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Rate of convergence for certain optimal stopping problems

By ANDRIY KLESOV (Kiev)

Dedicated to the 100th anniversary of the birthday of Béla Gyires

Abstract. We prove that the rate of convergence of a solution of the optimal

stopping problem for a Lévy process on an interval [0, T ] to that on the interval [0,∞)

is exponential as T →∞.

1. Introduction

The first paper to deal with a stopping time of a Lévy process in the context
we consider below is Mordecki [3] where an explicit expression is found for an
optimal stopping time for a reward functions of either (Xt −K)+ or (K −Xt)

+.
Mordecki [3] found that the optimal stopping time is of a threshold type.

A new approach appeared in [5] where the Appel polynomials are applied for
optimal stopping problems of the discussed type. An analogue of Mordecki’s [3]
result had been obtained in [5] for the discrete Markov chains and for the reward
functions g(x) = (xn)+, n ∈ N . It is proved in [5] that the rate of convergence
of the solution of the optimal stopping problem on a finite interval converges to
that on the infinite interval [0,∞]. We shall concentrate on a generalization of
this result for a broad class of Lévy processes.

A generalization of the result of [5] for general Lévy-type processes and the
reward function g(x) = (xn)+, n ∈ N , can be found in [2]. The most general
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result up to now is obtained in [4]. An explicit form of the optimal stopping
moment for the optimal stopping problem for homogeneous Lévy processes and
the reward function g(x) = (xη)+, η > 0, are found in [5]. The optimal stopping
moment is constructed in [5] by using the Appel polynomials. However the rate
of convergence is nor discussed in [5], at all.

In the current paper we find the rate of convergence of a solution of the
optimal stopping problem for a Lévy process on an interval [0, T ] to that on the
interval [0,∞) as T →∞. It turns out that the rate of convergence is exponential.

2. Lévy–Itô decomposition

For convenience, we recall the well known Lévy–Itô decomposition for Lévy
processes.

Theorem 2.1 (Lévy–Itô decomposition). Let Xt be a Lévy process. Then

there exists a triplet of stochastic processes X
(1)
t , X

(2)
t , and X

(3)
t such that

Xt = X
(1)
t + X

(2)
t + X

(3)
t , (2.1)

where X
(1)
t is a Brownian motion with drift, X

(2)
t a compound Poisson process,

X
(3)
t a square integrable pure jump martingale.

The compound Poisson process X
(2)
t in 2.1 is usually constructed from a

simple Poisson process. We will assume that the intensity λ(t) of the simple
Poisson process is such that

∞∑
m=1

λ(2m)
2m

< ∞. (2.2)

Another useful assumption we use below for the process X
(3)
t of 2.1 is that

∫ ∞

1

E
∣∣∣X(3)

t

∣∣∣
η

eηqt
dt < ∞. (2.3)

for some η > 0 and q > 1.
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3. Main result

Theorem 3.1 (Main result). Fix η > 0 and q > 1. Let (Xt, t ≥ 0) be a

Lévy process such that

E(X+
t )η < ∞

and that Xt admits the Lévy–Itô decomposition (2.1) without drift. Let X0 = x.

Assume that the square integrable pure jump process X
(3)
t in representa-

tion (2.1) satisfies condition (2.3).
We further assume that the compound Poisson process X

(2)
t in representa-

tion (2.1) is such that

X
(2)
t =

∑

k≤Nt

ξk (3.1)

where the random variables ξk, k ≥ 1, are nonnegative, independent, identically

distributed, and such that

Eξη∨1
k < ∞ for some η > 0.

The symbol Nt in representation (3.1) stands for a simple Poisson process with

intensity λ(t) such that the process Nt and the sequence {ξk} are independent.

Moreover we assume that the intensity λ satisfies condition (2.2).
Let T > 0 and let M and MT denote the sets of all stopping times τ ∈ [0,∞]

and τ ∈ [0, T ], respectively. Let g(x) denote the function (x+)η and let

V (x) = sup
τ∈M

E(e−qτg(Xτ )I{τ<∞}), V (x, T ) = sup
τ∈MT

E(e−qτg(Xτ )).

Then there exist a number T0 > 0, an universal constant c > 0, and, for a given

real number x, there exists a constant C(x) such that

0 ≤ V (x)− V (x, T ) ≤ C(x)e−cT (3.2)
for all T > T0.

Remark 1. Theorem 3.1 is a generalization of Theorem 3 of the paper [5].

4. Auxiliary results

The proof of Theorem 3.1 is based on several auxiliary results.

Lemma 1. Let (Xt, t ≥ 0) be a process such that it can be decomposed into

a sum Xt = Pt + Qt + Rt. Let η, q, g(x), V (x), and V (x, T ) be defined as in

Theorem 3.1.
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Then the conclusion of Theorem 3.1 holds if

E
(

sup
s≥t

|Ps|
sθ

)η

< ∞, E
(

sup
s≥t

|Qs|
sθ

)η

< ∞, E
(

sup
s≥t

|Rs|
sθ

)η

< ∞.

for some θ > 0 and all t > 0.

Proof. Note that V (x) ≥ V (x, T ), since MT ⊂ M. Now let τ∗ be a
positive root of the Appel polynomial constructed from the random variable
Mτ,q = sup0≤t<τ Xt, where τ is a random variable such that P {τ > t} = e−tq.
Then

V (x, T ) = sup
τ∈M

E(e−qτg(Xτ )) ≥ E
(
g(Xmin(τ∗,T ))e−q min(τ∗,T )

)

≥ E
(
g(Xmin(τ∗,T ))e−qτ∗I{τ∗≤T}

)
,

since τ∗ ∧ T ∈MT .
Thus

V (x)− V (x, T ) ≤ E
(
g(Xτ∗)e−qτ∗I{T<τ∗<∞}

)
.

Since the function e−qssθη is decreasing on the semiaxis being far enough of the
origin,

V (x)− V (x, T ) ≤ E
(
g(Xτ∗)e−qτ∗I{T<τ∗<∞}

) ≤ E
[
sup
s≥T

(Ps + Qs + Rs)η

eqs

]

≤ 22η

(
E

[
sup
s≥T

|Ps|η
eqs

]
+ E

[
sup
s≥T

|Qs|η
eqs

]
+ E

[
sup
s≥T

|Rs|η
eqs

])

= 22η

(
E

[
sup
s≥T

|Ps|η
sθη

· sθη

eqs

]
+ E

[
sup
s≥T

|Qs|η
sθη

· sθη

eqs

]
+ E

[
sup
s≥T

|Rs|η
sθη

· sθη

eqs

])

≤ 22q · c′ · T θη

eqT

(
E

[
sup
s≥T

|Ps|
sθ

]η

+ E
[
sup
s≥T

|Qs|
sθ

]η

+ E
[
sup
s≥T

|Rs|
sθ

]η)
.

Thus (3.2) holds for an arbitrary c < q, sufficiently large T0, and appropriate C(x).
¤

Lemma 2 (Wiener process). Let η > 0 and let X
(1)
t = Wt, t > 0, be a

Wiener process. If θ > 1
2 and T > 0, then

E
(

sup
t≥T

|Wt|
tθ

)η

< ∞.
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Proof. It is known that if X is a nonnegative random variable, then

EXη = η

∫ ∞

0

xη−1P(X ≥ x) dx.

Without loss of generality assume that T = 1. Using the latter formula we get

E
(

sup
s≥1

|Ws|
sθ

)η

= η

∫ ∞

0

xη−1P
(

sup
s≥1

|Ws|
sθ

≥ x

)
dx

≤ η

∫ ∞

0

xη−1
∞∑

m=0

P
(

sup
2m≤s≤2m+1

|Ws|
sθ

≥ x

)
dx

≤ η

∞∑
m=0

∫ ∞

0

xη−1P
(

sup
2m≤s≤2m+1

|Ws| ≥ x2mθ

)
dx.

For any y > 0,

P
(

sup
2m≤s≤2m+1

|Ws| ≥ y
)
≤ P

(
sup

s≤2m+1
|Ws| ≥ y

)
= 2P(|W2m+1 | ≥ y).

Thus

E
(

sup
s≥1

|Ws|
sθ

)η

≤ 2η

∞∑
m=0

∫ ∞

0

xη−1P(|W2m+1 | ≥ x2mθ) dx

= 2η

∞∑
m=0

∫ ∞

0

( y

2mθ

)η−1

P(|W2m+1 | ≥ y)
dy

2mθ

= 2η
∞∑

m=0

1
2mθη

∫ ∞

0

yη−1P(|W2m+1 | ≥ y) dy

= 2η

∞∑
m=0

1
2mθη

E|W2m+1 |η. (4.1)

Since Wt is a Gaussian random variable with zero mean and variance t, we have

E|Wt|η =
1√
2πt

∫ ∞

−∞
|x|ηe−x2/2t dx =

tη/2

√
2πt

∫ ∞

−∞
|x|ηe−x2/2 dx = κtη/2,

where

κ =

√
2
π

∫ ∞

0

xηe−x2/2 dx = 2η− 1
2 π−

1
2 Γ(η)

and where Γ is the gamma function. Thus
∞∑

m=0

1
2mθη

E|W2m+1 |η = κ

∞∑
m=0

2(m+1)/2

2mθη
= κ2η/2

∞∑
m=0

2mη( 1
2−θ) < ∞,

since θ > 1
2 . This completes the proof. ¤
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Remark 2. The method used in the proof of Lemma 2 fits the case of the
Wiener process with a drift O(tθ), as well.

Lemma 3 (Simple Poisson process). Let η > 0 and q > 0 and let Π(t) be

the simple Poisson process with intensity λ(t). If
∫ ∞

1

e−ηqt max{λ(t), λη(t)}dt < ∞,

then for every T > 0

E
(

sup
t≥T

Π(t)
eqt

)η

< ∞.

Lemma 3 implies the corresponding result for the difference of two Poisson
process, that, in turn, allows one to consider the processes with both positive and
negative jumps.

Corollary 1. Let η > 0 and p > 1/2. Let Π1(t) and Π2(t) be two Poisson

processes with intensities λ1(t) →∞ and λ2(t) →∞, respectively. If
∫ ∞

1

e−ηqtλη
i (t)dt < ∞, i = 1, 2,

then for every T > 0
E

(
sup
t≥T

∣∣∣∣
Π1(t)−Π2(t)

eqt

∣∣∣∣
)η

< ∞.

In order to prove Lemma 3 we need both upper and lower bounds for moments
of the Poisson distribution. The exact values of such moments can easily be
evaluated for integer η, however this is not the case for non-integer η and thus we
need to use the following estimates.

Lemma 4 (upper bound). Let Π ∈ Po(λ), λ > 0 and η > 0. Then there

exists a constant c > 0, that does not depend on λ, such that

E(Πη) ≤ cλη

if λ ≥ 1, and

E(Πη) ≤ cλ
if 0 < λ < 1.

Lemma 5 (lower bound). Let Π ∈ Po(λ), λ > 0 and η > 0.Then there exists

a constant c > 0, that does not depend on λ, such that

E(Πη) ≥ cλη

if λ ≥ 1, and

E(Πη) ≥ cλ
if 0 < λ < 1.
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Although the constants in Lemmas 4 and 5 are denoted by the same symbol c,
they are different, in fact.

First we show that Lemma 3 follows from Lemmas 4 and 5 and then prove
Lemmas 4 and 5 themselves.

Proof of Lemma 3. Without loss of generality assume that T = 1. We
have

E
(

sup
t≥1

Π(t)
eqt

)η

≤
∞∑

k=1

E
(

sup
k≤t<k+1

Π(t)
eqt

)η

≤
∞∑

k=1

e−qkηE(Πη(k + 1)) ≤ eq
∞∑

k=1

e−qkηE(Πη(k)).

Lemma 4 implies that

E
(

sup
t≥1

Π(t)
eqt

)η

≤ ceq
∞∑

k=1

e−qkη max {λ(k), λη(k)} .

Since

∫ ∞

1

max {λ(t), λη(t)}
eqtη

dt =
∞∑

k=1

∫ k+1

k

max {λ(t), λη(t)}
eqtη

dt

≥ e−q
∞∑

k=1

max {λ(k), λη(k)}
eqkη

.

Lemma 3 is proved. ¤

Proof of Lemma 4. Set pk = e−λ λk

k! , k = 0, 1, . . . . First let us consider
the case 0 < λ < 1:

E(Πη) =
∞∑

k=1

kηpk ≤
∞∑

k=1

k[η]+1pk = E(Π[η] + 1). (4.2)

Let f denote the moment generating function of the Poisson distribution with
parameter λ and let f (i) denote its derivative of order i. Then f(t) = eλ(t−1) =
e−λ · eλt. Thus f (i)(t) = λi · f(t), whence f (i)(1) = λi, i ≥ 1. Since the moment
of any order j is a linear combination of derivatives f ′(1), f ′′(1), . . . , f (j)(1), the
expectation E(Π[η]+1) is a linear combination of λ, λ2, . . . , λ[η]+1. Using the tri-
angular inequality, we get E(Π[η]+1) ≤ cλ for some constant c > 0 if λ < 1, that,
taking into account (4.2) proves the second part of Lemma 4.
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Now let λ ≥ 1. As before, set m = [λ]. If 0 < η < 1, then

E(Πη) =
∞∑

k=0

kηpk =
∑

1≤k≤m

kηpk +
∑

k>m

kηpk ≤ mλ +
∑

1≤k≤m

pk +
∑

k>m

kηpk

= mλ +
∑

1≤k≤m

pk + λ
∑

k>m

pk−1

k1−η
≤ mλ

∑

1≤k≤m

pk +
λ

m1−η

∑

k>m

pk−1

= mλ

( ∑

1≤k≤m

pk +
∑

k>m−1

pk

)
= mλ(1 + P (Π = m)) ≤ 2mη. (4.3)

Since m ≤ λ, the first part of Lemma 4 is proved for all 0 < η < 1. If η ≥ 1,
then

E(Πη) =
∞∑

k=1

kηpk = λ

∞∑

k=1

kη−1pk−1 = λ

∞∑

k=0

(k + 1)η−1pk ≤ 2η−1λ

∞∑

k=0

kη−1pk.

Continuing these estimations, we obtain

E(Πη) ≤ dλ[η]
∞∑

k=0

kη−[η]pk−1, d = 2(η−1)+(η−2)+···+(η−[η]).

If η ∈ N , then this inequality coincides with the statement of the first part of
Lemma 4. If η 6∈ N , we use lemma 4 for the case of 0 < η < 1 and get

E(Πη) ≤ dλ[η] · 2λη−[η],

which completes the proof of Lemma 4. Thus Lemma 4 is proved. ¤

Proof of Lemma 5. Set pk = e−λ λk

k! , k = 0, 1, . . . . First consider the case
of 0 < λ < 1:

E(Πη) =
∞∑

k=0

kηpk > p1 = e−λλ ≥ λ

e
,

that proves the second part of Lemma 5. Now let λ ≥ 1. Set m = [λ]. Starting
from the case 0 < η < 1:

E(Πη) =
∞∑

k=0

kηpk =
∑

1≤k≤m

kηpk +
∑

k>m

kηpk = λ
∑

1≤k≤m

pk−1

k1−η
+

∑

k>m

kηpk

≥ λ

m1−η

∑

1≤k≤m

pk−1 + mη
∑

k>m

pk =
λ

m1−η

∑

0≤k≤m−1

pk + mη
∑

k>m

pk
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≥ mη

( ∑

0≤k≤m−1

pk +
∑

k>m

pk

)
= mη(1− P (Π = m))

≥ 2−ηλη(1−P(Π = m)). (4.4)

We show that there exists a constant c > 0 such that

1−P(Π = m) ≥ c (4.5)
if λ ≥ 1.

Using Stirling’s formula:

P(Π = m) = e−λ λm

m!
= e−λ λm

√
2πm ·mm · e−m+θm

,

where 0 < θm < 1
12m . Since

(
λ

m

)m

≤
(

m + 1
m

)m

= (1 +
1
m

)m ≤ e, e−λ+m+θm ≤ 1,

we have
P(Π = m) ≤ e√

2πm
≤ e√

4π
< 1, m ≥ 2

If 1 ≤ λ ≤ 2, then

P(Π = m) = P(Π = 1) = e−λλ < 1.

This implies (4.5). Inequality (4.5) proves Lemma 5 for 0 < η < 1. In order to
complete the proof of Lemma 5, consider the case of η ≥ 1:

E(Πη) =
∞∑

k=1

kηpk = λ

∞∑

k=1

kη−1 λk−1

(k − 1)!
e−λ

= λ

∞∑

k=0

(k + 1)η−1 λk

k!
eλ ≥ λ

∞∑

k=0

kη−1 λk

k!
e−λ = λE(Πη−1).

Continuing with these estimates, we obtain

E(Πη) ≥ λ[η]
∞∑

k=0

kη−[η] λ
k

k!
eλ.

This inequality coincides with the second part of Lemma 5 if η ∈ N . For η 6∈ N ,
we use Lemma 5 for η < 1:

E(Πη) ≥ λ[η] · cλη−[η].

Note that constant c is the same as in the case of 0 < η < 1, that is, it does not
depend on η. Thus, Lemma 5 is proved. ¤
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Lemma 6 (compound Poisson process). Let X
(2)
t be a compound Poisson

process represented in the form of (3.1) where Nt is a simple Poisson process

whose intensity satisfies (2.2). We also assume that the random variables ξk,

k ≥ 1, are independent, identically distributed, and such that

Eξη∨1
k < ∞

for some η > 0. We further assume that the process Nt and the sequence ξk,

k ≥ 1, are independent. Then

E


sup

s≥t

∣∣∣X(2)
s

∣∣∣
s




η

< ∞.

for all t > 0.

Proof. We provide the proof for the case of η = 1. Other cases are proved
similarly. Put µ = Eξ1. Then

E
(

sup
t≥1

1
t

∑

k≤Nt

ξk

)
=

∫ ∞

0

P
(

sup
t≥1

1
t

∑

k≤Nt

ξk ≥ x

)
dx

≤
∫ ∞

0

∞∑
m=0

P
(

sup
2m≤t≤2m+1

1
t

∑

k≤Nt

c ≥ x

)
dx

≤
∫ ∞

0

∞∑
m=0

P
(

1
2m

∑

k≤N2m+1

ξk ≥ x

)
dx

=
∫ ∞

0

∞∑
m=0

∞∑

l=0

P(N2m+1 = l)P
(

1
2m

∑

k≤l

ξk ≥ x

)
dx

=
∞∑

m=0

∞∑

l=0

P(N2m+1 = l)P
(

1
2m

∑

k≤l

ξk ≥ x

)
dx

=
∞∑

m=0

∞∑

l=0

P(N2m+1 = l)E
[

1
2m

Sl

]

= µ

∞∑
m=0

∞∑

l=0

P(N2m+1 = l)
l

2m

= µ

∞∑
m=0

1
2m

∞∑

l=0

lP(N2m+1 = l) = µ

∞∑
m=0

1
2m

EN2m+1

= µ

∞∑
m=0

λ(2m+1)
2m

EN2m+1 = 2µ

∞∑
m=1

λ(2m)
2m

< ∞. ¤
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Lemma 7 (martingale). Let Yt be a stochastic process such that |Yt| is a

right continuous submartingale. Let q > 0, η > 1, T > 0. If (2.3) holds, then

E
(

sup
t≥T

|Yt|
eqt

)η

< ∞

for all T > 0.

Remark 3. Our assumption that |Yt| is a right continuous submartingale is
weaker than the assumption that Yt is a right continuous submartingale and,
moreover, that Yt is a martingale.

The following two properties are well known for submartingales. Namely, if
Yt is submartingale and E|Yt|η < ∞ for some η > 1, then

E|Yt|η is nondecreasing in t. (4.6)

Lemma 8 ([1], p. 140, Theorem 6.2.16). Let Yt, t ≥ 0, be a right continuous

submartingale. Let A be a certain subset of real numbers and let Y ∗(ω) =
supt∈A Yt(ω). If p > 1, then Y ∗ ∈ Lp if and only if

sup
t∈A

‖Yt‖Lp
< ∞.

In particular, if 1
r = 1− 1

p , then

‖Y ∗‖Lp
≤ r sup

t∈A
‖Yt‖Lp

.

In fact, we only need the following particular case of Lemma 8 corresponding
to the case of A = [k, k + 1] and for

∣∣∣X(3)
t

∣∣∣ instead of Yt:

E
(

sup
k≤t≤k+1

∣∣X(3)
t

∣∣
)η

≤
(

1− 1
η

)−η

E
∣∣X(3)

k+1

∣∣η. (4.7)

Proof of Lemma 7. Without loss of generality we assume that T = 1. It
follows from (4.7) that

E
(

sup
t≥1

|Yt|
eqt

)η

≤
∞∑

k=1

E
(

sup
k≤t≤k+1

|Yt|
eqt

)η

≤
∞∑

k=1

e−qkηE
(

sup
k≤t≤k+1

|Yt|
)η

≤
(

1− 1
η

)−η ∞∑

k=1

e−qkηE |Yk+1|η

≤
(

1− 1
η

)−η

e2qη
∞∑

k=1

e−q(k+1)ηE |Yk|η
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≤
(

1− 1
η

)−η

e2qη
∞∑

k=1

∫ k+1

k

E |Yt|η
eqtη

dt

=
(

1− 1
η

)−η

e2qη

∫ ∞

1

E |Yt|η
eqtη

dt < ∞. ¤

Remark 4. Lemma 7 can also be proved for the case of η = 1. However the
condition for this case is as follows

∫ ∞

1

E |Yt| ln+ |Yt|
eqt

dt < ∞

where ln+ z = ln(1 + z) for z ≥ 0. The idea of the proof remains the same, but
another Doob’s inequality applies.

5. Proof of Theorem 3.1

First we write down the Lévy–Itô decomposition (2.1). Then we put Ps =
X

(1)
s , Qs = X

(2)
s , and Rs = X

(3)
s . The assumptions of Lemma 1 hold for Ps, Qs,

and Rs by Lemmas 2, 6, and 7, respectively. Therefore Theorem 3.1 follows from
Lemma 1.
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