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An inequality for moments and its applications
to the generalized allocation scheme
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Dedicated to the 100" anniversary of the birthday of Béla Gyires

Abstract. An inequality for conditional moments of centered random variables
is proved. This inequality is applied to the generalized allocation scheme. For the
generalized allocation scheme an exponential inequality is obtained. The exponential
inequality is applied to prove (partial) analogues of the Law of the Iterated Logarithm
and an analogue of Prokhorov’s Law of Large Numbers.

1. Introduction

Consider the probability measure PP and the conditional probability measure
P4 with respect to the fixed event A. Let E# denote the expectation with re-
spect to PA. We prove the following inequality for centered moments of random
variables E4|S — EAS|P < cp%ig)sw (Lemma 2.1). We construct an example
showing that it is the best inequality between the ordinary and the conditional
moments if P(4) — 0.

This inequality is applied to the generalized allocation scheme. The random
variables n1,...,nn satisfy a generalized allocation scheme, if equation (3.1) is
true with &, ..., &y having distribution (3.4). This scheme is widely studied, see

[5], (6], [11].
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Let ps = psnn be the number of cells containing s particles when n particles
are allocated into N cells. First we apply Theorem 4 of [6] to obtain a lower
bound for the denominator of our upper bound (Lemma 3.1). Then we prove
an exponential inequality for the random variable “ST_%“—S (Lemma 4.1). The
method of the proof of the exponential inequality is the following. We estimate
the tail probability of “‘L\/%S‘ by the p-th moment of the centered sum of certain
independent indicators which we majorize using Khintchine’s inequality. Finally
we compute the minimum in p.

The exponential inequality allows us to prove (partial) analogues of the Law
of the Iterated Logarithm (Theorem 4.1 and Theorem 4.2) and an analogue of
Prokhorov’s Law of Large Numbers for random variables us (Theorem 4.3). More-
over, Laws of Large Numbers for weighted sums of us are obtained (Theorem 4.4,
Theorem 4.5). We remark that the random variables s = pg,n depend on the
number of cells (N) and the number of particles (n), so that n, N — co. Therefore
we have proved analogues of the Law of the Iterated Logarithm and an analogue
of the Law of Large Numbers for a two-indexed sequence of random variables
with indices varying in a sector.

2. The inequality for moments

Let (€, A,P) be a probability space. Let A € A be a fixed event such that
P(A) > 0. Recall that the conditional probability P4 is defined by the formula

P(BNA)

PA(B)=————, BeA

We will denote by E4 the expectation with respect to the probability measure P4,
It is easy to see that for any random variable S and for any p > 0 we have

EA|S|P < ﬁHS |?. The following lemma shows that a similar inequality is true

for centered absolute moments of S. The statement is simple. However, as we

could not find an appropriate reference, we give a proof.

Lemma 2.1. Let 1 < p < oo. Then we have

E[S — ES|?

A _ A p<
E4|S —E2S|P < ¢p F(A)

Here one can choose ¢, = 47 /2.
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Proor. Using the definition of the conditional probability and the ¢, in-
equality, we obtain

p
EA|S —EASP =K ‘S]IA - Eléffyh P(z)
_E ‘511,4 — (ES)L4 + (ES)L4 — E};ﬂ;‘)h ’ . (114)
< or-1 (]E|SHA - (]ES)]IAV’ﬁ + ‘]ES - Eléff{;‘) ’ %)
= or1 (IEI(S N ]ES)JIAI”P(lA) + ’ (ES)P(’;Q)E(SHA ’
=or-! (IE|(S - IES)]IAV’P(lA) + ’]E (Cin E‘;)(%‘ —PA4) p) - (22)
First let p > 1. Let p’ be such that % + % = 1. By Holder’s inequality, we have

(IE ((S —ES)(Ia — P(A)))| )” _ ((IE|S —ES[P)5 (E[Ly — P(A)[")7 )p
P(A) - P(A)

E[S — ES|P (2P(A))» < g EIS —ESp

B (P(A))» - P(A)

(2.3)

Moreover
E|(S —ES)I4|P < E|S —ESP. (2.4)

Substituting (2.3) and (2.4) into (2.2), we obtain (2.1). Now let p = 1. We have
[E(S —ES)(I4 —P(A))| <E|S —-ES]|. (2.5)

By (2.5) and (2.2), we obtain (2.1). The proof is complete. O

Remark 2.1. Let D?(S) be the variance of S. Since

<IE(S —ES)(I4 —P(4))| >p< (E(S —ES)?)2 (E(a —P(4))*)? p< (D?(8))""
P(A) - P(A) =T (BA)P2

from the proof of Lemma 2.1 it follows that

— p 2 p/2

BA) | (B(A)PP
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Ezample 2.1. Let 0 < P(A) < 1. Let By, By be disjoint subsets of A such
that a P(By) = P(Bs2) = P(A)/2. Define the random variable S as follows. S =1
on the set By, S = —1 on the set By, and S = 0 on the set A°. Then ES = 0,
EAS = 0, E[S|? = P(A), E4|S|” = 1. Therefore E4|S —EAS|P = 1 = 55 E[S —
ES[P. Therefore we cannot delete P(A) from the denominator of the right hand
side of (2.1). O

Corollary 2.1. Let the conditions of Lemma 2.1 be valid. Then we have
E4 exp(|S — EAS|P) < L]Eexp((4|s —ES|)P).
~ P(4)

Proor. Using the monotone convergence theorem and Lemma 2.1, we obtain

EA exp(|S — EAS|P) =

i EA(]S — EAS|)

Z E(4]S — IESI) E exp((4]S — ES|)P).

~ P(4)

k:O
The proof is complete. (|

Corollary 2.2. Let the conditions of Lemma 2.1 be valid. Let S = ;" &,
where &1, . . ., &, are independent identically distributed (i.i.d.) random variables.
Then we have )

A A m
S—E*S|) < ——b
exp( )< 50
where b = Eexp((4|& — E&])).

PRrROOF. Apply Corollary 2.1 with p = 1. O

3. The generalized allocation scheme

In the generalized scheme of allocations of particles into cells, the distrib-
ution of the cell contents is represented as the conditional distribution of inde-
pendent random variables under the condition that their sum is fixed, see [5],
[11]. We can describe the generalized allocation scheme as follows. Let n1,..., 7y
be nonnegative integer-valued random variables (we do not assume the indepen-
dence of n1,...,nn). They are considered as certain numerical characteristics of
the combinatorial structure of n elements consisting of N components such that
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m + -+ +nn = n. If there exist independent random variables &;,...,&y such
that the joint distribution of 71,...,nx admits the representation

P{m =Fki,....on =kn} =P{& =k1,....n =kn | &+ -+ & =n}, (3.1)

where k1, ..., ky are arbitrary nonnegative integers, we say that n,...,ny repre-
sent a generalized allocation scheme with parameters n and N, and independent
random variables &1, ...,&n. Throughout the paper we assume that the random
variables 71,...,ny and &1, ..., &y satisfy (3.1).

In view of independence of the random variables &1,...,&y, the study of
several questions of the generalized allocation scheme can be reduced to problems
of sums of independent random variables. Let us be the number of the random

variables 11, ...,ny being equal to s, s =0,1,...,n. Observe that
N
Ms = UsnN = ZH{W:S} (32)
i=1

is the number of cells containing s particles. Details of the theory of generalized
allocation schemes can be found in [5], [11].

Let the random variables &1, ..., &x be identically distributed. Usually (see,
e.g., [6]) the random variables &1, ...,&n follow a power-series distribution: g =
P{¢& = k} = (bp0%)/(k'B(0)) where bg,by,... is a certain sequence of non-
negative numbers, and B(0) = > 7, bx0* /k!.

Consider a simple example.

Ezample 3.1. Let &; have binomial distribution, i.e. P(§; = k) =
(D)p*(1 = p)'=*, k=0,1,...,t. Then

k
]P){gl—kh...,fzv—k]v|§1+...+§N_n}_(]:1)”'<kiv>/<]it>

if kv + -+ kx =n. That is {m = ki1,...,nv = kn} has poly-hypergeometric
distribution. [l

Examples considering usual random allocations and random forests can be
found in [5], [11] (see also Section 5 of the present paper).

Therefore, in what follows, we consider a sequence of non-negative numbers
bg, b1, ... with bg > 0, by > 0 and assume that the convergence radius R of the
series

. b0k
BOY=2_ T

k=0

(3.3)
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is positive. Let us introduce the integer-valued random variable & = £(0) (where
6 > 0) with distribution

bi6"
P{g:k}:k”’;(e), k=0,1,2,.... (3.4)
By [6], one has
_ e 9B(0)
m=m(0) =K = B)
and

"

B _6*B () 6B'() 6*(B'(0))?
7= O =D =5 B B0 39
The last equality implies that
o(0) = 6m’ (). (3.6)

Let 0 < 0 < 0" < R. If 02(0) = 0 for some 6 € [#,0"], then the random
variable () is a constant. Since by > 0, by > 0, the random variable £(6) is
not a constant. Therefore 62(6), 6 € [¢/,0"] is a positive continuous function.
Consequently,

0<Cp= inf o%(0)< sup o%(f) =Cy< 0. (3.7)

0€l6,6"] 0e[o’,0”]

By (3.6) and (3.7), we have

0< C—,} < inf m'(#)< sup m(0) < — < oo.
0" = oclor0”] oe0',0") 0"

So m(0), 6 € [9’,6‘”], is a positive, continuous, strictly increasing function. We
will denote by m ™! the inverse function of m.

We see that the random variable £(6) has all moments, if 6 < R.

Throughout the paper let &;(0),...,&n(0) be independent copies of £(0)
where £(0) has distribution (3.4). Introduce notation o« = n/N. In this section
we will consider the event

A=An(n) ={weQ:&(0a)(w) +(0a)(w) + -+ En(0a) (W) = n}
where 0, = m~!(a). Let Py(n) = P(Ay(n)).

Lemma 3.1. Let 0 < o’ < a” be such that m™'(a”) < R. Let « = n/N.
Then there exists Ny € N with the following property: if n, N € N are such that
N > Ny and o’ < a < ", then we have

1

PN(TL) > W.

(3.8)
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PROOF. Let # = m~'(a’) and 8" = m~'(a”). Then a’ < a < a” if and
only if #/ < 8, < 9" Therefore, by Theorem 4 from [6], there exists Ny € N such
that if N > Ng and o’ < a < a’, then

1 (n —m(0,)N)? 1 1
U(oa)mPN(n)_Eexp{_W} > Z—E (3.9)

Since m(f,) = a, we have \/%7 exp { — %} = \/% Consequently, (3.9)

implies (3.8). O

4. Limit theorems for the generalized allocation scheme

In this section we shall prove limit theorems for pus = psny = sz\il IFP—
defined in (3.2). Recall KHINTCHINE’s inequality (see [7], [1], Section 10.3) which
we will use. Let 1 < p < oo and let 7;, ¢ € N, be the Rademacher functions. Let
E, denote the expectation with respect to {r;}. Then for any ¢; € R, 1 < i <,

I o\ /P I 1/2
(za;) scms(zw) ,
=1 =1

we have

where C}, does not depend on {¢;} and p.

Introduce notation I*) =T, _, & = L1e,_yy, 02 = gs(1—g) = D2(J ),
s = P{& = s} and p, = P{n; = s}.

We will use the following exponential inequality.

Lemma 4.1. Let 0 < o’ < o’ be such that m~1(a”) < R. Suppose that
Ny € N is such that the assertion of Lemma 3.1 is valid. Let n, N € N are such
that N > Ny and o’ < a=n/N < a”. Then for ¢ > 4Cy\/2e we have

S _E S 7i
P{Wi\/ﬁﬁ > a} < 802V No(fa)e 2F. (4.1)

PROOF. Let {JZ-(SS), 1 <4 < N} be an independent copy of {Ji(s), 1<i< N}
We can suppose that {JZ-(SS),l <i < N}, {JZ-(S),l <i < N}and {r;,1 <i<
N} are independent families. Using (2.1), Lemma 3.1, Jensen’s inequality, and
Khintchine’s inequality for p > 2, we obtain

|tts — Ep| SN (1Y~ py)l 1SN @ —pa) |
P——=—2>c,=P >e, < —E="=—"——=-
VN VN ep VN
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Zz 1 S) — ) B 40(9)N1/24PE Zivzl(Ji(S) _ J(SS)) p
EPP ep VN
zﬁil n(” = L)

VN
<W (Ch\/—<zw)l/2)p
- N

40(0 N1/24P
_ 40(0) E,

ep

ep

1/24p (P 10/ 2 N (s) (ss)y2
<4(6‘)N 4PChp (ZJ - J; ))

ep
4o (O) N/ 24P Clpr/?
_ 9,2400) W (4.2)
ep
For p = 152 02 from (4.2) follows (4.1). O

Remark 4.1. Actually, the above calculations imply the following analogue of
the Kolmogorov exponential inequality ([10]). Let (1,(o,...,(, be independent
centered random variables such that Y7 ,(¢;)? < ¢ almost surely. Then for
€ > 2¢Ch+/e we have

{ > 5‘} < — <Z]D)2 CZ ) e Se(cch)2

If, moreover, (;, 1 <4 < n, are symmetric, then for ¢ > c¢Ch+/e we have

IP’{ } <= <Z]D>2 (&) ) ¢ wweE O
i=1

ZQ >

In the following theorems we will assume that the random variables consid-

ered are defined on the same probability space (2, A, P).
Let ng, Ni be positive integer numbers such that Ny < Ng41, £ € N. Let
ak = ng/Ng, 0, = m~ () and

Ny,
Hsk = Z H{m:s} . (43)
=1

Now we will prove two analogues of the Law of the Iterated Logarithm.
Theorem 4.1. Let 0 < a’ < o’ be such that m~'(a”) < R. Suppose that
0<a’<a, <a” forall k € N. Then we have

sk — E s
lim sup lptsi = Bior] <4CpV3e almost surely. (4.4)
k—oo Nk hl(Nk)
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PRrROOF. Let Ny be the value from Lemma 3.1. Let ¢ > 4C,v/3e. Then

ﬁ — 1 > 1. Therefore, by (4.1), we obtain for N > Ny

o0

|/Lsk - E/Lsk| } > { |,usk - E,Usk|
P{i >ty = P—— > hl(Nk)t
Z Nk ln(Nk) k*;mrl \/Nk

k=No+1

00 _ (\/ln(Nk)t) _ 2 +
< 802/ Npo (0 )e 8200 < 802 Cy N, 32CC < 0.
> 8
k=No+1 k=No+1

Consequently, by the Borel-Cantelli lemma, for all ¢ > 4C,+/3e we have

[psk —Epsi]
limsup,_, o Nt S < t almost surely. This implies (4.4).

O

Theorem 4.2. Let 0 < a’ < a” be such that m~'(a”) < R. Then, for
tsnn defined in (3.2), we have

sniN = E sn
lim sup [tsny = Eptsnn] < 4ChVbe, almost surely. (4.5)
n,N—oo,a’'<a<a’ Nln( )

Proor. First we remark that, for any two index sequence I, v,
lim sup,, N e, a’<a<a ln,N €xists and it is unique because of 0 < o’ < a” < oo.

Let t > 4Cp,v/5e. Then 5 202 — 2 — 1> 1. Therefore, by (4.1), we obtain

i Z IP’{ |ManN—h]1E(l;\:;N| > t}

N=Np+1 Na’'<n<a’’N

i Z IP’{ |snn — Epsnn| > \/Wt}

N=No+1 Na’'<n<a’ N VN

o (vi)*
< Z 80?(0&”—0/)N\/N Coe 32¢03
N=Ny+1
o —L-i-l—i-l
< 802\/Ca(a” —a') Z N 3200 7 <o
N=Np+1

Consequently, by the Borel-Cantelli lemma, we have

limsup,, v e0.0/<a<a %\/%ZM <t almost surely, for all ¢ > 4Cp,v/5e. This
implies (4.5). O

Now we turn to an analogue of Prokhorov’s Law of Large Numbers (see [9]).
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Theorem 4.3. Let 0 < a’<a” be such that m~!(a”) < R. Let \/N In(N)=
o(by) as N — co. Then we have

1. HsnN — E/Lan
11m  —

= Imost ly. 4.
n,N—oo, a’/<a<a’ bN O almos Sut‘ey ( 6)

PROOF. Let € > 0. Choose N’ > Ny such that e > 4C,/5e for all

by
, v/ N In(N)
N > N'. Then ( J(\?T:()N))z 32810}% — % —1 > 1 for all N > N’'. Therefore, by

(4.1), we obtain

i Z P{ |,Uan - E,Uan| Z E}

b
N=N’ Na’<n<a’N N

N oy = Epton| by /M)
=3 x ple gty }

N=N’ Na’'<n<a’ N NIn(N)

00 7(bN\/ln(N 5)2 1
< 802(a” — a')NVN/Cse (V)" #2Ci

N=N’
(bye)? 1
- ~ ? 32ec2 +at
< 803 g N (VN VIR < 00.

N=N'
Consequently, for all € > 0 we have imsup,, y_o0 o /caca” W <e
; , n
almost surely. This implies (4.6). (]

Lemma 4.2. Let 0 < '’ < a” < R. Forall0 < r < oo, as N,n — oo
uniformly for o’ < o < &’ we have

o (N—1
E(l ) bibo | N e - —20%9 S50 + o)
~HraN | = :
N r!B(6.) N—-1 \/—2_77 +0o(1)
PRrROOF. By Theorem 4 of [6], as N,n — oo uniformly for o’ < o < a” we
have

E (%MTﬂN = P{Tll = T}
_ P{&(6a) = r}P{&(0a) + &3(0a) + -+ ENn(00) =n — 7}
P{&1(0a) + &2(0a) + - -+ + &N (0a) = n}
\/_a( )\/—P{ﬁz( o) +&3(00) + - +En(0a) =n —1}
VN —10(0 a)\/_P{fl( o) +&2(00) + - +En(0a) = n}

=P{&1(0a) =1}
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n—r—2(N—-1))2

b [N e - Ymmhaey ) o)

r'B(f,) VN-1 7= +o(1)

The proof is finished. (|

Recall the ROSENTHAL inequality ([14], [12], Theorem 2.9) which we will use
in the next theorem. Let {(;} be independent centered random variables. Let
p > 2. Then we have

p n n p/2
< Cp(ZlEKﬂp-l- (2@2@1)) ), (4.7)

where ¢, depends on p only.
Let

1 o)
= N Z BTUTHN (48)
r=0

where pi,.,n is defined by (3.2).
Lemma 4.3. Let 0 < a’ < a” < R. Let 3, € R be such that
> |5T|pw <oo for some 2 < pandm(0”) =a". Let (s = E Brlie, (0.)=r}
¢i = Cai —ECqni. Then there exists Ny € N such that

E[Csil? | (E(¢5)>)P?
E|Sun —ESun|” < 47F 10 (0a)cp (Np11/2 + Np/2—1/2 |- (4.9)

forall N > Ny and o’ < o < a”.

PROOF. First we remark that E[(, P = Z:io|ﬁr|pr?}é—0(re) < C < . By

Lemma 3.1, there exists Ng € N such that for all N > Ny and o’/ < o < a” it
holds

1
P{&1(0a) + &(0) + -+ En(6s) =n} > ———.
{51( ) 52( ) gN( ) } 40’(90()\/N
Therefore, by Lemma 2.1, Lemma 3.1 and (4.7), we obtain for N > Ny

4P E’Zi]\ilé&p
= NP P{&1(00) + &2(0a) + -+ En(0a) =1}

c |p c p/2
< 4P+1 (9 )\/N <NE|Caz| + (NEJS];ny) )

< g E|¢:] <<gi>2>f’/2> ,

E|S,n —ES, N[’ <

Np—1— 1/2 Np/2-1/2
The proof is finished. (|
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Theorem 4.4. Let N,n — oo such that n/N = a — ap and m(6y,) = ag
for some 0 < 0, < R. Let 31, [2,... be a real sequence such that

> |ﬁr|pw < o0 for some 5 < p and some 0" such that 0o, <0 < R. Then
for Spn defined in (4.8) we have

Spn — S, asn, N — oo such that n/N = a — ag (4.10)
s b.O%,
almost surely, where S =3 | ﬁrm.

7

PROOF. Let 0 < ¢ < 6,,. We use the notation o’ = m(0') and a” = m(6").
Since N,n — oo so that n/N = o — «p, we can assume that o’ < a < a” for
all n, N. By condition 5 < p, using (4.9), we obtain

Z Z ]P{|SnN—ESnN|>E}

N=1 a’'N<n<a’”’N

1 S
SE_PZ Z IE|S’71N_ES71N|:D<007
N=1 a’N<n<a’” N

for all € > 0. Therefore, as N,n — oo so that a — «g, we have
Soy —ES,n — 0 (4.11)

almost surely. From Lemma 4.2 it follows that

ES,ny — S, as N,n — oo so that o — «p. (4.12)
Since
SnN = SnN - ESnN + ESan
from (4.11) and (4.12) we obtain (4.10). The proof is finished. O
For M C N let

- 1
HUMnN = N Z HsnN -
seM

Observe that iy, is the average of the numbers of boxes containing s balls with
s € M. Using Theorem 4.4 with 3, = I(r), we obtain the following corollary.

Corollary 4.1. Let N,n — oo so that & — g and m(0,,) = ap for some
0 <6q, < R. Then
AMnN — fm

- b0L
almost surely, where fiyg = 3, YR O
TB(0a,
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Let

1
UMnN — N Z SUsnN -
seM

We see that vy, is the average of the numbers of balls belonging to boxes
containing s balls with s € M. Using Theorem 4.4 with 3, = rIy(r), we obtain
the following corollary.

Corollary 4.2. Let N,n — oo so that o — g and m(0,,) = ap for some
0 < 0u, < R. Then

UMnN — VM
b7,
almost surely, where vy = ENIICE O
reM, r>1 o

Theorem 4.5. Let Ng,ny — oo as k — oo such that ng /Ny, = ap — «
and m(0) = « for some 0 < § < R. Let $1,32,... be a real sequence such that

> |5T|pw < oo for some 3 < p and some 0" such that < 0" < R. Let

1 oo
Sk = — T o
k Ni ;5 Hrk
where pi,, is defined by (4.3). Then
Sk — S, ask — o0 (4.13)

almost surely, where S =% ° BTJE;—(GG%).

"

PROOF. Let 0 < 6 < 6. We use the notation o’ = m(#’) and a” = m(6").
We can assume that o’ < ap < a” for all k¥ € N. Condition 3 < p and (4.9)

imply

o0 1 o0
Z]P’{|Sk —ESH > E} < E—pZE|Sk —ESHP < o0
k=1 k=1

for all € > 0. Therefore, as k — oo, it holds that
Sk —ESk — 0 (4.14)
almost surely. From Lemma 4.2 it follows that
ES; — S, as k — oo so that a — «. (4.15)

Since Sy = Sy — ESy, + ESy, from (4.14) and (4.15) we obtain (4.13). The proof
is finished. g
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Remark 4.2. In several papers generalizations and improvements of the
Rosenthal inequality were obtained. Consider the following inequality from [15].
Let p > 2 and let (j,...,(, be independent centered random variables. Then

i D P n p/2
<w(i%) (Eamior+ (Tr@) ) aw

where K does not depend on p and (3, ...,(,. In the proof of Lemma 4.1, using

E

G
i=1

(4.16) instead of Khintchine’s inequality and choosing p = we obtain

_£
4eKog’

P{% > a} < 40(0)VN <eln (

where ¢ > 8eKo,.

))W [1 + (0,V/N) ™ 7ekes

eKoyg

5. Applications

Ezample 5.1. Let & have Poisson distribution, i.e. P(§ = k) = ﬁe”‘,
k=0,1,.... Then

n! "
P{fl—kla---afN—kN|§1+"'+§N—n}—m(%)

ifky+---+ky =n. Thatis {m = k1,...,nn = kn} has polynomial distribution.
Now {m = ki1,...,nny = kn} means that the cell contents are kiq,...,kyx after
allocating n particles into N cells considering the usual allocation procedure.

We see that the parameter 6 used in the generalized allocation scheme is
the same as A in the above usual allocation procedure. As m(A\) = E& = A, the
parameter n/N = « coincides with .

We see that .,y is the number of cells with r particles (after allocating n
particles into N cells). Now, by Theorem 4.4, if n, N — oo so that n/N — Ag,
then .

almost surely. (For a direct proof of the above result, see [2].) O

Ezample 5.2. Let T, n denote the set of forests containing N labelled roots
and n labelled non-root vertices. By Cayley’s theorem, 7, x has N(n + N)"~!
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elements. Consider uniform distribution on 7, n. Let 7; denote the number of
the non-root vertices of the ith tree. Then

n! (kl + 1)]“_1 oo (kN + 1)kN—l
ki!... kn! N(N+7’L)n_l '

]P){’I]l:kl,...,nN:kN}:

Now let & have Borel distribution (see [4], [8]) P(& = k) = %e_(’”l))‘,
k=0,1,...,0< A< 1. Then

P{&i =Fki,....6n =kn [ &+ -+ &v = n}
n! (k1 + 1)]“_1 oo (kb + 1)kN—1
ki!... ky! N(N+TL)"_1

if ky + -+ kn =n. See [5], [3], [11]. Therefore 1y, ...,nn satisfy (3.1).
Now we apply our general results for forests. First we remark that

k—1

[eS) k .

k=1

k k—1
see [13]. Using this fact we can see that Y-, %e*(k“” = 1, moreover

N (k4 1) A
m(\) = E& = Zki( o ) e~ (FHDA — T
k=1 ’

So m~(a) = T4 Therefore the relation between a = n/N and A\, = m~ ()
is Ao = 1—%«1 We see that g,y is the number of trees with r non-root vertices.

Now, by Theorem 4.4, if n, N — oo so that n/N — «q, then

HrnN - Aolr + 1)7071 e~ (r+1)Xo
N r!
almost surely, where A\g = $£&-. (For a direct proof of the above result, see [3].)

We remark that for the generalized allocation scheme we used parameter 6 while
for random forests we used parameter A\. The relation of the parameters is 6 =
et A€ (0,1). O
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