
Publ. Math. Debrecen

76/3 (2010), 303–315

Some limit theorems via Lévy distance
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Dedicated to the 100th anniversary of the birthday of Béla Gyires

Abstract. In this note, we present a unified approach for the proofs of two results

of probability theory, namely the (so-called) global version of the central limit theorem

and the complete convergence theorem. Key tool is an appropriate upper bound for the

deviation of two distribution functions in terms of the Lévy distance.

1. Introduction

Let F and G be two distribution functions on R and denote by L = L(F, G)
the Lévy distance between F and G, that is,

L = inf H, (1.1)

where H = H(F, G) = {h : G(x− h)− h ≤ F (x) ≤ G(x + h) + h for all x ∈ R}.
On using the notation Φ for the standard normal distribution function, the weak
convergence of a sequence of distribution functions {Fn} to Φ will be denoted by

Fn
w−→ Φ, n →∞.
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By definition, weak convergence of a sequence of distribution functions {Fn} to a
distribution function G means that

lim
n→∞

Fn(x) = G(x), x ∈ C(G), (1.2)

where C(G) stands for the set of continuity points of G. Since Φ is everywhere
continuous, weak convergence to Φ coincides with the pointwise convergence, even
with the uniform convergence on R.

It is also known that weak convergence is equivalent to the convergence to
zero of the Lévy distances L(Fn, G) (see, for example, Gnedenko and Kol-

mogorov [9]).
We also denote by ∆ = ∆(F, G) the uniform distance between distribution

functions F and G, namely

∆ = ∆(F,G) = sup
x∈R

|F (x)−G(x)|. (1.3)

Since ∆(F, G) ∈ H(F, G), we have L ≤ ∆.
The weak convergence of a sequence of distribution functions {Fn} to a con-

tinuous distribution function G is equivalent to ∆(Fn, G) → 0 (see, for example,
Gnedenko and Kolmogorov [9]).

Results about the approximation of a sequence of distribution functions {Fn}
by the normal law are called central limit theorems in probability theory. The
classical case deals with a sequence of distribution functions Fn corresponding
to centered and normalized partial sums of independent random variables. Ap-
proximations in terms of the uniform distance have a long history. Confer, e.g.,
Esseen [7] for the roots of the modern theory. Esseen’s [7] result has been
generalized in Kolodyazhny̆ı [12].

Theorem 1.1 (Kolodyazhny̆ı [12]). Let p > 0 and
∫ ∞

−∞
|x|p dF (x) < ∞.

Let ∆ be the uniform distance between F and Φ and assume that 0 < L ≤ e−1/2.

Then there exists a universal constant c∆, depending only on p, such that

|F (x)− Φ(x)| ≤ λp + c∆∆(ln 1
∆ )p/2

1 + |x|p (1.4)

for all x ∈ R, where

λp =
∣∣∣∣
∫ ∞

−∞
|x|p dF (x)−

∫ ∞

−∞
|x|p dΦ(x)

∣∣∣∣ . (1.5)
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The following upper estimate for the pointwise deviation between a distrib-
ution function F and the standard normal one Φ has been given in Indlekofer

and Klesov [11]. Note that F in Theorem 1.2 below does not necessarily corre-
spond to a sum of independent random variables.

Theorem 1.2 (Indlekofer and Klesov [11]). Let p > 0 and

∫ ∞

−∞
|x|p dF (x) < ∞.

Let L be the Lévy distance between F and Φ and assume that 0 < L ≤ e−1/2.

Then there exists a universal constant cL, depending only on p, such that

|F (x)− Φ(x)| ≤ λp + cLL(ln 1
L )p/2

1 + |x|p (1.6)

for all x ∈ R, where λp is defined by (1.5).

Remark 1.1. There are some cases ahere one of Theorems 1.1 and 1.2 implies
the other one. The function x

(
log 1

x

)p/2 increases in the interval
(
0, e−p/2

)
and

decreases in
(
e−p/2, 1

)
. Thus (1.6) implies (1.4) if

∆ ≤ min
{

1√
ep

,
1√
e

}
. (1.7)

Moreover, cL = c∆ in this case.
On the other hand, (1.4) implies (1.6) if p ≥ 1 and

1√
ep
≤ L ≤ ∆

1√
e

. (1.8)

Again, cL = c∆ in this case. The case (1.7) fits better the context of the central
limit theorem as compared to the case of (1.8).

Since

∆ ≤
(

1 +
1√
2π

)
L

if G = Φ, there are several other interrelations between Theorems 1.1 and 1.2. In
what follows we use (1.6) rather than (1.4). This can be explained by the fact
that other functions G (even discontinuous) can be used in (1.6) in place of Φ,
while (1.4) has no nice generalizations in the discontinuous case. Theorem 1.2 for
other G instead of Φ will be discussed elsewhere.
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The simplest case of Theorem 1.2 corresponds to p = 2.

Corollary 1.1. Let a distribution function F satisfy the condition
∫ ∞

−∞
x2 dF (x) = 1.

If the Lévy distance L = L(F, Φ) is such that 0 < L ≤ e−1/2, then

|F (x)− Φ(x)| ≤ AL ln 1
L

1 + x2
(1.9)

with some universal constant A > 0 and for all x ∈ R.

The main aim of this note is to demonstrate that Theorem 1.2 can be applied
in various situations, among which are the (so-called) global versions of the central
limit theorem due to Agnew [2] (see also Agnew [3]–[4] for further extensions)
and the complete convergence theorem due to Hsu and Robbins [10], for which
an extensive literature exists (cf., e.g., Baum and Katz [5] and Spitzer [19],
just to mention a few).

2. Global version of the central limit theorem

Agnew [2] has apparently been the first to study the relationship between
weak convergence and the convergence to zero of the integral in (2.2) below. We
should mention, however, that in Agnew’s setting the limit distribution function
can be arbitrary and not just Φ. Nevertheless, we restrict our considerations here
to Φ as a weak limit in order to highlight the main features of our approach.
Moreover, for the sake of comparison, we state the results of other authors also
with Φ, even if they have been proved for more general limiting distribution
functions. For example, from Agnew [2] we have the following result.

Theorem 2.1 (Agnew [2]). Let {Fn} be a sequence of distribution functions

such that ∫ ∞

−∞
x dFn(x) = 0 and

∫ ∞

−∞
x2 dFn(x) = 1. (2.1)

Assume that

Fn
w−→ Φ, n →∞.

Then, for all r > 1
2 ,

∫ ∞

−∞
|Fn(x)− Φ(x)|r dx → 0, n →∞. (2.2)
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Similar results can be obtained via Theorem 1.1, too (see, [16] and [17]).
Other methods of proof are due to Studnev and Ignat [20] and Kruglov [13].

In fact, Agnew [2] proved that the weak convergence is equivalent to (2.2)
in a certain sense. Note that the distribution functions {Fn} in Theorem 2.1
are arbitrary and need not correspond to partial sums of independent random
variables. The latter more specific and more typical case will be considered next.

Corollary 2.1. Let {Xn} be a sequence of independent, identically distrib-

uted random variables and let {Sn} denote their partial sums. Assume that

EX1 = 0 and EX2
1 = 1.

If r > 1
2 , then (2.2) holds, where Fn denotes the distribution function of n−1/2Sn.

This result was generalized by Esseen [8] to the case of independent, but not
necessarily identically distributed random variables {Xn}, provided they satisfy
the central limit theorem. A further extension is due to de Acosta and Giné [1].

Of course, the smaller the value of r > 0, the stronger is the convergence
in (2.2). So, it is natural to ask whether or not the restriction r > 1

2 in the
above results can be weakened to r > 0. A first positive answer has been given
by Nishimura [15]. However, as pointed out in Rosalsky [18], the argument
in [15] is incomplete and the conditions can even be improved.

Theorem 2.2 (Laube [14] and Rosalsky [18]). Let {Fn} be a sequence of

distribution functions such that

sup
n≥1

∫ ∞

−∞
|x|p dFn(x) < ∞ (2.3)

for some p > 1. Assume that {Fn} converges weakly to Φ as n →∞. Then (2.2)
holds for all r > 1

p .

In view of Theorem 2.2 it is natural to conjecture that (2.2) of Theorem 2.1
holds for all r > 0, provided the moments of any order exist. This is indeed the
case, as was mentioned by de Acosta and Giné [1].

Just for the sake of demonstration, we provide different proofs of Theo-
rems 2.1 and 2.2 via estimates for the Lévy distance. A similar method via
estimates for the uniform distance is used in [16] and [17] for some particular
cases. Different methods are presented in [13] and [20].

Proof of Theorem 2.1. Set Ln = L(Fn,Φ). We assume without loss of
generality (w.l.o.g.) that Ln < e−1/2 for all n ≥ 1. Then, by Corollary 1.1,

|Fn(x)− Φ(x)| ≤ ALn ln 1
Ln

1 + x2
, n ≥ 1.
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Thus ∫ ∞

−∞
|Fn(x)− Φ(x)|r dx ≤

(
ALn ln

1
Ln

)r ∫ ∞

−∞

dx

(1 + x2)r ,

which completes the proof, since r > 1
2 and Ln → 0 as n →∞. ¤

Proof of Theorem 2.2. For Ln = L(Fn, Φ), assume again without loss of
generality that Ln < e−1/2 for all n ≥ 1. Let 0 < p1 < p be such that r > 1

p1
.

Then, by Theorem 1.2,

|Fn(x)− Φ(x)| ≤ λp1,n + cp1Ln(ln 1
Ln

)p1/2

1 + |x|p1
, (2.4)

where

λp1,n =
∣∣∣∣
∫ ∞

−∞
|x|p1 dFn(x)−

∫ ∞

−∞
|x|p1 dΦ(x)

∣∣∣∣ .

We raise both sides of inequality (2.4) to the power r, then integrate the result
over −∞ < x < ∞, and observe that the integral on the right hand side is
finite, since r > 1

p1
. Now, the coefficient in front of the integral tends to zero,

since Ln = o(1) and λp1,n = o(1) as n → ∞, which follows from Corollary 7 of
Section 8.1 in Chow and Teicher [6].

For the sake of completeness, we state here the necessary part of the latter
result. ¤

Theorem 2.3. Let {Fn} be a sequence of distribution functions such that

Fn
w−→ F as n →∞. If condition (2.3) holds, then

∫ ∞

−∞
|x|s dFn(x) →

∫ ∞

−∞
|x|s dF (x), n →∞,

for all s < p.

Remark 2.1. It is an interesting observation that Theorem 2.3, with F = Φ,
is equivalent in a certain sense to the global version of the central limit theorem.1

To avoid unnecessary technicalities, let p = 2 and
∫ ∞

−∞
x dFn = 0,

∫ ∞

−∞
x2 dFn = 1

for all n ≥ 1. Assume that Fn
w−→ Φ and denote by Ln the Lévy distance between

Fn and Φ. Then, eventually, Ln < e−1/2, and one can apply Corollary 1.1.
Moreover

|F ∗n(x)− Φ∗(x)| ≤ 2ALn ln 1
Ln

1 + x2
, x ≥ 0, (2.5)

1The authors are grateful to Professor V. V. Buldygin for this remark.
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where
F ∗(x) = F (−x) + 1− F (x), x > 0,

for any distribution function F . For 0 < s < 2, multiply inequality (2.5) by |x|s−1

and integrate the result over (−∞,∞) to obtain

λs,n = O(1)
∫ ∞

−∞
|x|s−1|F ∗n(x)− Φ∗(x)| dx = o(1)

∫ ∞

−∞

|x|s−1

1 + x2
dx, n →∞,

where λs,n is defined by (1.5) with p = s and F = Fn. Since s < 2, the integral
on the right-hand side is finite, whence we obtain Theorem 2.3 with p = 2 and
F = Φ.

Remark 2.2. Another interesting question concerning Theorem 2.3 is whether
or not the case of F = Φ has any special feature compared to the general case. For
example, is it true that Theorem 2.3 holds for s = p, too, if F = Φ ? To answer
this and several other questions, we consider the following general construction.

Let {an} be an increasing sequence such that an → ∞ as n → ∞ and let
bn > an. Define hn (> 0) as the solution of the equation

∫ an

−an

ϕ(x) dx + 2hn(bn − an) = 1, (2.6)

where ϕ is the standard normal probability density. Note that

hn(bn − an) = 1− Φ(an) → 0, n →∞. (2.7)

Now let ϕn be the probability density defined by

ϕn(x) = hn1I(−bn,−an)(x) + ϕ(x)1I[−an,an](x) + hn1I(an,bn)(x),

where 1IA stands for the indicator function of a set A. This is a probability density,
indeed, in view of (2.6). Moreover, ϕn is symmetric and has finite support, so
that all its moments exist and all its odd moments are zero. The second moment
of ϕn is given by

σ2
n

def=
∫ ∞

−∞
x2ϕn(x) dx = 2hn

b3
n − a3

n

3
+

∫ an

−an

x2ϕ(x) dx. (2.8)

Denote by Fn the distribution function generated by ϕn. Note that Fn
w−→ Φ.

Indeed, let x be fixed and n0 be such that −an < x < an, n ≥ n0. Then, by (2.7),

Fn(x) = hn(bn − an) +
∫ x

−an

ϕ(u) du → Φ(x), n →∞,

which means weak convergence.
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Via the construction above, we make the following observations.

Example 2.1. (There exists a sequence {Fn} such that Fn
w−→ Φ, but σ2

n →
∞.) We define ϕn as above and choose an = n, b2

n = n/(1−Φ(n)). Note that, in
view of the well-known inequality 1 − Φ(x) < ϕ(x)/x (x > 0), we have b2

n > n2.
Now, Fn

w−→ Φ, but, by (2.7) and (2.8),

σ2
n >

2
3
hn(bn − an)b2

n =
2
3
n →∞.

Example 2.2. (Given c ≥ 1, there exists {Fn} such that Fn
w−→ Φ and σ2

n →
c ≥ 1.) In case of c > 1, we define ϕn as above, with an = n, b2

n = βn/(1−Φ(n)),
where βn → 3

2 (c− 1). Note that, since 3
2 (c− 1) > 0, from Feller’s inequality and

the exponential decrease of ϕ(n), we have b2
n > n2 for (say) n ≥ n0, so that we

can start our sequence {Fn} at n0. Then Fn
w−→ Φ, but, by (2.7) and (2.8),

σ2
n =

2
3
hn(bn−an)(b2

n+anbn+a2
n)+

∫ an

−an

x2ϕ(x) dx =
2
3
βn+o(1)+

∫ an

−an

x2ϕ(x) dx,

where the right-hand side tends to c by our choice of βn.
The case of c = 1 is a trivial one, since we can simply choose Fn = Φ for

all n.

Example 2.3. (Case of c < 1 is not possible.) Note that, in general, Exam-
ple 2.2 cannot be extended to the case of c < 1, since, via partial integration,

∫ ∞

−∞
x2 dFn(x) =

∫ ∞

0

2xF ∗n(x) dx,

so that, e.g., in case of
∫∞
−∞ x dFn(x) → 0, the weak convergence of Fn to Φ

together with an application of Fatou’s lemma implies

lim inf
n→∞

σ2
n = lim inf

n→∞

∫ ∞

−∞
x2 dFn(x) ≥

∫ ∞

0

lim
n→∞

2xF ∗n(x) dx

=
∫ ∞

0

2xΦ∗(x) dx =
∫ ∞

−∞
x2 dΦ(x) = 1.

Example 2.4. (There exists {Fn} such that Fn
w−→ Φ, but σ2

n does not con-
verge.) This can, e.g. be verified by the same construction as in Example 2.2, but
with βn that has no finite or infinite limit.

Let
µs =

∫ ∞

−∞
|x|sϕ(x) dx, µs,n =

∫ ∞

−∞
|x|sϕn(x) dx.
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Example 2.5. (There exists {Fn} such that Fn
w−→ Φ and µs,n → µs for all

s < 2, but σ2
n →∞.) Using the same construction as in Example 2.1, we have

µs,n =
2

s + 1
hn(bs+1

n − as+1
n ) +

∫ an

−an

|x|sϕ(x) dx

=
2

s + 1
(1− Φ(n))

bs+1
n − as+1

n

bn − an
+

∫ an

−an

|x|sϕ(x) dx.

Since an/bn =
√

n(1− Φ(n)) = o(1) we have bn−an ∼ bn and bs+1
n −as+1 ∼ bs+1

n ,
whence

(1− Φ(n))
bs+1
n − as+1

n

bn − an
∼ (1− Φ(n))bs

n = ns/2(1− Φ(n))1−s/2 → 0

for s < 2. This proves that µs,n → µs for s < 2, but σ2
n = µ2,n →∞.

Example 2.6. (There exists {Fn} such that Fn
w−→ Φ, σ2

n →∞, even µs,n →
∞ for all s > 0.) We use the same construction as in Example 2.2, but with
βn = e1/(1−Φ(n)). As in Example 2.5, the limit of µs,n is determined by the
expression

(1− Φ(n))bs
n = (1− Φ(n))1−ses/(1−Φ(n)),

which tends to infinity as n →∞.

We conclude this section by providing a “global version” of Theorem 2.3 as
follows.

Theorem 2.4. Assume that {Fn} is a sequence of distribution functions

such that Fn
w−→ Φ as n →∞. If condition (2.3) holds, then

∫ ∞

0

xs−1|F ∗n(x)− Φ∗(x)| dx → 0, n →∞,

for all s < p, where F ∗(x) denotes the tail of a distribution function F as before.

Clearly, via partial integration, the conclusion of Theorem 2.4 is stronger
than that of Theorem 2.3.

Proof of Theorem 2.4. First note that F ∗n(x) → Φ∗(x) for all x > 0, and
this convergence is uniform in any interval (0, a). Thus

∫ a

0

xs−1|F ∗n(x)− Φ∗(x)| dx → 0
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for all a > 0, whence we conclude that there exists a sequence {an} such that
an →∞ and ∫ an

0

xs−1|F ∗n(x)− Φ∗(x)| dx → 0.

Now,
∫ ∞

0

xs−1|F ∗n(x)− Φ∗(x)| dx = o(1) +
∫ ∞

an

xs−1|F ∗n(x)− Φ∗(x)| dx

≤ o(1) + as−p
n

∫ ∞

an

xp−1|F ∗n(x)− Φ∗(x)| dx ≤ o(1) + cas−p
n ,

where c = supn

∫∞
0

xp−1|F ∗n(x)− Φ∗(x)| dx is finite in view of (2.3). Since s < p,
this completes the proof of Theorem 2.4. ¤

3. Complete convergence

The concept of complete convergence has been introduced by Hsu and Rob-

bins in [10]. By definition, a sequence of random variables {ξn} is said to converge
completely to zero (denoted by ξn

c.c.−→ 0, n → ∞) if not only ξn
a.s.−→ 0, but also

ξ′n
a.s.−→ 0 as n →∞, for any sequence of random variables {ξ′n} such that ξn

d= ξ′n
for all n ≥ 1, i.e., for ξn and ξ′n having the same distribution function for all
n ≥ 1.

Remark 3.1. Hsu and Robbins [10] proved that the complete convergence
ξn

c.c.−→ 0 as n →∞ is equivalent to

∞∑
n=1

P(|ξn| ≥ ε) < ∞ for all ε > 0.

On using the notation F ∗(x), x > 0, for the tail of any distribution function F ,
the latter condition is equivalent to

∞∑
n=1

F ∗n(ε) < ∞ for all ε > 0,

where Fn denotes the distribution function of ξn.

Particularly, the convergence n−1Sn
c.c.−→ 0 as n → ∞ has been studied in

Hsu and Robbins [10], when {Sn} are partial sums of independent, identically
distributed random variables {Xn}.
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Theorem 3.1 (Hsu and Robbins [10]). Let {Xn} be a sequence of indepen-

dent, identically distributed random variables and let {Sn} denote their partial

sums. Then n−1Sn
c.c.−→ 0 as n →∞, if and only if condition (2.1) holds.

If Fn denotes the distribution function of n−1/2Sn (with corresponding tails
F ∗n), Theorem 3.1 can be stated as follows for independent identically distributed
terms:

Sn

n

c.c.−→ 0, n →∞ ⇐⇒ (2.1) ⇐⇒
∞∑

n=1

F ∗n
(
ε
√

n
)

< ∞ ∀ ε > 0.

The following result provides conditions for the convergence of the latter
series in the general case.

Theorem 3.2. Let {Fn} be an arbitrary sequence of distribution functions

such that Ln ≤ e−1/2 for all n ≥ 1. Assume that condition (2.3) holds with some

p > 2. Then
∞∑

n=1

F ∗n
(
ε
√

n
)

< ∞ for all ε > 0.

Note that we do not assume here that Fn
w−→ Φ as n →∞.

Proof of Theorem 3.2. We make use of Theorem 1.2 again. Let Ln be
the Lévy distance between Fn and Φ. Then, by (1.6), for all n ≥ 1 and ε > 0,

∣∣F ∗n
(
ε
√

n
)− Φ∗

(
ε
√

n
)∣∣ ≤ 2 · λp,n + cpLn(ln 1

Ln
)p/2

1 + (ε
√

n )p ,

where λp,n corresponds to the constant in (1.5) with F being replaced by Fn.
Since supn λp,n < ∞, supn Ln

(
ln 1

Ln

)p/2
< ∞, and p > 2,

∞∑
n=1

∣∣F ∗n
(
ε
√

n
)− Φ∗

(
ε
√

n
)∣∣ < ∞ for all ε > 0.

Moreover,
∞∑

n=1

Φ∗
(
ε
√

n
)

< ∞ for all ε > 0,

so that an application of the triangle inequality completes the proof. The latter
result can be obtained by a straightforward computation:

∞∑
n=1

Φ∗
(
ε
√

n
)

=
∞∑

n=1

∞∑

k=n

∫ ε
√

k+1

ε
√

k

ϕ∗(t) dt =
∞∑

k=1

k

∫ ε
√

k+1

ε
√

k

ϕ∗(t) dt

where ϕ∗ is the density of Φ∗. This implies that
∞∑

n=1

Φ∗
(
ε
√

n
) ≤ ε−2

∫ ∞

ε

t2ϕ∗(t) dt ≤ ε−2. ¤
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