
C2

∞∑

k=N0+1

N
− t2

32eC2
h

+ 1
2

k < ∞.

Consequently, by the Borel–Cantelli lemma, for all t > 4Ch

√
3e we have

lim supk→∞
|µsk−Eµsk|√

Nk ln(Nk)
≤ t almost surely. This implies (4.4). �

Theorem 4.2. Let 0 < α ′ < α ′′ be such that m−1(α ′′) < R. Then, for

µsnN defined in (3.2), we have

lim sup
n,N→∞, α ′<α<α ′′

|µsnN − EµsnN |√
N ln(N)

≤ 4Ch

√
5e, almost surely. (4.5)

Proof. First we remark that, for any two index sequence ln,N ,

lim supn,N→∞, α ′<α<α ′′ ln,N exists and it is unique because of 0 < α ′ < α ′′ < ∞.

Let t > 4Ch

√
5e. Then t2

32eC2
h

− 1
2 − 1 > 1. Therefore, by (4.1), we obtain

∞∑

N=N0+1

∑

Nα ′≤n≤α ′′N

P

{ |µsnN − EµsnN |√
N ln(N)

≥ t

}

=

∞∑

N=N0+1

∑

Nα ′≤n≤α ′′N

P

{ |µsnN − EµsnN |√
N

≥
√

ln(N)t

}

≤
∞∑

N=N0+1

8σ2
s(α ′′ − α ′)N

√
N
√

C2e
− (

√
ln(N)t)

2

32eC2
h

≤ 8σ2
s

√
C2(α

′′ − α ′)
∞∑

N=N0+1

N
− t2

32eC2
h

+ 1
2+1

< ∞.

Consequently, by the Borel–Cantelli lemma, we have

lim supn,N→∞,α ′<α<α ′′

|µsnN−EµsnN |√
N ln(N)

≤ t almost surely, for all t > 4Ch

√
5e. This

implies (4.5). �

Now we turn to an analogue of Prokhorov’s Law of Large Numbers (see [9]).
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Theorem 4.3. Let 0 <α ′ <α ′′ be such that m−1(α ′′)<R. Let
√

N ln(N)=

o(bN ) as N → ∞. Then we have

lim
n,N→∞, α ′<α<α ′′

µsnN − EµsnN

bN
= 0 almost surely. (4.6)

Proof. Let ε > 0. Choose N ′ > N0 such that bN√
N ln(N)

ε > 4Ch

√
5e for all

N ≥ N ′. Then (bN ε)2�√
N ln(N)

�2
1

32eC2
h

− 1
2 − 1 > 1 for all N ≥ N ′. Therefore, by

(4.1), we obtain

∞∑

N=N ′

∑

Nα ′≤n≤α ′′N

P

{ |µsnN − EµsnN |
bN

≥ ε

}

=
∞∑

N=N ′

∑

Nα ′≤n≤α ′′N

P

{ |µsnN − EµsnN |√
N

≥ bN

√
ln(N)√

N ln(N)
ε

}

≤
∞∑

N=N ′

8σ2
s(α ′′ − α ′)N

√
N
√

C2e
− (bN

√
ln(N)ε)2

(
√

N ln(N))
2

1

32eC2
h

≤ 8σ2
s

√
C2(α

′′ − α ′)
∞∑

N=N ′

N
− (bN ε)2

(
√

N ln(N))
2

1

32eC2
h

+ 1
2+1

< ∞.

Consequently, for all ε > 0 we have lim supn,N→∞, α ′<α<α ′′

|µsnN−EµsnN |√
N ln(N)

≤ ε

almost surely. This implies (4.6). �

Lemma 4.2. Let 0 < α ′ < α ′′ < R. For all 0 ≤ r < ∞, as N, n → ∞
uniformly for α ′ < α < α ′′ we have

E

(
1

N
µrnN

)
=

brθ
r
α

r!B(θα)
·
√

N

N − 1
·

1√
2π

exp
{
− (n−r− n

N
(N−1))2

2σ2(θα)(N−1)

}
+ o(1)

1√
2π

+ o(1)
.

Proof. By Theorem 4 of [6], as N, n → ∞ uniformly for α ′ < α < α ′′ we

have

E

(
1

N
µrnN

)
= P{η1 = r}

=
P{ξ1(θα) = r}P{ξ2(θα) + ξ3(θα) + · · · + ξN (θα) = n − r}

P{ξ1(θα) + ξ2(θα) + · · · + ξN (θα) = n}

= P{ξ1(θα) = r}
√

Nσ(θα)
√

N − 1P{ξ2(θα) + ξ3(θα) + · · · + ξN (θα) = n − r}√
N − 1σ(θα)

√
NP{ξ1(θα) + ξ2(θα) + · · · + ξN (θα) = n}
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=
brθ

r
α

r!B(θα)
·
√

N

N − 1
·

1√
2π

exp
{
− (n−r− n

N
(N−1))2

2σ2(θα)(N−1)

}
+ o(1)

1√
2π

+ o(1)
.

The proof is finished. �

Recall the Rosenthal inequality ([14], [12], Theorem 2.9) which we will use

in the next theorem. Let {ζi} be independent centered random variables. Let

p ≥ 2. Then we have

E

∣∣∣∣
n∑

i=1

ζi

∣∣∣∣
p

< cp

(
n∑

i=1

E|ζi|p +

( n∑

i=1

D
2(ζi)

)p/2
)

, (4.7)

where cp depends on p only.

Let

SnN =
1

N

∞∑

r=0

βrµrnN (4.8)

where µrnN is defined by (3.2).

Lemma 4.3. Let 0 < α ′ < α ′′ < R. Let βr ∈ R be such that
∑∞

r=0 |βr|p br(θ
′′

)r

r! <∞ for some 2 < p and m(θ
′′

)=α ′′. Let ζαi =
∞∑

r=0
βrI{ξi(θα)=r},

ζc
αi = ζαi − Eζαi. Then there exists N0 ∈ N such that

E |SnN − ESnN |p ≤ 4p+1σ(θα)cp

(
E|ζc

αi|p
Np−1−1/2

+
(E(ζc

αi)
2)p/2

Np/2−1/2

)
. (4.9)

for all N > N0 and α ′ < α < α ′′.

Proof. First we remark that E|ζα,i|p =
∑∞

r=0 |βr|p brθr

r!B(θ) < C < ∞. By

Lemma 3.1, there exists N0 ∈ N such that for all N > N0 and α ′ < α < α ′′ it

holds

P{ξ1(θα) + ξ2(θα) + · · · + ξN (θα) = n} ≥ 1

4σ(θα)
√

N
.

Therefore, by Lemma 2.1, Lemma 3.1 and (4.7), we obtain for N > N0

E |SnN − ESnN |p ≤ 4p

Np

E

∣∣∣
∑N

i=1 ζc
αi

∣∣∣
p

P{ξ1(θα) + ξ2(θα) + · · · + ξN (θα) = n}

≤ 4p+1σ(θα)
√

Ncp

(
NE|ζc

αi|p
Np

+

(
NE(ζc

αi)
2

N2

)p/2
)

≤ 4p+1σ(θα)cp

(
E|ζc

αi|p
Np−1−1/2

+
(E(ζc

αi)
2)p/2

Np/2−1/2

)
.

The proof is finished. �
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Theorem 4.4. Let N, n → ∞ such that n/N = α → α0 and m(θα0) = α0

for some 0 < θα0 < R. Let β1, β2, . . . be a real sequence such that
∑∞

r=0 |βr|p br(θ
′′

)r

r! < ∞ for some 5 < p and some θ
′′

such that θα0 < θ
′′

<R. Then

for SnN defined in (4.8) we have

SnN → S, as n, N → ∞ such that n/N = α → α0 (4.10)

almost surely, where S =
∑∞

r=0 βr
brθr

α0

r!B(θα0) .

Proof. Let 0 < θ′ < θα0 . We use the notation α ′ = m(θ′) and α ′′ = m(θ
′′

).

Since N, n → ∞ so that n/N = α → α0, we can assume that α ′ < α < α ′′ for

all n, N . By condition 5 < p, using (4.9), we obtain

∞∑

N=1

∑

α ′N≤n≤α ′′N

P {|SnN − ESnN | > ε}

≤ 1

εp

∞∑

N=1

∑

α ′N≤n≤α ′′N

E |SnN − ESnN |p < ∞,

for all ε > 0. Therefore, as N, n → ∞ so that α → α0, we have

SnN − ESnN → 0 (4.11)

almost surely. From Lemma 4.2 it follows that

ESnN → S, as N, n → ∞ so that α → α0. (4.12)

Since

SnN = SnN − ESnN + ESnN ,

from (4.11) and (4.12) we obtain (4.10). The proof is finished. �

For M ⊂ N let

µ̃MnN =
1

N

∑

s∈M

µsnN .

Observe that µ̃MnN is the average of the numbers of boxes containing s balls with

s ∈ M. Using Theorem 4.4 with βr = IM(r), we obtain the following corollary.

Corollary 4.1. Let N, n → ∞ so that α → α0 and m(θα0) = α0 for some

0 < θα0 < R. Then

µ̃MnN → µ̃M

almost surely, where µ̃M =
∑

r∈M

brθr
α0

r!B(θα0) . �



An inequality for moments and its applications. . . 283

Let

νMnN =
1

N

∑

s∈M

sµsnN .

We see that νMnN is the average of the numbers of balls belonging to boxes

containing s balls with s ∈ M. Using Theorem 4.4 with βr = rIM(r), we obtain

the following corollary.

Corollary 4.2. Let N, n → ∞ so that α → α0 and m(θα0) = α0 for some

0 < θα0 < R. Then

νMnN → νM

almost surely, where νM =
∑

r∈M, r≥1

brθr
α0

(r−1)!B(θα0) . �

Theorem 4.5. Let Nk, nk → ∞ as k → ∞ such that nk/Nk = αk → α

and m(θ) = α for some 0 < θ < R. Let β1, β2, . . . be a real sequence such that
∑∞

r=0 |βr|p br(θ
′′

)r

r! < ∞ for some 3 < p and some θ
′′

such that θ < θ
′′

< R. Let

Sk =
1

Nk

∞∑

r=0

βrµrk

where µrk is defined by (4.3). Then

Sk → S, as k → ∞ (4.13)

almost surely, where S =
∑∞

r=0 βr
brθr

α

r!B(θα) .

Proof. Let 0 < θ′ < θ. We use the notation α ′ = m(θ′) and α ′′ = m(θ
′′

).

We can assume that α ′ < αk < α ′′ for all k ∈ N. Condition 3 < p and (4.9)

imply
∞∑

k=1

P {|Sk − ESk| > ε} ≤ 1

εp

∞∑

k=1

E |Sk − ESk|p < ∞

for all ε > 0. Therefore, as k → ∞, it holds that

Sk − ESk → 0 (4.14)

almost surely. From Lemma 4.2 it follows that

ESk → S, as k → ∞ so that αk → α. (4.15)

Since Sk = Sk − ESk + ESk, from (4.14) and (4.15) we obtain (4.13). The proof

is finished. �
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Remark 4.2. In several papers generalizations and improvements of the

Rosenthal inequality were obtained. Consider the following inequality from [15].

Let p ≥ 2 and let ζ1, . . . , ζn be independent centered random variables. Then

E

∣∣∣∣
n∑

i=1

ζi

∣∣∣∣
p

< Kp

(
p

ln p

)p(
E max

1≤i≤n
|ζi|p +

( n∑

i=1

D
2(ζi)

)p/2)
(4.16)

where K does not depend on p and ζ1, . . . , ζn. In the proof of Lemma 4.1, using

(4.16) instead of Khintchine’s inequality and choosing p = ε
4eKσs

, we obtain

P

{ |µs − Eµs|√
N

> ε

}
≤ 4σ(θ)

√
N

(
e ln

(
ε

4eKσs

))− ε
4eKσs

[
1 + (σs

√
N)−

ε
4eKσs

]

where ε ≥ 8eKσs.

5. Applications

Example 5.1. Let ξi have Poisson distribution, i.e. P(ξi = k) = λk

k! e
−λ,

k = 0, 1, . . . . Then

P{ξ1 = k1, . . . , ξN = kN | ξ1 + · · · + ξN = n} =
n!

k1! . . . kN !

(
1

N

)n

if k1 + · · ·+kN = n. That is {η1 = k1, . . . , ηN = kN} has polynomial distribution.

Now {η1 = k1, . . . , ηN = kN} means that the cell contents are k1, . . . , kN after

allocating n particles into N cells considering the usual allocation procedure.

We see that the parameter θ used in the generalized allocation scheme is

the same as λ in the above usual allocation procedure. As m(λ) = Eξ1 = λ, the

parameter n/N = α coincides with λ.

We see that µrnN is the number of cells with r particles (after allocating n

particles into N cells). Now, by Theorem 4.4, if n, N → ∞ so that n/N → λ0,

then
µrnN

N
→ λr

0

r!
e−λ0

almost surely. (For a direct proof of the above result, see [2].) �

Example 5.2. Let Tn,N denote the set of forests containing N labelled roots

and n labelled non-root vertices. By Cayley’s theorem, Tn,N has N(n + N)n−1
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elements. Consider uniform distribution on Tn,N . Let ηi denote the number of

the non-root vertices of the ith tree. Then

P{η1 = k1, . . . , ηN = kN} =
n!

k1! . . . kN !

(k1 + 1)k1−1 . . . (kN + 1)kN−1

N(N + n)n−1
.

Now let ξi have Borel distribution (see [4], [8]) P(ξi = k) = λk(1+k)k−1

k! e−(k+1)λ,

k = 0, 1, . . . , 0 < λ < 1. Then

P{ξ1 = k1, . . . , ξN = kN | ξ1 + · · · + ξN = n}

=
n!

k1! . . . kN !

(k1 + 1)k1−1 . . . (kN + 1)kN−1

N(N + n)n−1

if k1 + · · · + kN = n. See [5], [3], [11]. Therefore η1, . . . , ηN satisfy (3.1).

Now we apply our general results for forests. First we remark that

∞∑

k=1

kk−1

k!
(ae−a)k = a,

see [13]. Using this fact we can see that
∑∞

k=1
λk(k+1)k−1

k! e−(k+1)λ = 1, moreover

m(λ) = Eξ1 =

∞∑

k=1

k
λk(k + 1)k−1

k!
e−(k+1)λ =

λ

1 − λ
.

So m−1(α) = α
1+α . Therefore the relation between α = n/N and λα = m−1(α)

is λα = α
1+α . We see that µrnN is the number of trees with r non-root vertices.

Now, by Theorem 4.4, if n, N → ∞ so that n/N → α0, then

µrnN

N
→ λr

0(r + 1)r−1

r!
e−(r+1)λ0

almost surely, where λ0 = α0

1+α0
. (For a direct proof of the above result, see [3].)

We remark that for the generalized allocation scheme we used parameter θ while

for random forests we used parameter λ. The relation of the parameters is θ =

λeλ, λ ∈ (0, 1). �
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