
Publ. Math. Debrecen
44 / 3-4 (1994), 205–213

A common fixed point theorem of Gregus type
for compatible mappings and its applications

By H. K. PATHAK (Bhilai) and R. GEORGE (Bhilai)

Abstract. Let T and I be two compatible self maps of a closed, convex bounded
subset C of a Normed space X such that I(C) ⊇ (1−k)·I(C)+k ·T (C) where 0 < k < 1
is fixed and ‖Tx− Ty‖p ≤ a · ‖Ix− Iy‖p + (1− a) ·max [‖Tx− Ix‖p, ‖Ty − Iy‖p] for
all x, y ∈ C, where 0 < a < 1 and p > 0. If for some x0 ∈ C, the sequence 〈xn〉
defined by Ixn+1 = (1 − k) · Ixn + k · Txn, for all n ≥ 0, converges to a point z in C
and if I is continuous at z then T and I have a unique common fixed point. Further
if I is continuous at Tz then T and I have a unique common fixed point at which T
is continuous. We have also applied this result to obtain iterative solution of certain
variational inequalities.

Let T and I be two mappings of a metric space (X, d) into itself. Sessa
[11] defined T and I to be weakly commuting if d(TIx, ITx) ≤ d(Tx, Ix)
for any x ∈ X. Clearly two commuting mappings weakly commute, but
two weakly commuting mappings in general do not commute. Refer to Ex-
ample 1 in Diviccaro et al. [5]. Gerald Jungck [10] defined T and I to
be compatible mappings, if d(Tx, Ix)→0 implies d(TIx, ITx)→0. Clearly,
two weakly commuting mappings are compatible, but two compatible map-
pings are in general not weakly commuting. For example refer to Jungck
[10].

Recently Diviccaro et al. [5], established the following result.

Theorem A. Let T and I two weakly commuting mappings of a
closed, convex subset C of a Banach space X into itself satisfying the
inequality

‖Tx− Ty‖p ≤ a · ‖Ix− Iy‖p + (1− a) ·max [‖Tx− Ix‖p, ‖Ty − Iy‖p]

for all x, y in C, where 0 < a < 1/2p−1 and p ≥ 1. If I is linear, nonexpan-
sive in C and such that I(C) contains T (C), then T and I have a unique
common fixed point at which T is continuous.
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The object of the present paper is to replace linearity and nonexpan-
siveness, of the map I, and proof of Theorem A is made under consid-
erably weaker conditions of mappings, i.e. replacing weakly commuting
pair of maps (T, I) with compatible maps, and using the iteration method
of Mann type. Also the range of p has been extended to the case when
0 < p < 1. The technique used in the proof of our theorem is different
from that of Diviccaro et al [5]. Further we have used our main theorem
to obtain iterative solution of certain variational inequalities.

Main results

Theorem. Let T and I be two compatible self maps of a closed convex
bounded subset C of a Normed space X satisfying the following

‖Tx−Ty‖p ≤ a · ‖Ix−Iy‖p+(1− a) ·max [‖Tx−Ix‖p, ‖Ty−Iy‖p](1)

I(C) ⊇ (1− k) · I(C) + k · T (C)(2)

∀x, y ∈ C where 0 < a < 1, p > 0 and for some fixed k such that 0 < k < 1.
If for some x0 ∈ C, the sequence 〈xn〉 defined by

(3) Ixn+1 = (1− k) · Ixn + k · Txn, ∀n ≥ 0

converges to a point z of C and if I is continuous at z then T and I have
a unique common fixed point. Further if I is continuous at Tz then T and
I have a unique commom fixed point at which T is continuous.

Proof. First we are going to prove that Tz = Iz. We have,

‖Iz − Tz‖p = ‖Iz − Ixn+1 + Ixn+1 − Tz‖p ≤(4)

≤ [‖Iz − Ixn+1‖+ ‖Ixn+1 − Tz‖]p .

Now, from (3) we have

‖Ixn+1 − Tz‖p = ‖(1− k)Ixn + kTxn − Tz‖p =(5)

= ‖(1− k)(Ixn − Tz) + k(Txn − Tz)‖p ≤
≤ [(1− k)‖Ixn − Tz‖+ k‖Txn − Tz‖]p =

=
[
(1− k)‖Ixn − Tz‖+ k · (‖Txn − Tz‖p)1/p

]p

From (1) we have

‖Txn−Tz‖p ≤ a · ‖Ixn−Iz‖p +(1−a) ·max [‖Txn − Ixn‖p, ‖Tz − Iz‖p] .

Now since I is continuous at z, from Heine’s definition of continuity
we see that Ixn → Iz as n →∞. Also from (3) we have ‖Txn− Ixn‖ → 0



A common fixed point theorem of Gregus . . . 207

as n →∞. Therefore,

(6) ‖Txn − Tz‖p ≤ (1− a) · ‖Tz − Iz‖p + ε,

if n is large enough. Hence from (4) (5) and (6) we have

(7) ‖Iz − Tz‖p ≤ ‖Iz − Tz‖p ·
[
(1− k) + k · (1− a)1/p

]p

which is a cotradiction. Therefore Iz = Tz. Now since T and I are
compatible TIz = ITz. Hence, by using (1)

‖T 2z − Tz‖p ≤
≤ a · ‖ITz − Iz‖p + (1− a) ·max

[‖T 2z − ITz‖p, ‖Tz − Iz‖p
]

=

= a‖T 2z − Tz‖p,

whence T 2z = Tz, ie. Tz is a fixed point of T . Now ITz = TIz = TTz =
T 2z = Tz, i.e. Tz is also a fixed point of I.

Now, let 〈yn〉 be a sequence of points of C, with limit Tz = z1. Thus,
using condition (1), we have

‖Tyn−Tz1‖p ≤ a ·‖Iyn−Iz1‖p+(1−a) ·max [‖Tyn − Iyn‖p, ‖Tz1−Iz1‖p] .

Since I is continuous at Tz = z1, we have,

‖Tyn − Tz1‖p ≤ (1− a) · ‖Tyn − Iz1‖p + ε,

if n is large enough. Again, since ITz = TIz = TTz = Tz1, we have

‖Tyn − Tz1‖p ≤ (1− a) · ‖Tyn − Tz1‖p + ε,

if n is large enough, i.e. lim
n→∞

‖Tyn − Tz1‖ = 0 and this means that T is
continuous at Tz. Proof of uniqueness follows from that of Diviccaro et
al. [5].

Example 1. Let X be the reals and C = [0, 2]. Let T and I be self
maps of C such that

Tx =

[
x8/128 0 ≤ x ≤ 1/21/4

x4/128 1/21/4 < x ≤ 2
and Ix = x4/8.

Clearly I is not linear and ‖I1 − I2‖ = 15/8 > ‖1 − 2‖. Therefore I is
not nonexpansive. For 1/21/4 < x ≤ 2, ‖Tx − Ix‖ → 0 iff x → 0 and
‖TIx− ITx‖ → 0 iff x → 0. For 0 ≤ x ≤ 1/21/4 we see that TIx = ITx.
Therefore T and I are compatible maps.
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Now, for 0 ≤ x ≤ 1/21/4

‖Tx− Ty‖p = ‖x8/128− y8/128‖p = (1/128p)‖x8 − y8‖p =

= (1/128p)‖(x4 − y4)(x4 + y4)‖p ≤ (1/128p) · ‖x4 − y4‖p =

= (1/16p) · ‖Ix− Iy‖p = a · ‖Ix− Iy‖p

where a = 1/16p ∈ (0, 1)
For 1/21/4 < x ≤ 2

‖Tx− Ty‖p = (1/128p) · ‖x4 − y4‖p = (1/16p) · ‖Ix− Iy‖p =

= a · ‖Ix− Iy‖p where a = 1/16p ∈ (0, 1).

Hence we see that for all x in C condition (1) is satisfied. Setting k = 1/3,
and for any x0 ∈ C, we see that the sequence 〈xn〉 of elemants of C, such
that Ixn+1 = (1 − k)Ixn + kTxn for n ≥ 1, converges to the point 0.
Clearly T0 = 0 is a fixed point of T and I.

Remark 1. If p = 1 we obtain a result or Fisher and Sessa [8] with
appreciably weaker conditions of the space X.

Assuming I to be the identity map of X we have the following

Corollary 1. Let T be a self map of a closed convex bounded subset
C of a Normed space X satisfying

(8) ‖Tx− Ty‖p ≤ a · ‖x− y‖p + (1− a) ·max [‖Tx− x‖p, ‖Ty − y‖p]

and C ⊇ (1− k) ·C + k ·T (C) for all x, y in C, where 0 < a < 1 and p > 0
and fixed k such that 0 < k < 1. If for some x0 ∈ C, the sequence 〈xn〉
defined by xn+1 = (1 − k)xn + kTn, ∀n ≥ 0 converges to a point z of C
then T has a unique fixed point at which T is continuous.

Remark 2. Delbosco et al. [4], generalizing the result of Gregus
[9], considered the inequality

(9) ‖Tx− Ty‖p ≤ a · ‖x− y‖p + b · ‖Tx− x‖p + c · ‖Ty − y‖p

for all x, y in C, where 0 < a < 1/2p−1, p ≥ 1, b ≥ 0, c ≥ 0 and a+b+c = 1.
Due to symmetry, one may suppose b = c and clearly (8) is more general
than (9) and involves wider range of p than that of Diviccaro et al. [5].

Remark 3. For p = 1, the result of Corollary 1 was established by
Fisher [7].

The condition that T and I are compatible maps is necessary in our
theorem as shown in the following
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Example 2. Let X be the reals and C = [0, 2]. Let T and I be two
self maps of C such that, Tx = (x+1)/4, and Ix = x/2 for all x in C. We
have
‖Tx− Ty‖p = (1/4p) · ‖x− y‖p = 1/2p · ‖Ix− Iy‖p = a · ‖Ix− Iy‖p

where a = 1/2p and for all x, y in C. Hence condition (1) of our theorem is
satisfied. We see that T and I are not compatible maps since ‖Tx−Ix‖→0
when x → 1 but ‖TIx− ITx‖ does not tend to zero when x → 1.

On the other hand, T and I do not have common fixed points.
Remark 4. It is not known whether the condition I(C) contains T (C)

of Diviccaro et al. [5] is necessary in our Theorem.

Remark 5. The proof of inequality (7) can also be obtained by using
the technique of binomial expansion as follows. If p is a positive integer,

‖Iz − Tz‖p ≤ ‖Iz − Ixn+1‖p + pC1‖Iz − Ixn+1‖p−1‖Ixn+1 − Tz‖+
+ · · ·+ ‖Ixn+1 − Tz‖p.

Also

‖Ixn+1 − Tz‖p ≤ (1− k)p‖Ixn − Tz‖p+

+pC1 · (1− k)p−1‖Ixn − Tz‖p−1k · (‖Txn − Tz‖p)1/p+

+pC2 · (1− k)p−2‖Ixn − Tz‖p−2k2 · (‖Txn − Tz‖p)2/p + · · ·+
+kp‖Txn − Tz‖p.

Hence using (1) and the fact that ‖Txn− Ixn‖ → 0 as n →∞, we get (7).
If p is a positive fraction then

(a) ‖Iz − Tz‖p ≤ ‖Ixn+1 − Tz‖p

[
1 +

‖Iz − Ixn+1‖
‖Ixn+1 − Tz‖

]p

.

But using (3) we get

‖Ix+1 − Tz‖p = ‖(1− k) · (Ixn − Tz) + k · (Txn − Tz)‖p ≤

≤ (1− k)p · ‖Ixn − Tz‖p ·
[
1 +

k · (‖Txn − Tz‖p)1/p

(1− k) · ‖Ixn − Tz‖
]p

.(b)

As in the proof of our main theorem we see that
(c) ‖Txn − Tz‖p ≤ (1− a) · ‖Tz − Iz‖p + ε,

if n is large enough.
Also using the continuity of I, we see that expression in the parenthesis

of (a) tends to 1 as n →∞.
Hence using (a), (b) and (c) we get (7).
We conclude exhibiting the following
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Corollary 2. Let T and I be two compatible self maps of a closed,
convex bounded subset C of a Normed space X satisfying I(C) ⊇ (1− k) ·
I(C) + k · T (C) and

(9A) ‖Tx−Ty‖ ≤ a ·‖Ix−Iy‖+1/2 ·(1−a) ·max [‖Tx− Iy‖, ‖Ty − Ix‖]
for all x, y in C, where 0 < a < 1 and fixed k such that 0 < k < 1.
For an arbitrary x0 ∈ C, consider the sequence 〈xn〉 such that Ixn+1 =
(1− k)Ixn + kTxn, ∀n ≥ 0. If 〈xn〉 converges to a point z of C and if I is
continuous at z then T and I have a unique common fixed point. Further
if I is continuous at Tz then T and I have a unique common fixed point
at which T is continuous.

Proof. The proof follows from Corollary 2 of Diviccaro et al. [5]
and our main theorem for p = 1.

Applications

Drawing inspiration from a recent work of Belbas et al. [1], we apply
our theorem to prove the existence of solutions of variational inequalities.

Variational inequalities arise in optimal stochastic control [2], as well
as in other problems in mathematical physics, e.g. deformation of elastic
bodies stretched over solid obstacles, elasto-plastic torsion, etc. [6]. The
iterative methods for solution of discrete V.I’s are very suitable for im-
plementation on parallel computers with single instruction, multiple-data
architecture, particularly on massively parallel processors.

The variational inequality problem is to find a function u such that

(10) max{Lu− f, u− φ} = 0 on Ω : u = 0 on ∂Ω

where Ω is a bounded, open subset of Rn, L is an elliptic operator defined
on Ω by L = −aij(x)∂2/∂xi∂xj + bi(x)∂/∂xi + c(x) · I where summation
with respect to repeated indices is implied; c(x) ≥ 0, [aij(x)] is a strictly
positive definition matrix, uniformly in x, for x ∈ Ω; f and φ are smooth
functions defined in Ω and φ satisfies the condition φ(x) ≥ 0 for x ∈ Ω.

A problem related to (10) is the two-obstacle variational inequality.
Given two functions φ and µ defined on Ω, and satisfying φ ≤ µ in Ω,
φ ≤ 0 ≤ µ on Ω, the corresponding variational inequality is

(11) max{min{Lu− f, u− φ}, u− µ} = 0 in Ω : u = 0 on ∂Ω.

The problem (11) arises in stochastic game theory. In this situation, two
players are trying to control a diffusion process by stopping the process;
the first player is trying to maximize a cost functional, and the second
player is trying to minimize a similar functional. Here, f represents the
continuous rate of cost for both players, φ is the stopping cost for the
maximizing player, and µ is the stopping cost for the minimizing player.
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Let A be an N × N matrix corresponding to the finite difference
discretizations of the operator L.

We shall make the following assumptions about the matrix A:

(12) Aij = 1,
∑

j:j 6=i

Aij > −1, Aij < 0 for i 6= j.

These assumption is related to the definition of “M -matrices”; matrices
arising from the finite difference discretization of continuous elliptic oper-
ators will have property (12) under appropriate conditions; see [3, 12].

Let B = I − A. Then the corresponding property for the B matrix
will be

(13) Bij = 0
∑

j:j 6=i

Bij < 1, Bij > 0 for i 6= j.

Let q = max
i

∑
j

Bij , and A∗ be an N ×N matrix such that A∗ij = 1 − q

and A∗ij = −q, for i 6= j. B∗ = I −A∗.

Iterative solution of variational inequalities

Consider the following discrete variational inequality:

max
[
min

[
A(x−A∗ · ‖x− Tx‖)− f, x−A∗ · ‖x− Tx‖ − φ

]
,(14)

x−A∗ · ‖x− Tx‖ − µ
]

= 0

where, T is implicitly defined by

Tx = min
[
max

[
Bx + A · (1−B∗) · ‖x− Tx‖+ f,(15)

(1−B∗) · ‖x− Tx‖+ φ
]
, (1−B∗) · ‖x− Tx‖+ µ

]
.

Then (14) is equivalent to the fixed point problem

(16) x = Tx.

Theorem. Under assumptions (12), (13) a solution exists for (16).

Proof. For any x, y and i
If (Ty)i = [(1−B∗

ij)‖yj − Tyj‖+ µi] , then, since

(Tx)i ≤ [(1−B∗
ij‖xj − Txj‖+ µi] , we have

(Tx)i − (Ty)i ≤ (1−B∗
ij) · [‖xi − Txj‖ − ‖yj − Tyj‖] , or
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(17) (Tx)i = (Ty)i ≤ (1−B∗
ij) ·max [‖xj − Txj‖, ‖yj − Tyj‖] .

If (Ty)i=max [Bijyj+Aij(1−B∗
ij)‖yj−Tyj‖+ fi, (1−B∗

ij)‖yj − Tyj‖+
+φi] then we introduce the one sided operator

T̄ x = max [Bx + A(1−B∗)‖x− Tx‖+ f, (1−B∗)‖x− Tx‖+ φ] .

Then (Ty)i = (T̄ y)i. Now since (Tx)i ≤ (T̄ x)i, we have

(18) (Tx)i − (Ty)i ≤ (T̄ x)i − (T̄ y)i.

Now, if (T̄ x)i = Bijxj + Aij(1−B∗
ij)‖xj − Txj‖+ fi, then since (T̄ y)i ≥

Bijyj + Aij(1−B∗
ij)‖yj − Tyj‖+ fi, then by using (12), we find that

(19) (T̄ x)i − (T̄ y)i ≤
≤ Bij‖xj − yj‖+ (1−B∗

ij) ·max [‖xi − Txi‖ · ‖yi − Tyj‖] .
If (T̄ y)i = (1− B∗

ij)‖xi − Txj‖+ φi, then since (T̄ y)i ≥ (1− B∗
ij)‖yi −

Tyi‖+ φi, we find that

(20) (T̄ x)i − (T̄ y)i ≤ (1−B∗
ij) ·max [‖xj − Txj‖, ‖yj − Tyj‖] .

Hence, from (17), (18), (19) and (20) we have,

(21) (T̄ x)i − (Ty)i ≤ q · ‖x− y‖+ (1− q) ·max [‖x− Tx‖, ‖y − Ty‖] .
Since x and y are arbitrarily choosen, we have by interchanging x and y

(22) (Ty)i − (Tx)i ≤ q · ‖x− y‖+ (1− q) ·max [‖x− Tx‖, ‖y − Ty‖] .
Therefore, from (21) and (22) it follows that

‖Tx− Ty‖ ≤ q · ‖x− y‖+ (1− q) ·max [‖x− Tx‖, ‖y − Ty‖] .
Hence we see that condition (8) is satisfied for p = 1.

Therefore, Corollary 1 ensures the existance of a solution of (16).
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