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The Rosenblatt coefficient of dependence and the ASCLT
for some classes of weakly dependent random sequences

By RITA GIULIANO (Pisa)

Dedicated to the 100th anniversary of the birthday of Béla Gyires

Abstract. Using some Berry–Esseen type results, we prove a new bound for the

Rosenblatt coefficient of the normalized partial sums of a sequence of random variables,

weakly dependent in some sense; this bound is used to prove an Almost Sure Central

Limit Theorem for the same sequence.

1. Introduction

The Almost Sure Central Limit Theorem (ASCLT from now on) is a classical
result in the asymptotic theory of random sequences. It has been originally proved
for a sequence of independent identically distributed random variables (E[X1] = 0,
E[X2

1 ] = 1) (Xn)n≥1 with partial sums (Sn)n≥1 (see [3], [12] and [19]) and it can
be stated as follows: P -almost surely,

lim
n→∞

1
log n

n∑

k=1

1
k

1A

(
Sk√

k

)
= µ(A),

for all Borel sets A ⊆ R such that λ(∂A) = 0 (1A is the indicator function of
the set A). Here and in the sequel λ denotes the Lebesgue measure on (R,B(R)),
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while µ stands for the standard Gaussian measure on R, i.e.

µ(A) =
∫

A

1√
2π

e−x2/2 λ(dx), A ∈ B(R).

The ASCLT has been recently extended to more general sequences: the typical
framework is that of a stationary sequence, weakly dependent in some sense. For
instance the paper [15] deals with associated, α- mixing and ρ-mixing sequences;
in [5] sequences dependent in the sense of Doukhan and Louhichi are considered.
See also the papers [1], [7], [8], [11], [13], [14].

The point of view of the present paper is somewhat different. More precisely,
the aim of the present paper is to prove an ASCLT for sequences such that their
partial sums Sn (properly normalized) have a “good” speed of convergence to
the Gaussian law. The term “good” will be specified later, see the statement of
Theorem 2.4. There are many examples of such sequences: for instance the case
of m-dependent sequences (already considered in the paper [10]).

Our point of view allows to study also some non-stationary sequences: we
shall consider a strongly mixing sequence and a sequence satisfying another con-
dition of dependence, introduced by Rio in [18].

For such sequences we prove a general result (Theorem 2.4 of this paper),
which is, in some sense, a generalization of the ASCLT to some kind of Borel sets
A such that ∂A is not necessarily of Lebesgue measure 0. We deduce the ASCLT
as a corollary of Theorem 2.4 (Corollary 2.5).

Our method of proof is based on a new bound for the Rosenblatt coefficient of
normalized partial sums (Theorem 2.2), which is of its own interest and generalizes
an analogous result previously obtained in [9] for i.i.d. sequences (Xn)n≥1.

The paper is organized as follows: Section 2 contains the statements of the
main results (Theorems 2.2 and 2.4 and Corollary 2.5); Section 3 contains some
examples (in particular Proposition 3.9 shows that Rio’s notion of weak depen-
dence has some natural property of stability); in Section 4 we give the proof of
Theorem 2.2 and in Section 5 the proof of Theorem 2.4 and Corollary 2.5.

Throughout the whole paper, the symbol C denotes a constant, which may
not have the same value in all cases.
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2. The main results

Some preliminary definitions and notations are needed.

Let X, Y be two random variables. The Rosenblatt coefficient of dependence
of X and Y is defined as

sup
A,x

∣∣P (X ∈ A, Y ≤ x)− P (X ∈ A)P (Y ≤ x)
∣∣,

where the sup is taken for A ∈ B(R) and x ∈ R.
Let (Ω,F , P ) be a probability space, (Xi)i∈Z a sequence of real random

variables defined on (Ω,F , P ). We shall put Sn = X1+X2+· · ·+Xn, vn = Var(Sn)
and

Un =
Sn√
vn

.

Let p ≥ 1 be a fixed integer ; let (Yi)i∈Z an independent copy of (Xi)i∈Z, and put

Vn =





Y1 + . . . Yn√
vn

for n ≤ p

Y1 + . . . Yp + Xp+1 + . . . Xn√
vn

for n > p.

For every integer n put

Πn = sup
x∈R

|P (Un ≤ x)− Φ(x)|; Π′n = sup
x∈R

|P (Vn ≤ x)− Φ(x)|,

where Φ is the distribution function of the standard normal law.

Remark 2.1. Notice that Π′n needs not be small for large n, since the de-
nominator

√
vn in the definition of Vn is not the right normalization in general;

anyway, in the particular cases that we shall study, it does happen that it goes
to 0 as n →∞ (see Section 3).

The first result proved in this paper concerns the Rosenblatt coefficient of
dependence of Up and Uq, for p < q:

Theorem 2.2. Let (Xi)i∈Z be a sequence of centered random variables.

Then there exists a constant C, depending on the sequence (Xi)i∈Z only, such

that, for every pair of integers p, q with p < q, the following bound holds

sup
A,x

∣∣P (Up ∈ A, Uq ≤ x)− P (Up ∈ A)P (Uq ≤ x)
∣∣ ≤ C

(
4

√
vp

vq
+ Πq + Π′q

)

(where the sup is taken for A ∈ B(R) and x ∈ R)
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Theorem 2.2 can be used to prove the second main result of this paper (The-
orem 2.4 here below).

For a fixed Borel set A ⊆ R, consider the two sequences (Tn) and (Wn)
defined respectively as

Tn =
∑n

i=1 1A(U2i)
n

; Wn =
∑n

i=1
1
i 1A(Ui)

log n
, n ≥ 1.

For every positive constant α put

φα(n) =
vn

nα
. (2.3)

Theorem 2.4. In addition to the hypotheses of Theorem 2.2, assume that

there exist two constants γ > 0 and δ ≥ 0 such that

max{Πn, Π′n} ≤ C
logδ n

nγ
,

where C depends on the sequence (Xi)i∈Z only. Assume moreover that there

exists α > 0 such that the function φα is either non-decreasing or ultimately

bounded (i.e. there exist two constants M and N such that 0 < M ≤ φα(n) < N ,

for sufficiently large n). Let A ⊆ R be a finite union of intervals. Then, P -a.s.

the two sequences (Tn)n≥1 and (Wn)n≥1 have the same limit points as n →∞.

Recall that we denote by λ the Lebesgue measure on R and by µ the standard
Gaussian measure on R, i.e.

µ(A) =
∫

A

1√
2π

e−x2/2 λ(dx), A ∈ B(R).

Theorem 2.4 has the following consequence:

Corollary 2.5 (ASCLT). With the same assumtions as in Theorem 2.4,

there exists a P -null set Γ such that, for every ω ∈ Γc, we have

lim
n→∞

∑n
i=1

1
i 1A(Ui)

log n
= µ(A)

for every Borel set A ⊆ R such that λ(∂A) = 0.
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3. Applications to some non-stationary random sequences

Example 3.1. Given the sequence of random variables (Xi)i∈Z, consider the
strong mixing coefficients of (Xi)i∈Z, defined as

α(m) .= sup
k≥1

{
sup{|P (A ∩B)− P (A)P (B)|, A ∈ Fk, B ∈ Gk+m}

}
,

where F` is the σ-algebra generated by (Xi)i≤`, G` is the σ-algebra generated by
(Xi)i≥`. Assume that for some δ > 1

C1
.= sup

n
E[X2+δ

n ] < ∞ (3.2)

and that
C2

.=
∑
m

m
(
α(m)

) δ−1
2+δ < +∞. (3.3)

Under these assumptions, Theorem 2 of [20] states that, for every h ∈ BL(R)

E[h(Un)− h(N)] ≤ C‖h‖BL
n

v
3/2
n

,

where N is a random variable with standard normal law and C is a constant
depending on the sequence (Xi)i∈Z only.

More precisely, the bound of Theorem 2 of [20] is, apart from a multiplying
absolute constant,

‖h‖BL

(∑n
i=1 E[|Xi|3]

v
3/2
n

+
n

v
3/2
n

C
3/(2+δ)
1 C2

)
≤ ‖h‖BL

(
C3 + C

3/(2+δ)
1 C2

) n

v
3/2
n

,

where C3
.= supn E[|Xn|3] < +∞.

Notice that the strong mixing coefficients of the sequence . . . , Y0, Y1, Y2, . . . ,
Yp, Xp+1, . . . are clearly not greater than those of (Xi)i∈Z; arguing as in the proof
of Theorem 2 of [20], it is possible to prove that also

E[h(Vn)− h(N)] ≤ C‖h‖BL
n

v
3/2
n

,

for every h ∈ BL(R) and where C is again a constant depending on the sequence
(Xi)i∈Z only. (The difference is in the denominators: more precisely, Theorem 2
of [20] can be directly applied to the (well normalized) sequence

Wn =





Y1 + . . . Yn√
vn

for n ≤ p

Y1 + . . . Yp + Xp+1 + . . . Xn√
vp + vn−p

for n > p;
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nevertheless, the proof of Theorem 2 carries over with no changes also for Vn,
since in each estimation needed in such proof, the denominator can be taken out
by linearity as a common factor, hence has no influence on the final result). If in
addition φ (defined in (2.3)) verifies one of the assumptions of Theorem 2.4 with
α > 2/3, then n

v
3/2
n

≤ C 1

n
3α−2

2
. Hence

max
{
E[h(Vn)− h(N)],E[h(Un)− h(N)]

} ≤ C‖h‖BL
1

n
3α−2

2

,

and from this relation, using a similar argument as in the proof of Lemma 4.9
(see Section 4 of the present paper), it is not difficult to get the inequality

max{Πn,Π′n} ≤
C

n
3α−2

2

.

Hence, applying Corollary 2.5, we have the following result:

Theorem 3.4. Let Xi∈Z be a sequence of random variables verifying (3.2)
and (3.3). If φ (defined in (2.3)) satisfies one of the assumptions of Theorem 2.4,

then the ASCLT (i.e. Corollary 2.5) holds for (Xi)i∈Z.

Example 3.5. Let (Ω,F , P ) be a probability space, A a sub-σ-algebra of F
and X a random variable defined on (Ω,F , P ) and with values in a metric space
(G, δ). In [18] the following measure of dependence between X and A is intro-
duced:

Definition 3.6. Put

ϕ(A, X) = sup
f∈L1(G,δ)

∣∣∣∣E[f(X)|A]−E[f(X)]
∣∣∣∣
∞,

where L1(G, δ) is the set of 1-lipshitzian functions defined on (G, δ) and taking
values in [0, 1].

We call ϕ(A, X) the uniform Rio mixing coefficient between X and A.

In the same paper [18] the uniform dependence coefficients of a sequence
(Xi)i∈Z of real-valued random variables defined on (Ω,F , P ) are defined as follows:

Definition 3.7. Let Fk be the σ-algebra generated by (Xi)i≤k. Put ϕ0 = 1
and, for every integer r ≥ 1,

ϕr = sup
k∈Z

r≤r1<r2<r3

ϕ
(Fk, (Xk+r1 , Xk+r2 , Xk+r3)

)
.

Then (ϕr)r≥0 is the sequence of the uniform dependence coefficients of (Xi)i∈Z.
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Remark 3.8. The random vector (Xk+r1 , Xk+r2 , Xk+r3) takes values in the
metric space (R3, d), where d is the euclidean distance. In what follows we shall
write L1(R3) in place of L1(R3, d).

For a fixed integer p, define the sequence (Z(p)
i )i∈Z as follows

Z
(p)
i =

{
Yi for i ≤ p

Xi for i ≥ p + 1

Denote by (ϕ̃(p)
r )r≥0 the uniform dependence coefficients of the sequence (Z(p)

i ).
The following (rather natural) result holds good:

Proposition 3.9. For every integer r ≥ 0 we have

sup
p∈N

ϕ̃(p)
r ≤ ϕr.

The proof of Proposition 3.9, though rather technical, presents no difficulty,
hence is omitted for the sake of brevity. The interested reader can find it on the
author’s home page, at the address

http://www.dm.unipi.it/∼giuliano/

Using Theorem 2 of [18] and Proposition 3.9 the following result can be proved.
Notice that again no stationariness assumption is needed.

Theorem 3.10. Let (Xi)i∈Z be a sequence of real centered random variables,

bounded by a constant M .

Denote wn = vn− vn−1, and assume that there exists an integer n0 such that, for

n ≥ n0, we have

wn ≥ 1
2
. (3.11)

Assume that the sequence (ϕr)r≥0 of the uniform dependence coefficients satisfies

the condition ∑

r≥0

rϕr < ∞. (3.12)

Then, for every integer n,

max{Πn, Π′n} ≤
C√
n

,

where C is a constant depending on the sequence (Xi)i∈Z only.

Hence, if the function φ defined in (2.3) verifies one of the assumptions
of (2.4), the ASCLT is in force.
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4. The proof of Theorem 2.2

We start by collecting some preliminary results and lemmas.

Definition 4.1. The concentration function of a r.v. S is defined as

Q(ε) = sup
x∈R

P (x ≤ S ≤ x + ε), ε ∈ R+.

In the sequel we denote by Qn the concentration function of Un.

The following result gives an estimate of Qn. Its form is similar to the one
given in [16] for a sequence of i.i.d. random variables.

Lemma 4.2. For every ε ∈ R+,

Qn(ε) ≤ C
(
ε + Πn

)
,

where C is an absolute constant.

Proof. Denote by Fn the distribution function of Un and put Fn(x−) =
limt↑x− Fn(t). Then

sup
x∈R

∣∣Fn(x−)− Φ(x)
∣∣ = sup

x∈R
lim
t↑x−

∣∣Fn(t)− Φ(t)
∣∣ ≤ Πn,

so that
max

{|Fn(x + ε)− Φ(x + ε)|, |Fn(x−)− Φ(x)|} ≤ Πn.

Hence

P (x ≤ Un ≤ x + ε) = Fn(x + ε)− Fn(x−) ≤ |Fn(x + ε)− Φ(x + ε)|

+ |Fn(x−)− Φ(x)|+ Φ(x + ε)− Φ(x) ≤ 2Πn +
1√
2π

ε ≤ C (ε + Πn). ¤

The following lemma is stated in [2] without proof:

Lemma 4.3. If S and T are random variables, then, for every pair of real

numbers a, b with b ≥ 0 we have

P (S + T ≤ a− b)− P (|T | > b) ≤ P (S ≤ a) ≤ P (S + T ≤ a + b) + P (|T | > b).

Proof. The first inequality follows from the inclusion

{S + T ≤ a− b} ⊆ {S ≤ a} ∪ {|T | > b}.

The second inequality follows from the first one applied to the pair of random
variables S + T,−T and to the pair of numbers a + b, b. ¤
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We now begin the proof of Theorem 2.2. Let p, q be two integers with p ≤ q;
let (Yi)i∈Z an independent copy of (Xi)i∈Z, and put

Vq =
Y1 + . . . Yp + Xp+1 + . . . Xq√

vq
.

Put moreover

Z = Vq − Uq =
(Y1 −X1) + · · ·+ (Yp −Xp)√

vq
=

Rp√
vq

.

If we set
H = {Up ∈ A}, K = {Uq ≤ x},

our aim is to give a bound for |P (H ∩K)− P (H)P (K)|.
Let ε > 0 be any positive real number and put

K1 = {Vq ≤ x− ε}, K2 = {Vq ≤ x + ε}, F = {|Z| > ε}.

By Lemma 4.3 (applied to S = Uq, T = Z, a = x, b = ε) we can write

P (K1)− P (F ) ≤ P (K) ≤ P (K2) + P (F ).

Hence

|P (H ∩K)− P (H)P (K)| ≤ max{|P (H ∩K)− P (K1)P (H) + P (F )P (H)|,
|P (H ∩K)− P (K2)P (H)− P (F )P (H)|}

≤ max{|P (H ∩K)−P (K1)P (H)|, |P (H ∩K)−P (K2)P (H)|}+P (F ). (4.4)

In what follows we shall estimate the three quantities in the last member, i.e.
|P (H ∩K)− P (K1)P (H)|, |P (H ∩K)− P (K2)P (H)| and P (F ). We start with
P (F ). We have

P (F ) = P (|Rp| > ε
√

vq) ≤
E

[|Rp|
]

ε
√

vq
≤ Var1/2(Rp)

ε
√

vq
. (4.5)

Now, since (Xi)i∈Z and (Yi)i∈Z are independent and have the same law,

Var(Rp) =
p∑

i=1

Var(Yi −Xi) + 2
∑

1≤i<j≤p

Cov((Yi −Xi), (Yj −Xj))

= 2
p∑

i=1

Var(Xi) + 4
∑

1≤i<j≤p

Cov(Xi, Xj) = 2Var(Sp) = 2vp. (4.6)
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From (4.5) and the (4.6) we conclude that

P (F ) ≤
√

2
ε

√
vp

vq
. (4.7)

We now pass to the terms |P (H∩K)−P (K1)P (H)| and |P (H∩K)−P (K2)P (H)|.
We give the details only for |P (H ∩K)− P (K2)P (H)|, since the proof is almost
identical for the other quantity (see Remark 4.15).

We need some more lemmas.

Lemma 4.8. Let g be a Lipschitzian function defined on R, with Lipschitz

constant β. Then ∣∣E[g(Uq)]−E[g(Vq)]
∣∣ ≤

√
2 β

√
vp

vq
.

Proof. Arguing as for relation (4.5) and using (4.6) we get

|E[g(Uq)]−E[g(Vq)]| ≤ E[|g(Uq)− g(Vq)|] ≤ β E[|Uq − Vq|]

= β
E[|Rp|]√

vq
≤ β Var1/2(Rp)√

vq
≤
√

2 β

√
vp

vq
. ¤

In the sequel we denote by Q̃q the concentration function of Vq.

Lemma 4.9. Let z ∈ R and g = 1(−∞,z]. Then, for every δ > 0 we have

∣∣E[g(Uq)]−E[g(Vq)]
∣∣ ≤ C

δ

√
vp

vq
+ Qq(δ) + Q̃q(δ).

Proof. Put

h(t) =
(

1 +
z − t

δ

)
1(z,z+δ](t), g̃(t) = g(t) + h(t).

Then g̃ is Lipschitzian with Lipschitz constant 1/δ, so that, by Lemma 4.8,
∣∣E[g̃(Uq)]−E[g̃(Vq)]

∣∣ ≤ C

δ

√
vp

vq
. (4.10)

On the other hand, h has support contained in (z, z + δ] and is bounded by 1,
hence we have trivially

∣∣E[h(Uq)− h(Vq)]
∣∣ ≤ Qq(δ) + Q̃q(δ). (4.11)

Now, recalling that g = g̃ − h, we can write
∣∣E[g(Uq)]−E[g(Vq)]

∣∣ =
∣∣E[(g̃ − h)(Uq)]−E[(g̃ − h)(Vq)]

∣∣
≤

∣∣E[g̃(Uq)]−E[g̃(Vq)]
∣∣ +

∣∣E[h(Uq)− h(Vq)]
∣∣,

and the conclusion follows from relations (4.10) and (4.11). ¤
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The following lemma concerns the concentration function Q̃q of Vq. It can
be proved exactly as Lemma 4.2.

Lemma 4.12. There is an absolute constant C such that for every ε ∈ R+

Q̃n(ε) ≤ C
(
ε + Π′n

)
.

We go back to the proof of the main result (2.2). Since H and K2 are
independent we can write

|P (H ∩K)− P (K2)P (H)| = P (H)
∣∣P (K|H)− P (K2|H)

∣∣
= P (H)

∣∣EH [f(Uq)]−EH [g(Vq)]
∣∣,

where f = 1(−∞,x] and g = 1(−∞,x+ε]. We denote by EH the expectation with
respect to the probability law P (·|H). By summing and subtracting EH [g(Uq)],
we see that the above quantity is not greater than

P (H)
∣∣EH [g(Uq)]−EH [g(Vq)]

∣∣ + P (H)EH [|f − g|(Uq)]

= |E[g(Uq)]−E[g(Vq)]
∣∣ + E[|f − g|(Uq)] ≤ C

ε

√
vp

vq
+ 2 Qq(ε) + Q̃q(ε), (4.13)

using Lemma 4.9 and observing that the function f − g is bounded by 1 and has
the interval (x, x + ε] as its support.

Remark 4.14. The above proof, and in particular relation (4.13) explains why
Πq and Π′q appear in the formulas (despite the fact that replacing the first p of
the Xi’s with the corresponding Yi’s reduces the amount of dependence of the
sequence, as Proposition 3.9 shows).

Remark 4.15. The proof for for |P (H ∩K)−P (K1)P (H)| is identical to the
proof for |P (H ∩K)−P (K2)P (H)|, the only difference is in the fact one needs to
take g = 1(−∞,x−ε] and add and subtract EH [f(Vq)]. This gives the inequality

|P (H ∩K)− P (K1)P (H)| ≤ C

ε

√
vp

vq
+ Qq(ε) + 2 Q̃q(ε), (4.16)

instead of (4.13).

We now insert relations (4.7), (4.13) and (4.16) into (4.4), and obtain

|P (H∩K)−P (H)P (K)| ≤ C

ε

√
vp

vq
+2Qq(ε)+2Q̃q(ε)≤C

(
1
ε

√
vp

vq
+ ε + Πq + Π′q

)
,

by Lemmas 4.2 and 4.12. The above relation holds for every ε > 0; by passing to
the infimum in ε, we get

|P (H ∩K)− P (H)P (K)| ≤ C

(
4

√
vp

vq
+ Πq + Π′q

)
. ¤
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5. The proof of Theorem 2.4 and of the ASCLT

Let’s start with the proof of Theorem 2.4. It is sufficient to consider the case
in which A is of the form A = (−∞, x]. The proof is split in two steps: (i) here
below and (ii) on p. 284.

Put

an = log2

(
1 +

1
n

)
. (5.1)

(i) Here we prove that (Tn) and (Hn) have the same limit points, where

Hn =
∑2n

i=1 ai1A(Ui)
n

.

This is equivalent to proving that the sequence

Tn −Hn +
a2n1A(U2n)

n
=

∑n
i=1 1A(U2i)−∑2n−1

i=1 ai1A(Ui)
n

tends to 0 as n →∞, P -a.s. The numerator of the fraction in the second member
above can be written as

n∑

i=1

1A(U2i)−
n∑

i=1

2i−1∑

j=2i−1

aj1A(Uj) =
n∑

i=1

(
1A(U2i)−

2i−1∑

j=2i−1

aj1A(Uj)
)

=
n∑

i=1

2i−1∑

j=2i−1

aj

(
1A(U2i)− 1A(Uj)

)
,

(note that
∑2i−1

j=2i−1 aj = log2(2i)− log2(2i−1) = 1). Put now

Ri =
2i−1∑

j=2i−1

aj

(
1A(U2i)− 1A(Uj)

)
. (5.2)

Then we must prove that, P -a.s.

lim
n→∞

∑n
i=1 Ri

n
= 0.

We write
∑n

i=1 Ri

n
=

∑n
i=1

(
Ri −E[Ri]

)

n
+

∑n
i=1 E[Ri]

n
=

∑n
i=1 R̃i

n
+

∑n
i=1 E[Ri]

n
,

and we shall consider separately the two summands above.

For the first one we shall apply the Gaal–Koksma Law (see [17], p. 134) to
the sequence (R̃n)n≥1:
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Theorem 5.3 (Gaal–Koksma Strong Law of Large Numbers). Let (Xn)n≥1

be a sequence of centered random variables with finite variance. Suppose that

there exists a constant α > 0 such that, for all integers m ≥ 0, n ≥ 0

E
[( m+n∑

i=m+1

Xi

)2
]
≤ C

(
(m + n)α −mα

)
, (5.4)

for a suitable constant C independent on m and n. Then, for each δ > 0,

n∑

i=1

Xi = O
(
nα/2(log n)2+δ

)
, P -a.s.

Remark 5.5. The condition m ≥ 0 can be replaced by m ≥ m0

(for a suitable m0).

We need a bound for Cov(R̃i, R̃j). It is easily seen that, for i ≤ j,

Cov(R̃i, R̃j) =
2i−1∑

h=2i−1

2j−1∑

k=2j−1

ahak

(C(2i, 2j)− C(h, 2j)− C(2i, k) + C(h, k)
)
,

where

C(p, q) = Cov(1A(Up), 1A(Uq)) = P (Up ∈ A, Uq ∈ A)− P (Up ∈ A)P (Uq ∈ A).

By Theorem (2.1) there exists a constant C such that, for sufficiently large j and
for every p, q with 2i−1 ≤ p ≤ 2i and 2j−1 ≤ q ≤ 2j , we have

C(p, q) ≤ C

(
4

√
vp

vq
+

logδ q

qγ

)
≤ C

(
p

q

)η

≤ C 2−η|i−j|,

where η = (γ/2) ∧ (α/4). We obtain, for large j,

Cov(R̃i, R̃j) ≤ C2−η|i−j|
2i−1∑

h=2i−1

ah

2j−1∑

k=2j−1

ak = C2−η|i−j|.

In particular E[R̃2
i ] ≤ C. In order to use the Gaal–Koksma Law, we evaluate, for

large m,

E
[( m+n∑

i=m+1

R̃i

)2
]

= E
[ m+n∑

i=m+1

R̃2
i + 2

∑

m+1≤i<j≤m+n

R̃iR̃j

]

≤ Cn + 2C
∑

m+1≤i<j≤m+n

2−η|i−j| = Cn + 2C

n−1∑
r=1

(n− r)2−rη

≤ Cn + 2Cn

n−1∑
r=0

2−rη ≤ Cn = C
[
(m + n)−m

]
.
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Hence the condition in the Gaal–Koksma Law holds with α = 1 and we obtain

n∑

i=1

R̃i = O
(√

n(log n)2+δ
)
, P -a.s.,

which implies

lim
n→∞

∑n
i=1 R̃i

n
= 0, P -a.s.

We now prove that

lim
n→∞

∑n
i=1 E[Ri]

n
= 0.

By Cesaro’s Theorem, it will be sufficient to prove that

lim
n→∞

E[Rn] = lim
n→∞

2n−1∑

j=2n−1

aj

(
P (U2n ∈ A)− P (Uj ∈ A)

)
= 0

(recall formula (5.2)). This is immediate by the relation
∑2i−1

j=2i−1 aj = log2(2i)−
log2(2i−1) = 1 and by the assumption on Πn, which implies

lim
n→∞

P (Un ∈ A) = µ(A).

(ii) We now prove that (Hn) and (Wn) have the same limit points. First, observe
that

Wn =

∑n
i=1

1
i log 21A(Ui)

log2 n
.

Since the sequences (an) (see definition (5.1)) and (bn), where bn = 1
n log 2 , are

equivalent as n → ∞, this amounts to showing that (Hn) has the same limit
points as

Vn =
∑n

i=1 ai1A(Ui)
log2 n

.

This is easy since, for 2r ≤ n < 2r+1 we can write

∑2r

i=1 ai1A(Ui)
r + 1

≤ Vn ≤
∑2r+1

i=1 ai1A(Ui)
r

. ¤

We pass to the proof of the ASCLT (Corollary 2.5). Consider first a Borel
set A of the form A = (−∞, x]. The Gaal–Koksma–Law applied to the sequence

1A(U2i)− P (U2i ∈ A)
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gives, P -a.s,

lim
n→∞

(
Tn −

∑n
i=1 P (U2i ∈ A)

n

)
= lim

n→∞

∑n
i=1

(
1A(U2i)− P (U2i ∈ A)

)

n
= 0.

by an argument similar to that used above for the sequence (R̃n)n≥1 (see p. 13
for the definition of (R̃n)n≥1). On the other hand, again by Cesaro’s Theorem
and the assumption on Πn,

lim
n→∞

∑n
i=1 P (U2i ∈ A)

n
= lim

n→∞
P (U2n ∈ A) = µ(A).

Hence we get
lim

n→∞
Tn = µ(A), P -a.s. (5.6)

Now, classical techniques (similar to those used in the Glivenko–Cantelli Theorem,
see for instance [6], p. 59) yield that the P -null set Γ such that (5.6) holds for
ω ∈ Γc is independent on A, and it is henceforth immediate that, on Γc, (5.6)
holds also for Borel sets A that are finite unions of disjoint intervals.

For a general set A with λ(δA) = µ(δA) = 0, fix ε > 0 and let Aε and Bε be
finite unions of disjoint intervals such that

Aε ⊆ A ⊆ Bε and µ(Bε \Aε) < ε.

Then ∑n
i=1 1Aε(U2i)

n
≤ Tn ≤

∑n
i=1 1Bε(U2i)

n
;

hence, by passing to the limit as n →∞, we get, for ω ∈ Γc,

µ(Aε) ≤ lim inf
n→∞

Tn(ω) ≤ lim sup
n→∞

Tn(ω) ≤ µ(Bε); (5.7)

since
µ(Aε) ≤ µ(A) ≤ µ(Bε) ≤ µ(Aε) + ε (5.8)

by passing to the limit as ε → 0 in (5.8) and after in (5.7) we deduce that
limn→∞ Tn(ω) exists for ω ∈ Γc and moreover

lim
n→∞

Tn(ω) = µ(A), ω ∈ Γc. ¤
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